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Abstract.  In this study, artificial neural networks (ANNs) were used to predict the settlement of pad 
footings on cohesionless soils based on standard penetration test. To achieve this, a computer programme 
was developed to calculate the settlement of pad footings from five traditional methods. The footing 
geometry (length and width), the footing embedment depth, Df, the bulk unit weight, γ, of the cohesionless 
soil, the footing applied pressure, Q, and corrected standard penetration test, Ncor, varied during the 
settlement analyses and the settlement value of each footing was calculated for each method. Then, an ANN 
model was developed for each traditional method to predict the settlement by using the results of the 
analyses. The settlement values predicted from the ANN model were compared with the settlement values 
calculated from the traditional method for each method. The predicted values were found to be quite close to 
the calculated values. It has been demonstrated that the ANN models developed can be used as an accurate 
and quick tool at the preliminary designing stage of pad footings on cohesionless soils without a need to 
perform any manual work such as using tables or charts. Sensitivity analyses were also performed to 
examine the relative importance of the factors affecting settlement prediction. According to the analyses, for 
each traditional method, Ncor is found to be the most important parameter while γ is found to be the least 
important parameter. 
 

Keywords:   artificial neural networks; cohesionless soils; pad footing; settlement; standard penetration 
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1. Introduction 
 

Every foundation design requires satisfying the two major criteria: the bearing capacity and the 
settlement criteria. The settlement criterion is more critical than the bearing capacity criterion in 
the design of shallow foundations on cohesionless soils. Therefore, settlement criterion usually 
controls the design process especially when the width of footing exceeds 1 m (Schmertmann 1970). 
Settlement occurs in cohesionless soils in a short time (i.e., immediately after load application) due 
to their high degree of permeability (Coduto 1994). Such immediate settlement gives rise to 
relatively rapid deformation of superstructures, which leads to an inability to remedy damage and 
to avoid further deformation (Shahin et al. 2002). Usually, the settlement of shallow foundations 
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for example pad or strip footings are limited to 25 mm (Terzaghi et al. 1996). 
Artificial neural network (ANN), a branch of the artificial intelligence science, is widely 

utilized and considered one of the intelligent tools to solve complex problems where the number of 
affecting parameters is too high and the inter-relationship among them is unknown (Khandelwal 
and Singh 2009). ANN displays characteristics such as mapping capabilities or pattern association, 
generalization, robustness or fault tolerance in addition to parallel and high speed information 
processing (Khandelwal and Singh 2009). ANN learns by examples, thus, it can be trained with 
known examples of a problem to obtain knowledge about it (Khandelwal and Singh 2009). Once, 
appropriately trained, the network can be put to effective use of solving unknown or untrained 
examples of the problem (Khandelwal and Singh 2009). Due to its multidisciplinary nature, ANN 
is becoming popular among the researchers, planners, designers, etc., as an efficient tool for the 
accomplishment of their work (Khandelwal and Singh 2009). ANNs have also been applied 
successfully to many problems in geotechnical engineering due to their remarkable capability. 

In this study, ANNs were used to predict the settlement of pad footings on cohesionless soils, 
without a need to perform any manual work such as using tables or charts. With this purpose in 
mind, a computer programme (Gul 2011) was developed in the Matlab programming environment 
to calculate the settlement of pad footings from five traditional settlement prediction methods such 
as, Meyerhof (1965), Terzaghi and Peck (1967), Pary (1971), Peck et al. (1974), and Burland and 
Burbidge (1985). The footing geometry (length, L, and width, B), the footing embedment depth, Df,  
the bulk unit weight, γ, of the cohesionless soil, the footing applied pressure, Q, and corrected 
standard penetration test, Ncor varied during the settlement analyses and the settlement value of 
each pad footing was calculated for each method by using the written programme. Then, an ANN 
model was developed for each traditional method to predict the settlement by using the results of 
the analyses. The settlement values predicted from the ANN model were compared with the 
settlement values calculated from the traditional method for each method to examine the 
performance of the prediction capacity of the models developed in the study. Sensitivity analyses 
were also performed to investigate the relative importance of the factors affecting settlement 
prediction. 
 
