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Abstract. The current study presents a mathematical model and numerical method for free vibration of
tapered piles embedded in two-parameter elastic foundations. The method of Discrete Singular Convolution
(DSC) is used for numerical simulation. Bernoulli-Euler beam theory is considered. Various numerical
applications demonstrate the validity and applicability of the proposed method for free vibration analysis.
The results prove that the proposed method is quite easy to implement, accurate and highly efficient for
free vibration analysis of tapered beam-columns embedded in Winkler- Pasternak elastic foundations.
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1. Introduction

Free vibration or stability analysis of structures is one of the main required tasks for an engineer

to accomplish in the engineering design. Free vibration or buckling problems are generally described

by a linear partial differential equation associated with a set of related boundary conditions. Analytical

solutions of these problems are very limited. Therefore, the analysis of free vibration problem of

structures can be treated only by some numerical techniques. Among the various numerical methods,

the finite difference, spectral methods, finite elements and differential quadrature methods have been

successfully used during the past forty years.

The analysis of structures on elastic foundations is of considerable interest and widely used in

several engineering fields, such as foundation, pavement and railroad, pipeline, and some aero-space

structures applications. Many problems in the engineering related to soil-structure interaction can be

modeled by means of a beam or a beam-column on an elastic foundation. Although few types of

foundation models exist, the Winkler foundation model is extensively used by engineers and

researchers because of its simplicity. Generally, the foundation is considered to be an array of

springs uniformly distributed along the length of the beam. The free vibration of beams or beam-

columns has been investigated by many researchers in the past forty years. There are many studies

in the literature on theory and analysis of beams. The majority of the available publications are
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based on the analytical and numerical solution of beams. The effect of foundation on the frequencies

of beam-columns on elastic foundation was studied in the literature. A few studies concerning the

analysis of beam-columns on elastic foundations have been carried out, namely by Zhaohua and

Cook (1983), Yankelevsky and Eisenberger (1986), Doyle and Pavlovic (1982), Yokoyama (1991),

Valsangkar and Pradhanang (1988), De Rosa and Maurizi (1999), Halabe and Jain (1986), West and

Mafi (1984), Matsunaga (1999) and Kameswara et al. (1975).

In this paper, discrete singular convolution method technique is presented for computation of the

free vibration analysis of a pile embedded in two-parameter elastic foundations. The accuracy of the

solutions is inferred by comparison with analytical and other numerical solutions. Some new results

are also provided. To the authors’ knowledge, it is the first time the DSC method has been

successfully applied to beam-columns embedded in two-parameter elastic foundations for the

numerical analysis of vibration.

2. Discrete singular convolution (DSC)

Discrete singular convolution (DSC) method is a relatively new numerical technique in applied

mechanics (Wei 2000). The method of discrete singular convolution (DSC) was proposed to solve

linear and nonlinear differential equations by Wei (2001, 2001a, 2001b), and later it was introduced

to solid mechanics (Wei et al. 2002, 2002a). It has been also successfully employed for different

vibration problems of structural members such as plates and shells (Zhao et al. 2002, 2002a,

Civalek 2006, 2006a, 2007, 2007a, 2007b). It is shown from these studies, the method of DSC have

high level of accuracy and reliability. It is also emphasized that DSC method yields more efficient

and accurate approximation compared to the other numerical methods for higher order frequencies. 

The method of discrete singular convolution (DSC) is an effective and simple approach for the

numerical verification of singular convolutions, which occur commonly in mathematical physics and

engineering. The discrete singular convolution method has been extensively used in scientific

computations in past ten years. For more details of the mathematical background and application of

the DSC method in solving problems in engineering, the readers may refer to some recently

published reference (Wei 2000, Wei et al. 2002). In the context of distribution theory, a singular

convolution can be defined by (Wei 2001)

(1)

Where T is a kind of singular kernel such as Hilbert, Abel and delta type, and η(t) is an element of

the space of the given test functions. In the present approach, only singular kernels of delta type are

chosen. This type of kernel is defined by (Wei et al. 2002)

; (r = 0, 1, 2, ...,) (2)

where subscript r denotes the rth-order derivative of distribution with respect to parameter x. In

order to illustrate the DSC approximation, consider a function F(x). In the method of DSC,

numerical approximations of a function and its derivatives can be treated as convolutions with some

kernels. According to DSC method, the rth derivative of a function F(x) can be approximated as

(Wei 2001a)

F t( ) = T*η( ) t( ) =  
∞–

∞

∫ T t x–( )η x( )dx

T x( ) = δ
r( )
x( )
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 (r = 0, 1, 2, ...,) (3)

where Δ is the grid spacing, xk are the set of discrete grid points which are centered around x, and

2M+1 is the effective kernel, or computational bandwidth. It is also known, the regularized Shannon

kernel (RSK) delivers very small truncation errors when it use the above convolution algorithm.

