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Abstract. In this paper, Soil-Structure Interaction (SSI) effect is investigated using a new and integrated
approach. Faster solution of time dependant differential equation of motion is achieved using numerical
representation of wavelet theory while dynamic Infinite Elements (IFE) concept is utilized to effectively
model the unbounded soil domain. Combination of the wavelet theory with IFE concept lead to a robust,
efficient and integrated technique for the solution of complex problems. A direct method for soil-structure
interaction analysis in a two dimensional medium is also presented in time domain using the frequency
dependent transformation matrix. This matrix which represents the far field region is constructed by
assembling stiffness matrices of the frequency dependant infinite elements. It maps the problem into the
time domain where the equations of motion are to be solved. Accuracy of results obtained in this study is
compared to those obtained by other SSI analysis techniques. It is shown that the solution procedure
discussed in this paper is reliable, efficient and less time consuming as compared to other existing
concepts and procedures.

Keywords: soil structure interaction; infinite elements; wavelet theory; fourier transformation; numeri-
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1. Introduction

Most dynamic and earthquake analyses of structures are performed neglecting the impact of the

soil and the foundation on structural response. However, the effect of Soil-Structure Interaction

(SSI) may be significant especially for stiff structures resting on soft soil deposits (Wolf 1985).

Masia et al. (2004) discussed that soil-structure interaction is not limited to seismic analysis or

design of special buildings such as reactor or framed building resting on mat foundations. The

effects of SSI may also alter the dynamic characteristics of the structural response as well as that of

the free field motion. Hence, a new combined dynamical system which includes the soil domain as

well as the structure is developed while taking the SSI effects into account. As mentioned by

Kramer (1996), seismic waves may travel through tens of kilometers of rocks and often less than

100 m of soil to reach the surface. Despite this, soil layers play a significant role in determining the

characteristics of surface ground motion; since, as may be visualized from Fig. 1(a), these waves are

often refracted and amplified. A complete review on the history of SSI was recently provided by

*Corresponding author, Associate Professor, E-mail: rahgozar@mail.uk.ac.ir

 Technical Note
DOI: http://dx.doi.org/10.12989/gae.2010.2.4.229



230 Mohamad Hossein Bagheripour, Reza Rahgozar and Mohsen Malekinejad

Kausel (2010) including the leading developments that paved the way for the state of the art as it is

known today. He elaborated on the principal problems encompassed by the theory of SSI.

Nakhaei and Ghannad (2006) investigated the effect of soil-structure interaction on hysteric

energy demand of buildings. The soil beneath the structure was treated as a discrete model while

sway and rocking degrees of freedom, based on the concept of cone model (Wolf 1994), was taken

into account. The soil model was then solved by direct step-by-step integration method in time

domain. Acceleration time history of 24 earthquakes recorded on the alluvium sites were examined.

Hysteretic energy demand for structures having various natural periods was computed using Riddle

and Garcia (2001) averaging concept applied to results for individual records.

Recently, the effect of soil-structure interaction on simple single storied and two bay space frame

resting on a pile group embedded in cohesive soil with flexible cap has been examined by Chore et

al. (2009). They preferred to carry out uncoupled analysis rather than coupled since in uncoupled

analysis, computational resources and memory requirements are reduced. Interaction analysis of the

system was presented in which building frame and pile foundation were considered as single

compatible unit. The effect of pile spacing in pile group and geometrical distribution on the

superstructure response was also evaluated. 

SSI analysis can be divided into two broad categories: a) The direct method and b) sub-structuring

concept (Wolf 1985, Kramer 1996). The former involves solving equations of motion for a general

model that includes the structure as well as the soil region, shown schematically in Fig. 1(b), which

is the focus of investigation in this study. Gouasmia and Djeghaba (2007) developed a numerical

model for wave induced vibrations in buildings based on substructure methods using Matlab

software.

When analyzing a system of soil-structure under static loading, it may appear adequate to develop

model of a structure resting on a soil medium large enough so that loading effects vanish beyond

the soil region included in the model. One approach is to fix boundary nodes (Wolf 1985); which

contrary to the real situation, seismic waves do not dissipate in soil's unbounded domain. In such

models, seismic waves are reflected off of the fixed boundaries and often cause spurious results.

Fig. 1 (a) Propagation and refraction of seismic waves, (b) Global discretization of the whole soil domain to
interior and exterior domains



Efficient analysis of SSI problems using infinite elements and wavelet theory 231

This issue can be overcome by introducing infinite elements along the soil boundaries and is

considered in this study. Bettes (1977) was apparently the first to introduce the formulation of

infinite element in static analyses. For dynamic problems, Chow and Smith (1981), Zhao and

Valliappan (1992) and Zhao and Zhang (1989) introduced and applied the dynamic infinite elements in

various geomechanical problems. A comprehensive review on the types and formulations for both

the static and dynamic infinite elements is found in Bagheripour and Marandi (2003). Kim and Yun

(2000) have applied infinite elements to the SSI vibration analysis of a block foundation. 

Main advantages of infinite elements are savings in modeling and computation times, reduction in

cost without sacrificing the accuracy of computed solution. Furthermore, infinite elements have all

the advantages of the conventional finite elements i.e. features such as a banded coefficient matrix

and numerical integration procedures are retained.

In this paper, a new approach is adopted for the investigation of SSI effect on seismic response of

structures resting on soil. Wavelet theory is used as a special tool for faster solving of time

dependendant differential equation of motion while dynamic Infinite Elements (IFE) are used to

effectively model the unbounded soil domain. The use of wavelet theory associated with IFE

provides an integrated, fast, efficient tool for solving complex SSI problems. In the followings, a

brief discussion is given on the fundamental equations of motion in soil region based on wave

propagation theory in visco-elastic medium is presented first; followed by discussion on infinite

element formulation used in this study. Next, a concise description of the wavelets theory is given.