 
2. Artificial neural networks 

 
Artificial neural networks (ANNs) are a form of artificial intelligence which are based on the 

biological nervous system and inspired by the structure of biological neural networks and their 
way of encoding and solving problems (Mohan and Sreeram 2005). An ANN is composed of 
basically of a large number of highly interconnected processing elements called neurons working 
in parallel to solve the specific problem. The neural network is first trained by processing a large 
of input patterns and the corresponding output (Khandelwal and Singh 2009). The neural network 
is capable to recognize similarities when presented with a new input pattern after proper training 
and predicting the output pattern (Khandelwal and Singh 2009). Neural networks are also able to 
detect similarities in inputs, even though a particular input may never have been known previously 
(Khandelwal and Singh 2009). This property allows its excellent interpolation capabilities, 
especially when the input data is not definite (Khandelwal and Singh 2009). Neural networks may 
be used as a direct substitute or an alternative for auto-correlation, multivariable regression, linear 
regression, trigonometric and other statistical analysis techniques (Singh et al. 2004, Khandelwal 
and Singh 2009). 
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A network first needs to be trained before interpreting new information (Khandelwal and Singh 
2009). A number of algorithms are available for training of neural networks but the 
back-propagation algorithm is the most versatile and robust technique (Khandelwal and Singh 
2009). It provides the most efficient learning procedure for multilayer neural networks 
(Khandelwal and Singh 2009) Also, the fact that back-propagation algorithms are especially 
capable of solving predictive problems makes them so popular (Khandelwal and Singh 2009). The 
description of the structure and operation of ANNs can be found in many publications (e.g., 
Zurada 1992, Fausett 1994). ANNs architectures are constituted by three or more layers: an input 
layer, one or more hidden layers, and an output layer. This ANN architecture is commonly named 
as a fully interconnected feed-forward multi-layer perceptron (MLP). In addition, there is also a 
bias, which is only connected to the neurons in the hidden and output layers, with modifiable 
weighted connections. Each neuron in a given layer is joined to all the neurons in the next layer by 
means of weighted connections. In the input layer, the raw information is presented to the network 
(Singh et al. 2001). Hidden layer or layers process the information taken from the input layer and 
transfer it to the output layer (Singh et al. 2001). The output layer contains the response of the 
network to the input signals (Singh et al. 2001). The number of input and output neurons is the 
same as the number of input and output variables (Khandelwal and Singh 2009). Number of 
hidden layers and neurons in the hidden layer change according to the problem to be solved 
(Khandelwal and Singh 2009). 

During training of the network, data is processed through the input layer to hidden layer, until it 
reaches the output layer (forward pass) (Singh and Verma 2005, Khandelwal and Singh 2009). In 
this layer, the output is compared to the measured vales (or the “true” output) (Singh and Verma 
2005, Khandelwal and Singh 2009). The difference or error between both is propagated back 
through the network (backward pass) updating the individual weights of the connections and 
biases of the individual neurons (Singh and Verma 2005, Khandelwal and Singh 2009). The 
process is repeated for all the training pairs in the data set, until the network error approximates to 
a threshold defined by a corresponding function; commonly the root mean squared error (RMSE) 
or summed squared error (SSE) (Singh and Verma 2005, Khandelwal and Singh 2009). 

In this study, an ANN model for each traditional method has been modeled for the prediction of 
the settlement of pad footings. In the ANN models, network training was achieved with the neural 
network toolbox written in Matlab environment (Math Works 7.0 Inc. 2006) and the 
Levenberg-Marquardt back-propagation learning algorithm (Demuth et al. 2006) was utilized in 
the training stage. Details of the traditional methods used for estimating the settlement of pad 
footings, which have produced the data for the ANN models, are presented in the following 
section. 
 
