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1. Introduction 
 

Surface waves in elastic medium have been well 

recognized in the study of seismology, earthquakes, 

geodynamics and geophysics and also give important 

information about the layered earth structure and have been 

used to accurately determine the earthquake epicenter, and 

also important to seismologists for understanding the causes 

and estimation of damage due to earthquakes. The wave 

motion is located at the outside surface itself, and as the 

depth below this surface increases, wave displacement 

becomes less and less. When an earthquake or explosion 

occurs, a part of the energy released through elastic waves 

is transmitted through the earth. The propagation of seismic 

waves in layered media is of central interest to the 

theoretical seismologists, on the grandest scale, with 

torsional wave as one of the surface waves which 

propagates horizontally but give a twist to the medium 

when it propagates observable after several trips around the 

world, and their systematic study has obvious implications  
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for human safety, as well as for a curiosity concerning the 

structure and evolution of the earth.  

To give a chronological account of the available 

literature on the propagation of surface waves in layered 

media, we start with the original work presented by 

Rayleigh (1885), who studied the propagation of elastic 

waves on the free surface of a semi-infinite solid, where he 

showed that the isotropic homogeneous elastic half space 

does not allow a torsional surface wave to propagate. Later 

on, Meissner (1921) had inquired that, in an inhomogeneous 

elastic half-space with a quadratic variation in the depth of 

the shear modulus and the mass density varying linearly 

with the depth, torsional surface waves do exist. Birch 

(1952) investigated that rigidity of the earth layers varies at 

different rates with respect to depth. The basic literature on 

the propagation of elastic waves in purely elastic media has 

been studied extensively in the well-known book of Love 

(1944). After that the propagation of surface waves in detail 

is well documented and application of mathematical 

modeling in elasticity theory and seismology has been given 

in the text book literature of Bath (1968), Achenbach 

(1973), Straughan (2008), and Carcione (2015). Biot (1962, 

1966) formulated the governing equations and constitutive 

relations for predicting the frequency-dependent velocities 

of a fluid saturated porous elastic solid in terms of the dry-

rock properties. Since then many of the implications and 

applications of this medium, a large number of papers by 

many researchers, over dynamical problems in the 

propagation of surface waves in a fluid saturated porous 

media have been published in different journals after the 

publication of this book. Notable among these are 
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Deresiewicz (1964), Yew and Jogi (1976), Konczak (1989), 

Sharma and Gogna (1991), Dai and Kuang (2006), Ke et al. 

(2006), Ghorai et al. (2010), Son and Kang (2012), Wang 

and Tian (2014), Gupta and Ahmed (2017). Deresiewicz 

(1964) characterizes Loves waves in a porous layer over-

lying on elastic half-space and in a porous layer between 

two elastic half-space and was the first who derived the 

dispersion equation for Love waves in a porous solid.  
Most of the theoretical seismologists and earth scientists 

are interested in investigating the seismic waves in layered 
media. In the last few years, continued efforts have been 
expended upon modeling and dynamical behavior of a 
surface wave propagation interaction with layered 
anisotropic fluid saturated porous media, mostly for 
applications in the fields of earthquake engineering, soil 
dynamics and fluid dynamics other than seismology. Study 
of wave motions in fluid-saturated porous rocks has been 
done by Yew and Jogi (1976). Sharma and Gogna (1991) 
considered Love waves in an initially stressed medium 
consisting of a slow elastic layer lying over a liquid-
saturated porous half space with small porosity. Wang and 
Zhang (1998) inquired the propagation of Love waves in a 
transversely isotropic fluid-saturated porous layered half 
spaced in detail, and gave dispersion and attenuation curves 
and an effective iterative method was developed to solve 
the complex dispersion equation. Dai and Kuang (2006) 
analyzed the dispersion and attenuation properties of Love 
wave in double porosity media also they approximated the 
limit of Love wave speed. 