Structural response spectrum that considers SSI effects is obtained using wavelet theory associated

with the infinite elements (IFE). Comparing the results that include SSI effect with those that

exclude the effect along with comparison to other SSI methods are used to validate the proposed

scheme.

2. Equation of motion for SSI analysis

As mentioned earlier, in a direct SSI approach the entire soil-foundation-structure system is

modeled and analyzed in a single stage. Input motions are specified along the base and on one side

of the model. The response is computed using equations of motion in time domain i.e.

 (1)

where [M] and [K*] are the mass and dynamic stiffness matrices respectively. ug(t) is the specified

ground motion at time t while its second derivative  is the ground acceleration recorded during

an earthquake. In fact, ug(t) in the proposed framework may be assumed to be equal to free field

motion (i.e. ug(t) ≅ uff (t)). Equations of motion can be expressed in an alternative form by

introducing the interaction force vector linking the near and far field soil regions and decomposition

of mass and stiffness matrices. They can be demonstrated in both frequency and time domains by

Eqs. (2) and (3) respectively (Kim and Yun 2000)

 (2)

M[ ] u··{ } + K
*[ ] u{ } = − M[ ] u··g t( ){ }

u··g t( )

Sss ω( )  Ssb ω( )

Sbs ω( )  Sbb ω( )

Us ω( )

Ub ω( )⎩ ⎭
⎨ ⎬
⎧ ⎫

 = 
Fs ω( )

Fb ω( )⎩ ⎭
⎨ ⎬
⎧ ⎫
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 (3)

In the above equations, subscript s denotes structural region while b refers to the interface

between the near and far fields. Sij(w) are stiffness sub-matrices of the model; while Sss refers to

stiffness matrix of the structural and near field soil region; Ssb and Sbs are stiffness matrices of the

interface between near and far field regions and finally Sbb is the far field stiffness matrix. The

corresponding stiffness sub-matrices are complex in nature, i.e.  where ξ is the

material damping ratio. If the material damping is ignored for a region, the corresponding stiffness

sub-matrix is real valued and the asterisk sign is removed from its notation.

The dynamic stiffness sub matrices of the far field soil region, Sbb, can be obtained using the

infinite elements. Us(ω) and Ub(ω) are the Fourier transforms of displacement and force vectors. u(t)

and f(t) are the displacement and force vectors in time domain respectively, while Fb(ω) and fb(t)

are the interaction force vectors of the interface between the near and far fields in frequency and

time domains respectively. These are defined as

 (4)

In which  is the coefficient matrix of a response function resulting from a unit displacement

impulse. It can be obtained by taking the IFFT of  as

 (5)

2.1 Numerical modeling of SSI problems

Finite element analysis of geomechanical problems often presents difficulties in modeling

unbounded domains of soil or rock. A common approach is the truncation of the far filed region

and hence arbitrarily locating the boundaries which often results in significant errors in the

computed solutions (Bagheripour and Marandi 2003, Bagheripour and Marandi 2005). However, use

of a large number of finite elements to remove the boundary effects may be considered as a

solution; however, this approach requires large computational time and resources which makes the

analysis an unworthy practice. Additional difficulties arise from the reflection of waves off the

artificially truncated boundaries which may lead to spurious results (Chuhan and Zhao 1987).

A wide variety of artificial finite boundaries and coupling techniques have been developed in the

past to overcome these problems including viscous damping boundary (Lysmer and Kuhlemeyer

1969, White et al. 1977), superposition boundary (Cundall et al. 1978), wave transmitting boundary

(Liao et al. 1984), consistent boundary (Kausel 1974), boundary elements (Wolf 1985) and even

scaled boundary element (Baziar 2007). More recently, Deneme et al. (2008) investigated and

compared some discontinuous boundary elements for 2D soil-structure interaction. Multipurpose

computer program coded in Fortran 77 was developed for each type of boundary elements and for

Mss  Msb

Mbs  Mbb

u··s t( )

u··b t( )⎩ ⎭
⎨ ⎬
⎧ ⎫

 + 
Kss

*
 Ksb

*

Kbs

*
 Kbb

*

us t( )

ub t( )⎩ ⎭
⎨ ⎬
⎧ ⎫

 = 
fs t( )

fb t( )⎩ ⎭
⎨ ⎬
⎧ ⎫

Kij

*
 = Kij 1 iξ+( )

Fb ω( ) = −Sbb

g
ω( )Ub ω( )

fb t( ) = −  
0

t

∫ Sbb

g
t τ–( )ub τ( )dτ

Sbb

g
t( )

Sbb

g
ω( )

Sbb

g
t( ) = IFFT Sbb

g
ω( )( ) = 

1

2π
------  

∞–

+∞

∫ Sbb

g
ω( )exp iωt( )dω
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elastic or visco-elastic 2D SSI problems. However, the discontinues boundary elements developed

by Deneme et al. (2008) appears to be incapable of capturing the frequency dependant

characteristics of soils. The purpose of these boundaries is to absorb the incoming waves so that

they are not reflected off of the artificially truncated boundary and hence to model the real behavior

of the domain. Wang (2005) discussed on the influence of different boundary conditions on analysis

of SSI problems such as reactor buildings response using CALSSI and FLUSH computer codes. He

concluded that in order to absorb, instead of reflect, the outwardly radiating energy, the use of

transmitting boundary conditions at the soil-structure interface should be considered. In order to

simulate the effect of the far field on the near field more intuitively and numerically, infinite

elements (e.g. Bettes 1977) have been developed in recent years. Some numerical results (Chuhan

and Zhao 1987, Zhao 1991) indicate that the coupling of finite and infinite elements (FE-IFE) is an

effective framework to simulate wave propagation problems in infinite media. Using this method,

not only the geometrical irregularities and geological complexities in the near field are simulated,

but also the wave propagation characteristic of the system is effectively taken into account.