 
3. Calculation of settlement of pad footings on cohesionless soils 

 

A computer programme (Gul 2011) was developed in the Matlab programming environment 
for calculating the settlement, h, of pad footings on cohesionless soils based on standard 　
penetration test from five traditional methods, namely, Meyerhof (1965), Terzaghi and Peck 
(1967), Parry (1971), Peck et al. (1974), and Burland and Burbidge (1985). The settlement 
equations used in the calculations were given in Table 1. In Eqs. (1) to (5) in Table 1, Ic is the 
compressibility index, qnet is the net applied pressure, qa is the allowable bearing capacity, ha is the 
absolute maximum allowable settlement, Cw is the correction for water table depth, α is a constant 
and taken as 200 in SI units, CD is the factor for the influence of excavation, CT is the factor for the 
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thickness of the compressible layer and Nm is the measured average standard penetration value. 
The footing geometry (length, L, and width, B), the footing embedment depth, Df, the bulk unit 
weight, γ, of the cohesionless soil, the footing applied pressure, Q, and corrected standard 
penetration test, Ncor varied during the settlement analyses as follows: The B value was varied 1, 2, 
and 3 m. For each B value, the L value was varied as 1, 2, and 3 m. The γ value for each B–L pair 
was varied as 16, 18, 20, and 22 kN/m3. The Df value was changed as 0.5 to 3.5 m with step of 1.0 
m. The Q value was varied from 100 to 1100 kN with step of 200 kN. The Ncor value was varied 
from 5 to 45 with step of 10. Then, the settlement value of each pad footing was calculated for 
each method by using the written programme. The effect of the water table is already reflected in 
the measured SPT blow count (Terzaghi and Peck 1967). Thus, the depth of water table is not 
included in this study. Square and rectangular footings are considered in this study. As found by 
Burbidge (1982), there is no significant difference between the settlement of circular and square 
footings having the same width (B) on the same soil. Therefore, circular footings are also 
considered to be equivalent to as square footings. It can be noted from the settlement analysis that 
the settlement value calculated in each method increases with an increase in the Q value, as 
observed by Ramu and Madaw (2010), and a decrease in the Ncor value for the footing having the 
same geometry, same embedment depth and bulk unit weight. A summary of the results are given 
in Table 2. It can be noted from Table 2 that Terzaghi and Peck (1967) method generally yielded 
the highest settlement values; Parry (1971) and Burland and Burbidge (1985) methods yielded 
lower settlement values; Meyerhof (1965) and Peck et al. (1974) generally yielded similar 
settlement values lower than those predicted by Terzaghi and Peck (1967) and higher than those 
predicted by Parry (1971) and Burland and Burbidge (1985) methods. 

The settlement values calculated from the Terzaghi and Peck (1967) were also compared with 
those calculated both from the Meyerhof (1965) and Peck et al. (1974) methods in Figs. 1 and 2, 
respectively. It can be seen from Fig. 1 that Terzaghi and Peck (1967) mostly yielded higher 
settlement values than Meyerhof (1965) method. It can be seen from Fig. 2 that Terzaghi and Peck 
(1967) generally yielded higher settlement values than Peck et al. (1974) methods. 

 
 
Table 1 Settlement equations of the traditional methods used in this study 

Traditional method Settlement equation Equation no. 

Meyerhof (1965) 
a

net
a q

q
hh   (1) 

Terzaghi and Peck (1967) 25
a

net

q

q
h   (2) 

Parry (1971) wTD
m

net CCC
N

Bq
h


  (3) 

Peck et al. (1974) 25
wa

net

Cq

q
h   (4) 

Burland and Burbidge (1985) cnet IBqh 7.0  (5) 
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Fig. 1 Comparison of Δh values predicted from Terzaghi and Peck (1967) method with those 
predicted from Meyerhof (1965) method 
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Fig. 2 Comparison of Δh values predicted from Terzaghi and Peck (1967) method with those 

predicted from Peck et al. (1974) method 

 
 

The settlement values calculated from the Terzaghi and Peck (1967) were compared with those 
calculated both from the Parry (1971) and Burland and Burbidge (1985) methods in Figs. 3 and 4, 
respectively. It can be seen from the figures that Terzaghi and Peck (1967) yielded higher 
settlement values than both the Parry (1971) and Burland and Burbidge (1985) methods. 
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Fig. 3 Comparison of Δh values predicted from Terzaghi and Peck (1967) method with those 
predicted from Parry (1971) method 
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Fig. 4 Comparison of Δh values predicted from Terzaghi and Peck (1967) method with those 
predicted from Burland and Burbidge (1985) method 