The regularized Shannon kernel (RSK) is given by (Zhao et al. 2002)

; σ > 0 (4)

The researchers is generally used the regularized delta Shannon kernel by this time. The required

derivatives of the DSC kernels can be easily obtained using the below formulation (Wei 2001b)

(5)

In the present study, the governing equation includes second-order derivatives. Thus, the second-

order derivative at , can be given as follows (Wei 2000)

(6)

For x=xk, this derivative is given by

(7)

3. Fundamental equations

Vibration and dynamic analyses of beams, piles or beam-columns on elastic foundations have

been treated by researchers in the past (Eisenberger 1995, Lee and Schultz 2004, Şimşek 2009,

Şimşek and Kocatürk 2009). Railroad tracks, highway pavements, strip foundations, piles, and

many others problems modeled by beam-columns on elastic foundation. The governing equations

for free vibration of tapered beam-column embedded in Winkler Pasternak foundation (Fig. 1) using

the Euler-Bernoulli beam theory can be written as:
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,  for (8a)

.  for (8b)

in which EI is the flexural rigidity of beam-column, w is the transverse deflection, p is the applied

axial load, kg is the Pasternak parameter, k is the Winkler parameter, ρ is the mass density, A is the

cross-sectional area, I the second moment of area of cross-section, E the Young’s modulus, L
s
 is the

length of the embedded pile, and ω is the circular frequency. The transverse displacement w is

assumed to be

(9)

Substituting expression (9) into equations (8) and normalizing the equation yields

, for (10a)

. for (10b)

By using some dimensional quantities, Eqs. (10) can be written as

, (11a)

. (11b)
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Fig. 1 Tapered piles embedded in elastic foundation
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Where

 (12)

X = x/L, W = w/L and γ = Ls/L

The taper ratios (linear) are given as

  and  (13)

By using DSC discretization the Eqs. (8) take the form

(14a)

(14b)

Pinned boundary conditions are considered for both edges. Related equations for the boundary

conditions are given as

  and (15)

In this study we consider only pinned ends for beam-columns. After implementation of the given

boundary conditions using the standard method proposed by Wei et al. (2001, 2001b), Eqs. (14a)

and (14b) can be expressed by

(16)

where U is the displacements vector, R is the stiffness matrix. The frequency values for beam-

column embedded in elastic foundation are given by the following non-dimensional form

(17)

where ω is the circular frequency.

4. Numerical examples

In this section, a number of problems have been solved to demonstrate the performance of the

present method. The title problem is analyzed and some of DSC results are compared with results in

the open literature (Yokoyama 1991, Valsangkar and Pradhanang 1988) to show the applicability

and efficiency of DSC method. Firstly, to check whether or not the purposed formulation and

programming are correct, an Euler-Bernoulli beam embedded in a Winkler foundation analyzed. In

the present results, Pcr is the Euler critical buckling load of a simply-supported beam without elastic
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foundation. Comparison of first three frequency parameters of Euler-Bernoulli beam column

embedded in a Winkler foundation are presented in Table 1-3. The results from finite element

method given by Yokoyama (1991) and results obtained by analytical approach (Valsangkar and

Pradhanang 1988) have also been provided for comparing the accuracy and for verification. From

the tables, it is clear that the results obtained using present method agrees very closely with the

other results (Yokoyama 1991, Valsangkar and Pradhanang 1988). It is also shown that the

increasing value of K has an important effect on the frequencies and mode shapes. Increase in

stiffness parameter, K of beam-column cause increase in the frequencies. Fundamental frequency

parameters of Euler-Bernoulli beam column with partially embedded on Winkler-Pasternak foundation

are given in Table 4 for different foundation parameters. The general trends of the frequencies are

very similar to those of Euler-Bernoulli beam columns embedded in Winkler foundation. However,

the effect of Pasternak foundation parameter on frequencies results is less than the Winkler