3. Finite element and infinite elements 

In formulation of dynamic infinite elements, amplitude decay and phase delay of the wave

propagation are taken into account. The shape functions of such element must reflect the far field

characteristics; i.e. it must satisfy the radiation condition as well as the decay of state variables (e.g.

displacements) to zero at infinity. Shape function of an infinite element which extends to infinity in

ξ direction (Fig. 2) may be written as (Kim 1999, Yun et al. 2000)

 (6)

where  are the conventional element shape functions, k is the wave number of

propagating wave and L is scaling length. The first exponential term in Eq. (6) represents the basic

shape of the propagating wave while the second exponential term enables the variables to go to zero

Nj′ ξ, η( ) = Nj ξ, η( )e
ikξ ξ

1
ξ–( )/L–

Nj ξ, η( )

Fig. 2 Global and local coordinates adopted for the development of Finite Elements (FE) as well as Infinite
Elements (IFE)
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as ξ goes to infinity. A detailed discussion on the effects of length scale can be found in other

published works (Kim and Yun 2000, Zhao and Zhang 1989). Element matrices are formulated in

the usual way. The element stiffness and mass matrices are expressed in the form

 (7a)

 (7b)

Infinite element formulation considered in this paper clearly shows that frequency of the input is

importance and are formulated in frequency domain. However, in order to use these elements in a

time domain analysis, the frequency ω, should be fixed. Usually the predominant frequency of the

input is considered for ω (Kramer 1996) in order to reach the most significant response of the

system under a given input motion. The infinite elements developed specifically for time domain

analysis are essentially similar to static type of infinite elements (Bettes 1977) and does not include

wave propagation characteristics such as k. The main advantage of the infinite elements developed

in frequency domain is clearly the simplicity of the formulation particularly for amplitude

attenuation terms. These terms guarantee the decay of wave energy as it occurs in real situations.

3.1 Mapping function and shape functions for IFE's

Mapping functions are used to relate the local coordinates (ξ, ζ ) to the global coordinates (x, z)

and are defined for 3 types of infinite elements shown in Fig. 2. These are as follows

 (8a)

 (8b)

 (8c)

where xo and zo are global coordinates of the corner points in the regions defined by ΩLC or ΩRC

which are also shown schematically in Fig. 2. xj and zj are also the global coordinates at elemental

node j. Lj(η) is a Lagrangian polynomial which has unit value at node j and zero at all other nodes.

Here the local coordinates vary within the limits ξ∈[0, ∞], ζ∈[0, ∞] and η∈[−1, 1]. Shape

functions for infinite elements define a displacement field based on propagation waves into an

infinite domain, i.e.

 (9)

where pjm(ω) are the corresponding generalized coordinates and Njm(x, z, ω) are displacement

shape functions. N is the number of nodes for horizontal and vertical infinite elements which also

represents the number of horizontal wave functions for the left and right corner infinite elements

(LCIFE and RCIFE). m is the number of shape functions considered in the formulation of infinite

elements. The shape functions Njm (x, z, ω), for all 3 types of infinite elements used here (also

M[ ]e =  
1–

1

∫  
0

∞

∫ N[ ]Tρ N[ ] J dξ.dη

K[ ]e =  
1–

1

∫  
0

∞

∫ B[ ]T D
*[ ] B[ ] J dξ.dη

x = xo 1 ξ+( ) z =  

j 1=

N

∑ Lj η( )zj for HIFE x, z( ) ΩH

e∈( )

x = xo 1 ξ+( ) z = zo 1 ζ–( ) for LCIFE or RCIFE x, z( ) ΩLC

e∈  or ΩRC

e( )

x =  

j 1=

N

∑ Lj η( )xj z = zo 1 ζ–( ) for VIFE x, z( ) ΩV

e∈( )

u x, z, ω( ) =  

j 1=

N

∑  

m 1=

m

∑ Njm x, z, ω( )Pjm ω( )
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shown in Fig. 2) are defined by

for HIFE  (10a)

for LCIFE & RCIFE  (10b)

for VIFE  (10c)

where Cm(ω) and Cp(ω) are defined as

 (11)

where α (0 < α ≤ 1) and βj ( j = 1, 2, 3) are the displacement amplitude decay factor and the

nominal wave number in local coordinates of an infinite element respectively. In above relations,

the general term exp(−Cm(ω)x, ξ)=exp(−(α + iβ)x, ξ) may be decomposed into two separate terms

of which the term e−αξ expresses the amplitude attenuation due to wave dispersion while e−iβξ

defines phase delay due to wave propagation in local coordinate system. The index j ( j = 1, 2, 3)

for parameter β denotes the wave numbers for shear, compression, and Raleigh waves respectively.

In formulation of the infinite element studied here, the Rayleigh wave components are not included

for the vertical and the corner infinite element since these components decay quickly as depth

increases.

3.2 Near field stiffness and mass matrices for structure and soil domain

Near field includes the structure and a limited area of the soil region surrounding the structure

which is modeled mainly by finite elements. For this purpose a 4-node plane isoparametric element

formulation is used. Stiffness and mass matrices for these elements are calculated based on Gauss

integration rules and are not repeated here (Chuhan and Zhao 1987, Kim and Yun 2000, Zhao and

Valliappan 1992). A 2D frame element is used to model the structure. For this purpose an element

with 3 degrees of freedom at each joint is introduced and then stiffness, mass and damping matrices

are formed using standard finite element procedures (Logan 2008).