 
 

The settlement values calculated from the Meyerhof (1965) were compared with those 
calculated from the Peck et al. (1974) in Fig. 5. It can be seen from the figure that Peck et al. 
(1974) yielded slightly higher settlement values than Meyerhof (1965). 
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The settlement values calculated from the Parry (1971) were compared with those calculated 
from the Burland and Burbidge (1985) in Fig. 6. It can be seen from the figure that the settlement 
value calculated from Parry (1971) was mostly higher than Burland and Burbidge (1985). 
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Fig. 5 Comparison of Δh values predicted from Peck et al. (1974) method with those predicted 
from Meyerhof (1965) method 
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Fig. 6 Comparison of Δh values predicted from Burland and Burbidge (1985) method with those 
predicted from Parry (1971) method 
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4. Artificial neural network model 
 
An ANN model for each traditional method is developed to predict the settlement, Δh, value of 

the pad footing on cohesionless soils. In each ANN model, the input parameters used were the 
footing geometry (length, L, and width, B), the footing embedment depth, Df, the bulk unit weight, 
γ, of the cohesionless soil, the footing applied pressure, Q, and corrected standard penetration test, 
Ncor, while the output parameter was the calculated Δh value. The boundaries of the input and 
output parameters for each method are given in Table 3. The input and output data were then 
scaled to lie between 0 and 1, by using Eq. (6). In Eq. (6), where xnorm is the normalized value, x is 
the actual value, xmax is the maximum value and xmin is the minimum value. 

 
 minmax

min

xx

xx
xnorm 


                              (6) 

It is a common practice to divide the available data into two subsets; a training set and 
independent validation set, which may cause model over-fitting (Twomey and Smith 1997). 
Over-fitting occurs mainly because of training of network with too many epochs (Singh and Singh 
2005). Over-fitting makes multi-layer perceptrons (MLPs) memorize training patterns in such a 
way that they cannot generalize well to new data (Choobbasti et al. 2009). As a result, 
crossvalidation technique (Stone 1974), considered to be the most effective method to ensure 
over-fitting does not occur (Smith 1993), was used as the stopping criterion in this study. In this 
technique, the database is divided into three subsets: training, validation and testing. The training 
set is used to adapt the connection weights (Shahin et al. 2004). The testing set is utilized to 
control the performance of the model at various stages of training, and to decide when to stop 
training to avoid over-fitting (Shahin et al. 2004). The validation set is applied to estimate the 
performance of the trained network in the deployed environment (Shahin et al. 2004). Shahin et al. 
(2004) examined the influence of the proportion of the data used in various subsets on the 
performance of ANN model developed for estimating the settlement of shallow foundations and 
found no exact relationship between the proportion of the data and model performance. However, 
they obtained the optimal model performance when 20% of the data were used for validation and 
the remaining data were divided into 70% for training and 30% for testing. Therefore, in total, 
56% of the data (i.e., 2150 data sets) were randomly selected and used for training, 24% (i.e., 922 

 
 
Table 3 Boundaries of the parameters used for the models developed 

 
Input parameters 

Output parameter 

Meyerhof
(1965)

Terzaghi and  
Peck (1967)

Parry 
(1971)

Peck et al. 
(1974) 

Burland  
and Burbidge 

(1985) 

Ncor 
Q 

(kN) 

γ 

(kN/m3) 

Df 

(m) 

B 

(m) 

L 

(m)
Δh 

(mm) 
Δh 

(mm) 
Δh 

(mm)
Δh 

(mm) 
Δh 

(mm) 

Minimum 
value 

5 100 16 0.5 1.0 1.0 0.00 0.00 0.00 0.00 0.00 

Maximum 
value 

45 1100 22 3.5 3.0 3.0 406.22 650.00 211.32 508.95 120.77 
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data sets) for testing, and 20% (i.e., 768 data sets) for validation in each ANN model developed in 
this study. 