Table 1 Comparison of frequency parameters of Euler-Bernoulli beam column embedded in Winkler foundation
(G = 0; γ = 1)

K

Mode 1

Yokoyama 
(1991)

Valsangkar and 
Pradhanang (1988)

Present DSC
N=9

Present DSC
N=11

Present DSC
N=15

1 3.15 3.15 3.17 3.15 3.15
100 3.75 3.75 3.76 3.75 3.75
10000 10.02 10.02 10.05 10.03 10.02
1000000 31.62 31.62 31.64 31.63 31.62

Table 2 Comparison of frequency parameters of Euler-Bernoulli beam column embedded in Winkler foundation
(G = 0; γ = 1)

K

Mode 2

Yokoyama (1991)
Valsangkar and 

Pradhanang (1988)
Present DSC

N=9
Present DSC

N=11
Present DSC

N=15

1 6.28 6.28 6.30 6.28 6.28
100 6.38 6.38 6.39 6.38 6.38
10000 10.37 10.36 10.38 10.37 10.37
1000000 31.64 31.63 31.66 31.65 31.64

Table 3 Comparison of frequency parameters of Euler-Bernoulli beam column embedded in Winkler foundation
(G = 0; γ = 1)

K

Mode 3

Yokoyama 
(1991)

Valsangkar and 
Pradhanang (1988)

Present DSC
N=9

Present DSC
N=11

Present DSC
N=15

1 9.43 9.42 9.44 9.43 9.43
100 9.45 9.45 9.46 9.45 9.45
10000 11.57 11.57 11.60 11.59 11.58
1000000 31.69 31.72 31.72 31.70 31.70
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parameter. In order to examine further the influence of the ratio of supported length to total length

of beam-column, an Euler-Bernoulli beam column embedded in Winkler-Pasternak foundation is

studied with N = 15 grids. The results are presented in Table 5. In general, the value of frequencies

gradually increases with increasing of supported length to total length of beam-column for all type

of foundation parameters. Fundamental frequency parameters of Euler-Bernoulli beam column

embedded in Winkler-Pasternak foundation for different taper ratios are listed in Table 6 and Table

7. The results are presented for different axial load. It is seen that for a beam-column embedded in

two-parameter foundation, the frequencies increases slowly as the taper ratio increases. It is also

observed from these tables, the frequency parameter for all the four taper ratios decrease as axial

load increase. However, it is also shown that, the effect of taper ratios on frequencies is insignificant.

Numerical results are presented in Table 8 for first three frequency parameters of Euler-Bernoulli

beam column embedded in Winkler-Pasternak foundation. It is shown from the Table; the Pasternak

parameter has significant effect on the frequency when the mode number is increase.

Variation of frequency values with the Winkler parameters are depicted in Fig. 2 for a fully

supported beam-column. Variations of first three frequencies with the Winkler parameters for different

values of γ are also shown in Fig. 3. It is concluded from these figures that, for small values of γ,

the effect of K on frequencies is negligible. But in general, the frequency parameters are increased

Table 4 Fundamental frequency parameters of Euler-Bernoulli beam column embedded in Winkler-Pasternak
foundation (γ = 0.75; P = 0.25Pcr)

Foundation parameters Present results

K G
DSC 
N=9

DSC 
N=11

DSC 
N=13

DSC 
N=15

100 5 3.790 3.789 3.788 3.788
10000 50 8.636 8.635 8.635 8.635
1000000 500 12.471 12.470 12.469 12.469

Table 5 Fundamental frequency parameters of Euler-Bernoulli beam column embedded in Winkler-Pasternak
foundation (α = β = 1; N = 15; P = 0.25Pcr) for different support ratios

Foundation parameters Present results

K G γ = 0.25 γ = 0.5 γ = 0.75 γ = 1

100 5 3.038 3.441 3.788 3.865
10000 50 4.177 5.735 8.635 10.138
1000000 500 4.798 6.971 12.469 31.664

Table 6 Fundamental frequency parameters of Euler-Bernoulli beam column embedded in Winkler-Pasternak
foundation (N = 15; γ = 0.5; P = 0.25Pcr) for different taper ratios