4. Solving the differential equation of motion by HAAR wavelet

4.1 A brief review on the Wavelet Theory (WT)

Wavelet theory has been successfully applied in the analysis of complex and random input waves

in many engineering disciplines. In summary, WT is a mathematical transformation which is applied

to signals such as an accelerogram output to obtain further information from that signal that is not

readily available in the raw data. There are, however, a number of transformation schemes that can

be applied, among which the Fourier Transform (FT) is probably by far the most popular. In an FT

analysis, a signal like an accelerogram is decoupled into a series of harmonic waves with amplitude

and frequencies which are determined. However, the problem with such analysis is that the specific

Njm

H
ξ, η, ω( ) = Lj η( ) exp C– m ω( )xoξ( )

Nmp

C
ζ, ξ, ω( ) = exp C– m ω( )xoξ( ) exp C– P ω( )zoζ( )

NJP

V
ζ , η, ω( ) = Lj η( ) exp C– P ω( )zoζ( )

Cm ω( )
α iβ1+

α iβ2+

iβ3⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

∈ CP ω( )
α iβ1+

α iβ2+⎩ ⎭
⎨ ⎬
⎧ ⎫
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time at which a given harmonic wave occurs cannot be determined in FT. This, however, can be

easily performed by a WT analysis. The differences between the Fourier transform (FT) and

Wavelet Transform (WT) are as follows:

A- In FT, the harmonic waves (extracted from the original wave) have no time limits and they

essentially contribute to the original wave from  to . Wavelets, on the other hand, have

limited length in both time and frequency domain.

B- In FT, harmonic waves are predictably regular, symmetric, and flat while in WT these waves

may be irregular and asymmetric.

C- Original waves (especially those of earthquake records) often have sudden and drastic changes

in very short period of time. WT have better compatibility with such sudden or drastic changes and

better approximates the extremes of the original waves.

D- Since the wavelets have limited time spans, the investigation on a particular part of the

original wave, which may have limited time duration, is more easily implemented.

Application of wavelet theory in analysis of structural response to earthquake loading has been

considered by some researchers in the past (Heidari 2004, Lepik 2004). However most of these

applications are limited to approximation of earthquake wave's acceleration data by reducing the

number of sampling points. Another useful aspect of the wavelet theory is that it offers a special

technique of solving time dependent differential equations. Furthermore, in complex engineering

problems such as SSI analysis, wavelet theory reduces the problem into a number of separate and

more manageable parts which can be easily be combined together again to recover the total

response of the problem. In context of signal processing and engineering problems, various types of

wavelets have been introduced in the literature by many researchers. The description of all will lead

to a lengthy discussion and is not the scope of this paper. Amongst them, Harr wavelet is

considered the most suitable one for the SSI analysis conducted here and especially for solution of

differential equation of system (Lepik 2004). 

4.2 Haar wavelet

There is no derivation in non-continuous nodes of Haar wavelet. It makes the concept non-

applicable directly to solution of differential equations. However, this can be overcome by the

integral method in which the upper degree of derivation in equation should be expanded. Chen and

Hsiao (1997a, 1997b) described a method of transferring a differential equation into an algebraic

equation. The method is often referred to as the Chen and Hsiao Method (or CHM).

In this paper equation of motion is solved by Haar wavelet. Cattani (2004) proposed a

complementary segmentation approach into the Harr wavelet in which the complexity of

calculations is reduced. This is also referred to as Segmentation Method or simply SM. Further

simplification into the Harr wavelet has been introduced by Goedecker and Ivanov (1998) and

Hsiao and Wang (2001) in which upper degree of derivation is assumed constant at each segment

leading to a much less complicated approach. It is also known as Piecewise Constant

Approximation (PCA) method. These simplifications have been taken into consideration in current

study. Fig. 3 schematically shows the Haar orthogonal functions.

 If the square of a function y(t) can be integrated and its integral is bounded, then it can be

expanded by Haar wavelet (Chen and Hsiao 1997a)

 (12)

∞– +∞

y t( ) = c0h0 t( ) + c1h1 t( ) + c2h2 t( ) + …
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in which

 (13)

4.3 Solving the equation of motion

The second order differential equation of motion with dependent variable u is as follows

 (14)

In order to find a proper solution, the following set of first order equation is considered as an

alternative to the Eq. (14)

 (15)

The time span is divided into N parts and length of the nth segment is shown by dn. To use

Wavelet Transform (WT) the local time is shown as

 (16)

Eq. (15) in local time is shown as below

 (17)

Variables {u} and {v} are considered vectors with corresponding components as 

 j = 1,2,...,2M. In first order Eq. (17), the derivation part is expanded by Haar series.

ci = 2
j

 
0

1

∫ y t( )hi t( )dt

d
2
u

dt
2

-------- = F t, u, 
du

dt
------

⎝ ⎠
⎛ ⎞ , t 0, T[ ]∈

du

dt
------ = v, 

dv

dt
----- = F t, u, v( )

τ = 
t tn–

dn

----------

u·  = dnv, v·  = dnF tn dnτ, u, v+( )

uj = u τ j( ),

vj = v τ j( ),

Fig. 3 Haar wavelet and its integrals
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 (18a)

 (18b)

In Eq. (18), a and b are vectors such that aT and bT become vectors with 2M columns. E is a unit

vector with 2M columns and un, vn are values of u and v over the boundary condition at t = tn. By

substituting Eq. (17) into Eq. (18), aH and bH are rewritten as follows

 (19a)

 (19b)

Vectors a and b are calculated by the matrix equations defined above while u and v are obtained

from Eq. (18).

In order to solve the next part,  and  should be calculated such that

,  (20)

where a1 and b1 are the first components of a and b vectors.

Eq. (20) clearly shows that displacement components (u, v) at any step is related to the

corresponding values of the displacement component at pervious step. In other words un+1 and vn+1

are related to un and vn correspondingly.