The neural network toolbox of MATLAB7.0, a popular numerical computation and 
visualization software [21], was utilized for training, validation, and testing of MLPs in each ANN 
model. Firstly, one hidden layer was selected. Caudill (1988) found that (2I + 1), (I is the number 
of input variables), is the upper limit for the number of hidden layer neurons needed to map any 
continuous function work with I inputs. Therefore, the optimum number of neurons in the hidden 
layer of the model was decided by varying their number starting with a minimum of 1 then 
increasing the network size up to (2I + 1) in steps by adding 1 neuron each time. Different transfer 
functions (such as log-sigmoid (Sakellariou and Ferentinou 2005) and tan-sigmoid (Orbanić and 
Fajdiga 2003) were examined in each ANN model to obtain the best performance in training as 
well as in testing. Two momentum factors (μ) of 0.01 and 0.001 were chosen for the training 
process to found for the most efficient ANN architecture in each ANN model. 

In each ANN model, network training was achieved with the neural network toolbox written in 
Matlab environment (Math Works 7.0 Inc. 2006) as follows. Utilizing the random values 
representing each variable, a random set of weights was initially selected to the connections 
between the layers. The first output of the network was decided using these weights. The obtained 
output was then compared with actual output and the mean square error was calculated. The 
Levenberg-Marquardt back-propagation learning algorithm (Demuth et al. 2006) then minimized 
this error. A feed forward back-propagation ANN system has the property of self-optimization of 
the error during training (Hamid et al. 2003). Therefore, the final weight of a particular variable 
was decided by the system itself, which was determined precisely by the relative impact of the 
variable in the dataset in relation to the actual output variable. The coefficient of determination, R2, 
and the mean absolute error, MAE, were used to assess the performance of each developed ANN 
model. The performance of the network during the training and testing processes was observed for 
each network size until no significant improvement occurred. The optimal ANNs performance was 
achieved with the model having 4 neurons in the hidden layer, a 0.001 momentum factor, a 
log-sigmoid transfer (activation) function in the neurons of the hidden layer and in the neuron of 
the output layer, and 53, 50, 74, 100 and 100 epochs for the ANN models developed from 
Meyerhof (1965), Terzaghi and Peck (1967), Parry (1971), Peck et al. (1974), and Burland and 
Burbidge (1985) methods, respectively. Connection weights and biases of the best ANN models 
developed from Meyerhof (1965), Terzaghi and Peck (1967), Parry (1971), Peck et al. (1974), and 
Burland and Burbidge (1985) methods were given in Tables 4 to 8, respectively. 

 
 
 
Table 4 Connection weights and biases of the best ANN model for Meyerhof (1965) method 

Hidden 
neuron 

Weight Bias 

Input neuron Output neuron Hidden  
layer 

Output 
layer Ncor Q γ Df B L Δh 

1 2.906 12.668 0.874 0.573 -33.597 1.374 0.497 -4.776 71.306 

2 -133.451 29.616 -2.039 -0.512 -2.765 -1.499 0.925 -2.237  

3 1.839 -2.119 0.372 0.087 1.071 1.598 -4.042 -1.147  

4 5.864 -2.751 0.118 0.039 2.368 3.973 -72.933 5.761  
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Table 5 Connection weights and biases of the best ANN model for Terzaghi and Peck (1967) 
method 

Hidden 
neuron 

Weight Bias 

Input neuron Output neuron Hidden  
layer 

Output 
layer Ncor Q γ Df B L Δh 

1 -5.941 -4.776 -0.646 0.002 7.572 19.692 -1.028 2.377 -2.217 

2 -5.030 0.640 -0.096 -0.023 -0.367 -0.716 42.544 -2.725  

3 3.025 -8.258 1.355 0.315 1.757 2.154 -2.516 -1.506  

4 0.859 -4.987 0.315 -0.206 12.773 -4.158 -0.783 3.537  

 
Table 6 Connection weights and biases of the best ANN model for Parry (1971) method 