Foundation parameters Present results

K G α = β = 1 α = β = 1.25 α = β = 1.5

100 5 3.441 3.537 3.649
10000 50 5.735 5.954 6.214
1000000 500 6.971 7.738 7.873
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with the increase of K. Variation of frequency values with the Winkler parameters for different taper

ratios are presented in Fig. 4. Generally, it is shown that the increasing value of taper ratio always

increases the frequency parameter. Also, with the increase of K, the effect of the taper ratio on the

frequency parameter is less significant. Variation of mode shapes with the Winkler and Pasternak

parameters are presented in Fig. 5 and Fig. 6, respectively. It is easily shown from these figures, for

all mode numbers, the frequencies increase considerably with Winkler parameters. However, the

frequency parameter is uniformly increased when the Pasternak ratio increases. Variations of first

three frequencies with the taper ratios are presented in Fig. 7. It is shown that the increasing value

Table 7 Fundamental frequency parameters of Euler-Bernoulli beam column embedded in Winkler-Pasternak
foundation (N = 15; γ = 0.5; P = Pcr) for different taper ratios

Foundation parameters Present results

K G α = β = 1 α = β = 1.25 α = β = 1.5

100 5 2.849 2.857 2.901
10000 50 5.488 5.736 6.079
1000000 500 6.758 7.324 7.723

Table 8 First three frequency parameters of Euler-Bernoulli beam column embedded in Winkler-Pasternak
foundation (N = 15; γ = 0.75; P = 0.25Pcr; α = β = 1.5)

Foundation parameters Present results

K G Mode 1 Mode 2 Mode 3

10 5 3.605 7.028 10.486
100 5 3.848 7.076 10.509
10000 100 8.821 10.392 12.473
1000000 500 14.135 24.851 30.018

Fig. 2 Variation of frequency values with the Winkler parameters (α = β = 1; P = 0.25Pcr; γ = 1.0)
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of taper ratio, always increases the frequency parameter. However, with the increase of mode

numbers the effect of the taper ratio on the frequency parameter is less significant. Fig. 8 shows the

variation of frequency values with the ratio of supported length to total length of beam-column for

first three modes. As can be observed from this figure, the frequency parameters generally increase

with increasing the ratio of supported length to total length of beam-column whereas the effect of this

ratio on the frequency parameter significant, especially for large values of K.

Fig. 3 Variation of first three frequencies with the Winkler parameters for different values of γ = L
s
/L

(α = β = 1; P = 0.25Pcr)

Fig. 4 Variation of frequency values with the
Winkler parameters for different taper
ratios (r P = 0.25Pcr; γ = 1.0)

Fig. 5 Variation of frequency values with the
Winkler parameters (α = β = 1; P = 0.25Pcr;
γ = 0.25)
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5. Conclusions

The free vibration problem of tapered piles with pinned ends embedded in a two-parameter elastic

foundation is the focus of the investigation. Several numerical examples are provided to show the

effects of taper ratios, axial force, foundation parameters, and partial elastic foundation on

frequencies. It is shown that the stiffness parameter of the Winkler foundation and shear parameter

of the Pasternak foundation have been found to have a significant influence on frequencies of the

beam-column. The effect of the Winkler parameter on the frequencies is greater than the Pasternak

parameter. Increase in taper ratios of beam-column cause insufficient increases in the frequencies.

The parameter of the Winkler foundation has been found to have a significant influence on the

Fig. 6 Variation of frequency values with the Pasternak parameters (α = β = 1; P = 0.25Pcr; γ = 1; K = 100)

Fig. 7 Variation of frequency values with the taper ratios (γ = 1; K = 1)
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frequencies of the beam-column with any taper ratio. Increasing the value of γ has a small effect

than the foundation parameters on the frequencies and mode shapes. It may be concluded that

increasing the ratio of supported length to total length, γ will always result in increased frequencies.

The effect of the value of the axial force equal to or less than the Euler buckling load leads to a

significant effect in frequency values. The efficiency and accuracy of the present method have been

demonstrated on the basis of presented numerical examples. It is shown that the present method

provides an appropriate and sufficient approach for the vibration analysis of beam-columns with

pinned ends and embedded in Winkler-Pasternak elastic foundation. Present work also indicates that

the method of discrete singular convolution is promising and a potential approach for computational

solid mechanics.
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