4.4 Solving equation of motion for multi degree of freedom

Equation of motion with n degrees of freedom is expressed in time domain as

 (21)

In above equation, [M], [C], [K] are the mass, damping, and stiffness matrices respectively. In

order to solve this equation by the method presented here, it is arranged as follows

 (22)

The following equations are also developed in a similar manner for a single degree of freedom

system. In other words

 (23)

 (24)

To solve this system, PCA method is adopted. The method necessitates that H = 1 and P = 0.5 be

adopted. Then, an and bn are obtained by substitution of Eqs. (23) and (24) into Eq. (18) which

leads to the following relation

 (25)

 (26)

To reach the final solution, Eqs. (25) and (26) should be substituted into Eq. (20) to yield

u·  = aH, u = aPH + unE

v·  = bH, v = bPH + vnE

bH = dnF tn dnτ+ , aPH unE+ , bPH vnE+( )

aH = dn bPH vnE+( )

un 1+ vn 1+

un 1+  = a1 + unE vn 1+  = b1 + vnE

M[ ] u··{ } + C[ ] u·{ } + K[ ] u{ } = f t( ){ }

u··{ } = M[ ] 1–
f t( ){ }− C[ ] u·{ }− K[ ] u{ }{ }

u·{ } = dn v{ }

v·{ } = dn M[ ] 1–
f t( ){ }− C{ } u·{ }− K[ ] u{ }( )

an{ } = 
0.5dn

2
f tn( ){ } − 0.5dn

2
K[ ] un{ } + dn M[ ] vn{ }

0.25dn

2
K[ ] + M[ ] + 0.5dn C[ ]

------------------------------------------------------------------------------------------------------

bn{ } = 
dn f tn( ){ } − dn C[ ] vn{ } − dn K[ ] un{ } − 0.5dn

2
K[ ] vn{ }

0.25dn

2
K[ ] + M[ ] + 0.5dn C[ ]

---------------------------------------------------------------------------------------------------------------------------
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 (27)

 (28)

Parameters an and bn are calculated based on Eqs. (25) and (26) at any given step which are

combined with un and vn through Eq. (20). This procedure is a repetitive concept which is started

from step (n = 0) one and is progressively repeated to the last step (n = N) where N is the

maximum number of time step. It should be mentioned that in developing such a stepwise

procedure, the boundary conditions u0 = 0 and v0 = 0 are defined. At each step, Eqs. (25) and (26)

are solved. The resulting an and bn are subsequently used for solving Eqs. (27) and (28). This time

marching ultimately develops the time domain response.

5. Numerical examples and validation of the proposed concept

5.1 Example 1

In order to investigate the accuracy of computed solution obtained using wavelet theory, a typical

structural earthquake analysis is conducted on a 5 storey framed structure with a span of 5 meters

subjected to El Centro earthquake record. All structural members are adopted as IPB300 and for

sake of simplicity, no SSI analysis is considered at this stage and common fixed supports are used

at structure's base. The WT solution is compared with those obtained by other conventional methods

such as Wilson-θ procedures. Comparison of the results given by both methods is shown in Fig. 4

which demonstrates good agreement and accuracy for results obtained by WT.

5.2 Example 2

The example considered in this section is designed to demonstrate the applicability and efficiency

un 1+{ } = 
0.5dn

2
f tn 1+( ){ } dn M[ ] vn{ } 0.25dn

2
K[ ] un{ }– M[ ] un{ } 0.5dn C[ ] un{ }+ + +

0.25dn

2
K[ ] M[ ] 0.5dn C[ ]+ +

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------

vn 1+{ } = 
dn f tn 1+( ){ } − dn K[ ] un{ } 0.25dn

2
K[ ] vn{ }– − 0.5dn C[ ] vn{ } M[ ] vn{ }+

0.25dn

2
K[ ] M[ ] 0.5dn C[ ]+ +

-------------------------------------------------------------------------------------------------------------------------------------------------------------------

Fig. 4 Comparison between the results obtained for the Example 1
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of the approach proposed here in this paper. Seismic response and SSI analysis of a 10 storey

building slightly embedded in a soil layer overlaying a rock formation is presented using 3 different

approaches including the one proposed in this paper. Results are compared and discussions are

provided. Geometrical and mechanical properties of the soil layer used here are summarized in

Table 1 in conjunction with structural elements properties. Total height and width of the building are

32 m and 12 m respectively. In SSI analysis, system under study including the soil layer and the

structure is subjected to an acceleration time history of Naghan earthquake recorded in the past. The

main accelerogram data for Naghan earthquake is shown in Fig. 5 while the Fourier spectrum

obtained by FFT procedure (Fast Fourier Transform) is depicted in Fig. 6. The procedure was

carried out by a computer program coded in FORTRAN 77 developed by authors; however, it may

be implemented also by other available softwares such as MATLAB or by TSPP computer program

(Boore 2008). Considering the fact that soil layer beneath the structure has a thickness of about 40

m, then the fundamental frequency for the soil layer is evaluated as ω1 = πVs/2H ≈ 19 rad/sec which

is close to the predominant frequency depicted in Fourier spectrum. In fact, the thickness of soil

layer has been deliberately selected as such value (H = 40 m) so that near resonance condition are

created for the soil layer thereby creating the largest possible interaction effects under the given

base motion (in this example Naghan earthquake record). To demonstrate the interaction effects,

results obtained here are first compared to those obtained for a conventional fixed support structure.

Next, results of the current SSI approach are further compared to those obtained from other SSI

models. 

5.2.1 Comparison of the current SSI concept with conventional fixed support analysis

To show the significance of SSI effects and to establish a basis for comparison, it is necessary to

conduct a conventional fixed support structural analysis in which the seismic interaction effect is

neglected. Such an analysis is usually conducted by common structural analysis softwares like

ANSYS or PLAXIS (Brinkgreve et al. 1988). Fig. 7 shows the discretized and FE structural model

generated using ANSYS commercial software where fixed nodes are defined at the base of the

model. Seismic response of the structure subjected to Naghan earthquake acceleration record is

shown in Fig. 8a, b. A study on the maximum displacement and the induced base shear force to the

structure is conducted. It can be seen from this figure that the maximum displacement of rigid base

Table 1 Structural and foundation properties adopted in the numerical Example 2

Structural properties Foundation properties

Element Beams Columns Proprty Concrete Soil Bed rock

Properties 2IPE240 BOX(1) BOX(2) BOX(3) H (m) 0.8 40 −

Ix = Iv 
(cm4)