Hidden 
neuron 

Weight Bias 

Input neuron Output neuron Hidden  
layer 

Output 
layer Ncor Q γ Df B L Δh 

1 -4.390 1.170 1.521 -0.107 -0.737 -0.649 1.683 1.352 34.059 

2 -3.039 -3.296 -2.207 -0.199 7.890 8.206 -1.123 3.839  

3 0.283 -3.955 1.108 0.162 0.812 0.873 -15.506 -2.996  

4 6.654 -0.834 -0.452 0.023 0.800 0.804 -36.896 3.564  

 
Table 7 Connection weights and biases of the best ANN model for Peck et al. (1974) method 

Hidden 
neuron 

Weight Bias 

Input neuron Output neuron Hidden  
layer 

Output 
layer Ncor Q γ Df B L Δh 

1 -0.137 -5.741 0.308 0.164 0.233 0.219 -18.206 -2.432 -1.524 

2 -5.711 2.834 -0.801 0.101 -10.872 -6.517 28.379 -5.531  

3 -0.301 0.254 -0.146 0.002 -0.287 -0.290 20.426 0.769  

4 9.743 -0.343 -0.174 0.044 0.121 0.149 -14.211 2.772  

 
Table 8 Connection weights and biases of the best ANN model for Burland and Burbidge (1985) 
method 

Hidden 
neuron 

Weight Bias 

Input neuron Output neuron Hidden  
layer 

Output 
layer Ncor Q γ Df B L Δh 

1 -30.910 4.926 -0.228 -0.070 -15.193 -17.118 33.496 -7.359 4.239 

2 3.121 0.410 0.129 0.021 0.241 0.235 -36.258 2.276  

3 -1.388 -0.854 -1.079 -0.137 3.288 3.323 -1.532 1.189  

4 -0.768 4.510 -0.729 -0.163 -0.607 -0.665 29.036 3.267  
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5. Results and discussion 
 
A comparison of Δh values calculated from five traditional methods with the Δh values 

predicted from the ANN models developed is depicted in Figs. 7 to 11. It can be noted from the 
figures that predicted Δh values are quite close to the calculated Δh values, as their R2 values are 
much close to unity. 

A paired-T test using the SPSS 10.0 package was also performed to test the differences 
between calculated and predicted Δh values. In this test, significance level was decided by taking 
P values into consideration as follows: P > 0.05 meant there was not a meaningful difference; P  
0.05 meant there was a meaningful difference (Tüysüz 2010). P-value was found as 0.24, 0.56, 
0.47, 0.66, and 0.41 for Meyerhof (1965), Terzaghi and Peck (1967), Parry (1971), Peck et al. 
(1974), and Burland and Burbidge (1985), respectively, indicating that no significant difference in 
Δh values was observed between calculated and predicted values. 

 
 

 

Fig. 7 Comparison of calculated Δh values from Meyerhof (1965) method with predicted Δh values 
from the ANN model developed for: (a) training; (b) testing; and (c) validation data sets 
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   Fig. 7 Continued

 

Fig. 8 Comparison of calculated Δh values from Terzaghi and Peck (1967) method with predicted Δh 
values from the ANN model developed for: (a) training; (b) testing; and (c) validation data sets 
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   Fig. 8 Continued 

 

 

Fig. 9 Comparison of calculated Δh values from Pary (1971) method with predicted Δh values 
from the ANN model developed for: (a) training; (b) testing; and (c) validation data sets 
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In this study, variance VAF, represented by Eq. (7), and the root mean square error RMSE, 
represented by Eq. (8), were also calculated to check the performance of the prediction capacity of 
predictive models developed in the study, as employed by Erzin (2007), Erzin et al. (2008), Erzin 
et al. (2009), Erzin et al. (2010), and Erzin and Gunes (2011). 

 
  100

var

ˆvar
1 







 
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y

yy
VAF                          (7) 

  


N

i ii yy
N

RMSE
1

2ˆ
1

                       (8) 

where var denotes the variance, y is the measured value, ŷ is the predicted value, and N is the 
number of the sample. If VAF is 100 % and RMSE is 0, the model is treated as excellent. 

The performance indices calculated for the ANN models developed in this study are given in 
Table 9. Each ANN model has exhibited higher prediction performance based on the performance 
indices in Table 9, which indicates the efficiency of the ANN models for estimating the settlement 
of pad footing on cohesionless soils. 