7780 19143 10812 7566 ρ (t/m3) 2.4 1.89 2.65

A (cm2) 28.6 138.27 114.24 77.44 Vs (m/s) 2050 502 3160

H (cm) 24 30 25 25 E (KN/m2) 24E6 3.3E5 29.2E6

γ (KN/m3) 78.5 78.5 78.5 78.5 ξ 0.02 0.05 0.02

E (KN/m2) 20.4 E6 20.4 E6 20.4 E6 20.4 E6 Comment:
Box(1) = 30×30×1.2 (cm)
Box(2) = 25×25×1.2 (cm)
Box(3) = 25×25×0.8 (cm)

ξ 0.02 0.02 0.02 0.02
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structure reaches 57 cm. The figure also shows that the structure undergoes a maximum base shear

force of about 1.47 MN. 

The SSI model based on the FE-IFE concept developed in this study is shown in Fig. 1(b). The

figure also shows the locality of all three types of infinite elements used to model the boundaries. In

order to establish a comparison base and to emphasis on interaction effects, the earthquake record

used in the analysis of fixed support structure is applied to the current SSI model. The

displacements and base shear forces verse time are shown in Fig. 9(a) and (b). From this figure, it

can be seen that maximum displacement of the structure is about 30 cm while the base shear force

is slightly higher than 650 KN. Comparing the results shown in Fig. 9 to those obtained for the

rigid base structure (Fig. 8) reveals that maximum displacement of the structure has been reduced,

mainly due to interaction effects. In fact, since the soil acts as a flexible medium, it undergoes

deformation and hence the relative deformation of the structure is reduced. Infinite elements defined

along the model's boundaries allows the seismic waves to dissipate and prevent them from reflecting

as is mostly the case in common FE models.

Fig. 5 Input Naghan acceleration time history

Fig. 6 Fourier spectrum

Fig. 7 FE model for fixed support struc-
ture studied in Example 1
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5.2.2 Comparison of the results with other SSI methods

Two other available SSI methods are used to compare the results obtained from the proposed

method. They are a) Sub structuring method and b) Direct method using extensive FE mesh to

model soil region. ANSYS 5.4 engineering software is used to develop the FE model for these two

concepts which are shown in Figs. 10 and 11.

5.2.3 Comparison with substructure method

In sub structuring approach the entire system of soil and structure is broken down into separate

parts as shown in Fig. 12. The equation of motion for the whole system shown in Fig. 12 can be

expressed as

Fig. 8 Seismic response of the structure subjected to Naghan earthquake record: (a) Base shear force, (b)
Displacements

Fig. 9 Response of the model subjected to Naghan earthquake record considering SSI effect: (a) Base shear
force, (b) Displacements
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 (29)

where [Mt], [Ct], and [Kt] are the total mass, damping, and stiffness matrices while {P} is the

vector of exciting force. These matrices are further defined as

 (30)

in which subscripts n and f represent the near and far field respectively.

There are two main steps in sub structuring technique as applied to SSI analysis are: 1)

determination of the free field motion under a given strong base motion, 2) evaluation of dynamic

Mt[ ] u··{ } + Ct[ ] u·{ } + Kt[ ] u{ } = P{ }

Mt[ ] = Mn[ ] + Mf[ ] Ct[ ] = Cn[ ] + Cf[ ] Kt[ ] = Kn[ ] + Kf[ ]

Fig. 10 FE extensive mesh for direct SSI analysis Fig. 11 Scheme of the structural model supported
on fictitious spring and dashpots developed
for sub structuring SSI analysis

Fig. 12 Concept of sub structuring for SSI analysis discussed in Example 2
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impedance and stiffness coefficient of the soil foundation which are essentially frequency dependant.

In such a general approach, the dynamic stiffness coefficients of the soil region can physically be

interpreted as a generalized spring-dashpot system. Thus, SSI analysis is carried out for the structure

supported on a series of spring-dashpot systems (Fig. 11) and for a loading case which depends on

the free field motion determined in step 1 (Wolf 1985, Bagheripour and Marandi 2005, Gouasmia

and Djeghaba 2007). Here the loading case is in fact the motion of the soil surface; that is obtained

using special transfer functions and commonly results in a transferred accelerogram (Kramer 1996).

For the example under study, this is shown in Fig. 13. For sake of comparison, the surface

accelerogram is also obtained using FE-IFE methodology discussed in this paper; and it

superimposed on the Fig. 13. The main stages of SSI analysis as related to calculation of free field

response of the soil layer and determination of soil dynamic impedance as well as calculation of the

generalized fictitious springs and dashpots are completely carried out in frequency domain using

complex valued parameters; and by means of FE-IFE technique (Zhao et al. 1991). Ke and Ce for

the soil region, i.e. far field, are evaluated through the calculation of impedance function matrix of

the far field. If the far field is modeled by infinite elements for a given frequency, say ω, the

decoupled equation of motion for only the far field is defined as

or

 (31)

where subscript f denotes the far field and [M], [C], [K] represent the mass, damping and stiffness

matrix respectively. In such solutions the displacements and forces are of a complex form, thus

 (32)

The load-displacement relation is again defined in a complex form as

 (33)

ω
2

– Mf[ ] + iω Cf[ ] + Kf[ ][ ] uf ω( ){ } = pf ω( ){ }

Kf ω( )[ ] uf ω( ){ } = pf ω( ){ }

uf ω( ){ } = u1 i.u2+   and pf ω( ){ } = p1 i.p2+

Kf ω( )[ ] = K1 ω( )[ ] + i. K2 ω( )[ ] = 
pf ω( ){ }
uf ω( ){ }

--------------------

Fig. 13 Acceleration at soil surface obtained by FE-IFE and analytical approach
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in which  is, in fact, the dynamic impedance matrix of the far field of the system. It is seen

that both the [K1(w)] and [K2(w)] are functions of the exciting frequency which constitute imaginary

parts of the total stiffness matrix respectively. The total equivalent stiffness matrix of all fictitious

generalized spring [K]e and the equivalent damping matrix of all fictitious generalized dashpots [C]e

in the system can be defined as

 (34)

Coefficients of springs and dashpots obtained by FE-IFE technique are summarized in Table 2.