In addition to the performance indices, a graph between the scaled percent error (SPE), given 
by Eq. (9), as employed by Kanibir et al. (2006), and cumulative frequency was also drawn in Figs. 
12 to 16 for Meyerhof (1965), Terzaghi and Peck (1967), Parry (1971), Peck et al. (1974), and 
Burland and Burbidge (1985) methods, respectively, to show the performance of the models 
developed. 

 
    minmax cc

cp

hh

hh
SPE




                          (9) 

where Δhp and Δhc are the predicted and the calculated settlements; and (Δhc)max and (Δhc)min are 
the maximum and minimum calculated settlements, respectively. As seen from Figs. 12 to 16, 
about 94, 95, 95, 90, and 96 % of settlements predicted from the ANN model developed for 
Meyerhof (1965), Terzaghi and Peck (1967), Parry (1971), Peck et al. (1974), and Burland and 
Burbidge (1985) methods, respectively, fall into  2 of the SPE indicating a perfect estimate for he 
settlement of pad footings. From here, it can be concluded that the Δh value of pad footings for 
each traditional method could be predicted from the footing geometry (length, L, and width, B), 
the footing embedment depth, Df, the bulk unit weight, γ, of the cohesionless soil, the footing 
applied pressure, Q, and corrected standard penetration test, Ncor using trained ANNs values, with 
acceptable accuracy, at the preliminary stage of designing the pad footing. 

The settlement values predicted from the ANN models are almost the same as those obtained 
from the five traditional methods (see Figs. 7 to 11). Therefore, the ANN models developed can be 
preferred over five available methods on the basis practicality of use. Because, ANNs have the 
advantage that once the model is trained, it can be used as an accurate and quick tool for 
estimating the settlement without a need to perform any manual work such as using tables or 
charts as mentioned by Shahin et al. (2002). However, the five available methods are not easy to 
use as each parameter in Table 1 requires so many calculations, and use of tables or charts. 

Sensivity analyses were also performed on the trained work to examine which of the input 
parameters has the most significant influence on settlement predictions. A simple and innovative 
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Fig. 10 Comparison of calculated Δh values from Peck et al. (1974) method with predicted Δh values 
from the ANN model developed for: (a) training; (b) testing; and (c) validation data sets 
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Fig. 11 Comparison of calculated Δh values from Burland and Burbidge (1985) method with predicted Δh 
values from the ANN model developed for; (a) training; (b) testing; and (c) validation data sets 
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technique proposed by Garson (1991), as employed by Shahin et al. (2002), was utilized to 
interpret the relative importance of the input parameters by examining the connection weights of 
the trained network. For a network with one hidden layer, the technique requires a process of 
partitioning the hidden output connection weights into components associated with each input 
node (Shahin et al. 2002).  The ratio of the number of free parameters (e.g., connection weights) 

 
 

 
Fig. 12 Scaled percent error of the settlements predicted from the ANN model for Meyerhof 

(1965) method 

 

 
Fig. 13 Scaled percent error of the settlements predicted from the ANN model for Terzaghi and Peck 

(1967) method 
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Fig. 14 Scaled percent error of the settlements predicted from the ANN model for Parry (1971) method 

 
 
to the data points in the training set in any ANN model is important for interpreting of the physical 
meaning of the relationship found by the ANN. If this ratio is too large, the interpretation is 
difficult (Shahin et al. 2002). In this study, the ratio of the number of weights to the number of 
data points in the training set is approximately 1:77. Training is repeated four times with 
differentrandom starting weights to control the robustness of the model in relation to its ability to 

 
 

 
Fig. 15 Scaled percent error of the settlements predicted from the ANN model for Peck et al. 