Time domain SSI analysis was conducted using ANSYS 5.4 software for the structure supported on

generalized fictitious springs and dashpots. The corresponding FE model developed by ANSYS 5.4

is shown in Fig. 11. In Fig. 14 the structure response obtained using sub structuring approach is

shown and is compared to that resulted from current method. Beside a small time phase, there is

good agreement between the results obtained from these two methods. 

Note here that in the case of high geometrical irregularity and material diversity in soil region,

analytical solutions do not exist and hence the analysis of free field motion is only possible through

a comprehensive computational approach such as FE-IFE concept. 

5.2.4 Comparison with direct time domain SSI analysis using extensive mesh

Unlike the sub structuring approach, the direct method involves establishing a computational

Kf ω( )[ ]

K[ ]e = K1 ω( )[ ]     C[ ]e = 1/ω K2 ω( )[ ]

Table 2 Coefficients of the springs and dashpots obtained by FE-IFE technique

Property/Direction Horizontal Vertical

Ke (KN/m) 113500 165800

Ce (KN.Sec/m) 0.370 0.038

Fig. 14 Comparison of the SSI results obtained by proposed method (IFE-FE) with those given by two other
concepts
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model of the soil and the structure as a whole and analyzing it in one single stage. Here, there is no

concept of boundary extension infinite elements; rather conventional nodal constrained are imposed

at fictitious such models, Fig. 10, require extensive FE meshing in order to minimize the effect of

the wave reflection produced by the boundaries and hence avoiding spurious solutions. In fact, the

use of such extensive FE models is inevitable as they are needed to guarantee a degree of accuracy.

Plane finite elements were used to model the soil region while the structure itself is modeled

using common beam and column elements. Assemblage of these two types of elements yields the

total FE mesh which is then subjected to ground motion at the base. The response of this system to

Naghan earthquake record is computed using ANSYS 5.4 engineering software. The response

obtained is graphically superimposed, Fig. 14, where the results obtained by the other two SSI

methods described in previous sections are also shown. It can be seen that amongst the three

methods investigated here, the direct method predicts larger displacements for the structure despite

the extensive mesh employed for the analysis. Perhaps to reach a better agreement with the current

SSI approach and also with the sub structuring method, even larger FE mesh would have to be

introduced. However, this would demand to an unacceptable level of time and resources which

makes the method impractical. The sub structuring method and the current SSI approaches appear to

be in good agreement. However, the current approach is advantageous since there is no need for the

extra steps of free field analysis and determination of fictitious spring dashpot system.

5.3 Example 3: Response spectrum analysis with SSI effects using the proposed con-

cept

A response spectrum analysis was conducted for this example and the impact of SSI was

investigated. Here special consideration is given to the analysis of a simple one storey framed

structure resting on the soil for which some building code design requirements are also available.

The SSI effect was investigated for different soil types having various elasto-dynamic

characteristics. In particular, the four types of soils that are defined in Iranian Building Code 2800

are adopted in this study; they correspond to the four types of soils defined by NEHRP codes as

characterized in Table 3. Weight and base area of the foundation as well as the moment inertia of

the foundation are calculated roughly as W = 100 tons, A0 = 8 m2, and I = 11 m4 respectively. Also

in Table 3 a summary of the calculated parameters required in the analytical response analysis based

on period of structure and the modified period considering SSI effect are shown. 

It can be seen from the Table 3 that SSI effects change structure's period. In fact, the softer the

Table 3 Soil properties and fundamental periods for structure studied in Example 3

Soil type
Parameters for analytical calculation of periods of the structure studied in Example 

3

Iranian building 
code (2800)

NEHRP
γ

(KN/m3)
α

V0

(m/s)
G0

(MPa)
Vs/V0 G/G0

Vs

(m/s)
G

(MPa)

I B 22 1.894 1200 3168 0.7 0.49 840 1552.3 1.009

II C 21 1.984 560 658.6 0.7 0.49 392 322.7 1.045

III D 18 2.315 275 136.125 0.7 0.49 192.5 66.7 1.201

IV E 17 2.451 150 38.25 0.7 0.49 105 18.7 1.605

T /T
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soil is underneath the structure, as shear wave velocity reduces, the less is the total stiffness of the

system. On the other hand, as the structure itself becomes less stiff, its original period is increased

leading to a smaller ratio of  irrespective of the soil types, T is the fundamental period of the

structure which is characteristics of the structure and is calculated considering the mass and stiffness

characteristics of the structure and based on the conventional fixed based analysis. However, due to

the SSI effect, which is the matter of investigation in this paper, the period of the structure is

changed which is shown by  Therefore, the symbol  is, in fact, the ratio of these calculated

periods. G and G0 refer to the shear modulus of the material which are soil and rock types. The

shear stress-strain relation for soil materials are often regarded as “nonlinear elastic”. Hyperbolic

model is one of the well known relations introduced in the context of geotechnical earthquake

engineering which defines a nonlinear relation generally as  where γ is the shear strain.

G0 is a reference value for the shear modulus of the soil material, here in this paper soil types I-IV,

which is obtained empirically in low shear strains. However, G is the value of shear modulus at any

given level of shear strain which is calculated by empirical models such as Hyperbolic functions. In

order to avoid complexity of the solution procedure, especially SSI analysis conducted in this paper,

appropriate value of G/G0 at the limit of shear strain is adopted such that the superposition principle

in the elastic range is sustained throughout the SSI analysis. Usually in deeper layers of a stratified

soil system, G0 and V0 are increased when compared to those of the surfacial layers. This increase is

attributed to the increase in stiffness of deeper layers. Interested reader may note that the soil

system adopted for the analysis in Example 3 is not layered. In summary, for G/G0 and Vs/V0

constant values have been adopted since we are essentially dealing with a non-layered soil system

under the structure. V0 is the shear wave velocity in soil or rock material at low shear strain while

Vs is the velocity at any given shear strain. V0 and V can be related to G0 and G correspondingly by

the following relations

 (35)

 (36)

It can be concluded; from the discussion given above, that V0 and V are also strain dependants

(ρ = const.).

Similar to the G0 and G, one can regard the V0 as a reference value for V.

T /T

T T /T

G/G0 = f γ( )

G0 = ρV 0

2

G = ρV s

2

Fig. 15 Acceleration response spectrum for the structure studied in Example 3 subjected to El Centro
earthquake using current SSI approach
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In Fig. 15 the response spectrum for El Centro earthquake is developed using the presented

method. The figure shows acceleration response spectrum obtained for the structure resting on soil

types I to IV. However, the damping ratio is the same for all cases and is adopted as 5%. For other

typical damping ratios of 2%, 10% and 20%, similar trends are observed for which the results are

not included in this paper. For sake of comparison, the acceleration response spectrum developed

for the conventional fixed based structure having various damping ratios (i.e. ξ = 0.02 to 0.2) are

also computed and shown in Fig. 16. Figs. 15 and 16, show that the structural response varies when

considering the soil-structure interaction effects. These variations depend on soil type and rigidity of

the structure. For soft soil with a stiff structure resonance will happen in lower periods. 

Fig. 17 shows normalized spectral response of structure resting on either of the four soil types

defined before, while SSI effects are taken into account. In developing curves in Fig. 17, the

damping ratio was adopted as ξ = 0.05 since Iranian Building Code 2800 also adopts a typical value

of ξ = 0.05 in development of design spectrum curves. Normalized spectral response developed for

the conventional fixed based structure has also been superimposed in graphs of Fig. 17 for better

comparison. It is seen from Fig. 17 that in structures with relatively low periods (say 0.04 < T < 0.5

sec) structural response depends significantly on soil type. Nevertheless, effect of soil types is also

apparent from the figure which shows that for softer soils the difference between responses is

Fig. 16 Acceleration response spectrum for the structure studied in Example 3 subjected to El Centro
earthquake using common fixed based analysis (no SSI effect)

Fig. 17 Design spectrum of Iranian building code 2800 recommended for four soil types compared with
conventional fixed based normalized response (no SSI)
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reduced. For structures with longer periods, the response becomes less dependant on the soil types

and hence on the type of analysis (i.e. either with or without SSI effects). It can be generally

concluded that as the soil becomes softer or the fundamental period of the structure increases,

effects of SSI become less significant and the results obtained from either analysis, i.e. with or

without SSI effects converge. Finally, the design spectrum recommended by Iranian Building Code

2800 is also compared with those neglecting SSI effects and are shown in Fig. 18. It can be

deduced from this figure (also from other similar graphs developed for other earthquake records)

that for periods lower than 0.35 sec, acceleration response obtained from the conventional fixed

based structure (i.e. no SSI effect) is relatively higher than at predicted by Iranian Building Code

2800. This is an important issue in relatively tall buildings. For example, for a 5 storey building

with fundamental period of 0.2 sec, the predicted response coefficient from a fixed based model (no

SSI effects) is about 2.3 while for the same structure resting on either one of the four soil types; the

building code considers a constant response coefficient of 2.5. 

Very recently, Tabatabaifar and Massumi (2010) investigated the effect of SSI on RC-MRFs using

a direct method. They discussed that for buildings higher than three and seven stories on soils with

Vs < 175 m/s and 175 < Vs < 375 m/s respectively, the SSI analysis for seismic design is essential. 

6. Conclusions

A computational method based on coupled finite and dynamic infinite elements (FE-IFE) was

presented to better model the soil-structure system and was applied to earthquake response analysis

of structures. SSI analysis presents significant challenges, especially the extension of domain,

boundary conditions, and determination of impedance functions as well as the evaluation of free

field motion of the soil medium. An efficient way and integrated solution to these important issues

is the use of infinite elements in modeling the soil region. Advantages of the approach are

substantial reduction in degrees of freedom involved in the analysis and hence reduction in

computational time and resources as well as increased efficiency without sacrificing accuracy.

Another advantage of the proposed methodology presented here is that the dynamic system

including the soil and structure is solved by wavelet theory (WT). This makes the concept presented

even more efficient since in a detailed analysis, with access to both time and frequency domains,

Fig. 18 Normalized spectral response of the structure studied in Example 3 resting on soil types I to IV
compared with that of common fixed based structure (no SSI)
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more information on the response of a system can be obtained. The equation of motion is derived

numerically for discretization of the soil domain. Formulations of the dynamic infinite elements

were also presented in this paper. 

The accuracy of the method presented here was examined by investigating typical structural

models including single and multistory buildings. First the accuracy of WT approach was examined

through earthquake response analysis of a multistory building. Good agreements were observed with

Wilson-q method. In another example studied, the initial results demonstrate that structural response

is decreased due to soil interaction effects. While further comparisons revealed that the results of

proposed method agree well with the sub structuring technique. However, due to the introduction of

fictitious boundaries, the results of alternative models such as that comprised of an extensive mesh

and solved by direct time domain approach, showed relatively large deviations as compared to those

of the current and the sub structuring SSI methods. In the third example studied here, response

spectrum analysis was provided using the proposed SSI approach which is based on the FE-IFE

modeling and WT theory. The results were compared to conventional fixed based structural

analysis. It was shown that SSI effects become significant when stiff structures rest on soils

especially on soft mediums. Discussion on the results was also extended to the Iranian Building

Code Requirements 2800 and comparisons were made. 
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