(1974) method 
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Table 10 The results of the sensivity analysis 

Traditional method Trial no. 
Relative importance for input variables (%) 

Ncor Q Df γ B L 

Meyerhof (1965) 

1 42.62 18.49 0.95 0.30 14.94 22.71

2 48.25 19.90 1.65 0.24 19.73 10.23

3 55.26 15.55 1.51 0.22 15.09 12.37

4 31.94 25.39 1.25 0.29 21.50 19.63

Average 44.52 19.83 1.34 0.26 17.82 16.23

Ranking 1 2 5 6 3 4 

Terzaghi and  
Peck (1967) 

1 58.16 14.46 2.14 0.49 9.63 15.12

2 47.66 15.20 0.72 0.06 22.02 14.34

3 43.20 16.72 0.31 0.08 24.24 15.45

4 30.32 28.63 1.31 0.30 20.25 19.18

Average 44.84 18.75 1.12 0.23 19.03 16.02

Ranking 1 3 5 6 2 4 

Parry (1971) 

1 51.44 19.29 7.67 0.74 10.30 10.56

2 47.65 19.65 11.13 0.68 10.39 10.50

3 32.81 28.50 5.46 1.98 15.44 15.81

4 44.17 27.26 7.01 1.24 13.80 6.52 

Average 44.02 23.68 7.82 1.16 12.48 10.85

Ranking 1 2 5 6 3 4 

Peck et al. (1974) 

1 29.12 18.37 3.18 0.61 30.17 18.55

2 36.05 15.30 25.61 0.49 11.04 11.50

3 50.44 24.39 3.58 0.21 9.50 11.87

4 38.82 16.72 3.08 0.48 22.51 18.39

Average 38.61 18.69 8.86 0.45 18.31 15.08

Ranking 1 2 5 6 3 4 

Burland and  
Burbidge (1985) 

1 43.85 11.67 1.31 0.30 20.20 22.67

2 39.87 18.53 4.46 1.37 16.02 19.75

3 41.13 12.01 1.03 0.23 20.99 24.61

4 36.51 20.60 1.23 0.21 23.38 18.08

Average 40.34 15.70 2.01 0.53 20.15 21.28

Ranking 1 4 5 6 3 2 

 
 
obtain the information about the relative importance of the physical factors affecting the settlement 
of pad ootings. According to the sensivity analysis (Table 10), for each traditional method, Ncor is 
found to be the most important parameter while γ is found to be the least important parameter. In 
addition to that, the secondly important parameter was Q for Meyerhof (1965), Parry (1971), and 
Peck et al. (1974) methods, L for Burland and Burbidge (1985) and B for Terzaghi and Peck 
(1967). 
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Fig. 16 Scaled percent error of the settlements predicted from the ANN model for Burland and 

Burbidge (1985) method 

 
 
6. Conclusions 

 
In this study, attempts have been made to develop artificial neural network (ANN) model that 

can be employed for predicting the settlement, Δh, of pad footings on cohesionless soils, without a 
need to perform any manual work such as using tables or charts. With this purpose in mind, a 
computer program was developed in the Matlab programming environment to calculate the Δh 
value of pad footings from five traditional settlement prediction methods. The footing geometry 
(length, L, and width, B), the footing embedment depth, Df, the bulk unit weight, γ, of the 
cohesionless soil, the footing applied pressure, Q, and corrected standard penetration test, Ncor, 
varied during the settlement analyses and the Δh value of each pad footing was calculated for each 
method by using the written programme. Then, an ANN model was developed for each traditional 
method to predict the Δh value of pad footings by using the results of the settlement analyses. The 
Δh values predicted from the ANN model were compared with those calculated from the 
traditional method for each method to check the performance of the prediction capacity of the 
models developed in the study. It is found that the Δh values predicted from the ANN model are 
quite close to the calculated Δh values for each method. 

In order to examine the prediction performance of the ANN models developed, several 
performance indices such as R2, VAF, MAE, RMSE, and SPE were computed. Each ANN model 
has shown high prediction performance based on the calculated performance indices, which 
demonstrates the utility and efficiency of the ANN models for estimating the settlement of pad 
footing on cohesionless soils. Therefore, the ANN models developed in this study can be used as 
an accurate and quick tool at the preliminary designing stage of pad footings on cohesionless soils 
without a need to perform any manual work such as using tables or charts. 

Sensivity analyses were also carried out on the trained work to identify which of the input 
parameters has the most significant influence on settlement predictions. It is found that for each 
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traditional method, Ncor is found to be the most important parameter while γ is found to be the least 
important parameter. 
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