In comparison to the extensive literature on the 
interaction of plane harmonic waves such as Rayleigh, Love 
and Stoneley waves with various layered media, much less 
work is available on the propagation of torsional surface 
wave in layered media. In the past few years, attention has 
been given to the problems of generation and propagation 
of torsional waves in an anisotropic elastic solids or layers 
of different configurations. By virtue Biot’s theory, Samal 
and Chattaraj (2011), Gupta and Gupta (2011), Gupta et al. 
(2012), Chattopadhyay et al. (2013a,b), Shekhar and Parvez 
(2016a,b) in a series of papers, studied the propagation of 
torsional surface waves in different medium, different type 
of irregularities, under different conditions. Recently, Alam 
et al. (2017) presented on propagation of a torsional wave 
in a doubly-layered half-space structure of an initially 
stressed heterogeneous viscoelastic layer sandwiched 
between a dry sandy layer and a half-space of 
heterogeneous media. 

Most natural porous materials, such as rocks and 
sediments in the Earth, are heterogeneous in the porous 
continuum so the propagation of torsional wave through 
rocks is affected by fluid/solid interactions. Over the past 
few decades, much interest has been focused on the effect 
of pre-stress or initial stress on the wave propagation. The 
word ‘initial stress’ is stress which developed a medium 
before it is being used for study. The Earth is initially 
stressed medium, due to presence of differential external 
forces, gravity variations, slow process of creep, process of 
quenching, difference of temperature, gravitational field and 
cold working etc., considerable amount of stresses which 
are called pre-stresses or initial stresses, remain naturally 
present in the layers. Remembering  the above all facts, the 
present problem discusses to study the propagation of a 
torsional type surface wave in an initially stressed fluid 

saturated porous media sandwiched between 
inhomogeneous anisotropic layer and inhomogeneous 
anisotropic half space under influence of initial stress. 
Bullen (1940) has found that the density inside the earth 
varies with increase of depth which is possible due to 
presence of inhomogeneity of the layers. Sharma and 
Kumar (2016) investigated shear horizontal wave 
propagation in a layered structure, consisting of granular 
macromorphic rock substrate underlying a viscoelastic layer 
of finite thickness. Ke et al. (2006) presented Love waves in 
an inhomogeneous fluid saturated porous layered half-space 
with linearly varying properties. Gupta and Gupta (2011) 
studied torsional surface waves in gravitating anisotropic 
porous half space. Shekhar and Parvez (2016b) investigated 
the propagation of torsional surface waves in an 
inhomogeneous anisotropic fluid saturated porous layered 
half space under initial stress with varying properties also in 
same year, the propagation of torsional surface waves in a 
double porous layer lying over a Gibson half space has been 
studied by the same authors (2016a).  

Recently Kumari et al. (2016) contributed their thought 
on the propagation of torsional waves in a viscoelastic layer 
over a viscoelastic substratum of Voigt types. Chattaraj et 
al. (2015) devised a model on torsional surface waves in a 
dry sandy layer over an inhomogeneous half space by using 
WKB approximation method. In this paper, three types of 
inhomogeneities in the upper anisotropic layer has taken; 
namely exponential, quadratic and hyperbolic whereas in 
the fluid saturated porous layer inhomogeneity is taken as 
sinusoidal under initial stress and for prestressed 
inhomogeneous anisotropic half space inhomogeneity are 
taken as linearly and all type of heterogeneity in the 
anisotropic medium are taken along z-directions. The 
variable separation method is used for theoretical 
derivations and analytical solutions are obtained for 
dispersion relation by means of the Whittaker function and 
its derivative where asymptotic expansion of Whittaker 
function and its derivatives has been taken up to second 
degree term. The dispersion properties of seismic waves in 
the Earth depend critically on the elastic properties and 
thicknesses of the layers and also provide important data 
about the configuration and state of the deep interior of the 
globe. The study of surface waves in an initially stressed 
fluid saturated porous medium is of interest not for 
theoretical taste only but for practical purposes too. 

 

 

2. Formulation of the problem 
 

In the present paper we consider two layers (M1) and 

(M2) lying over an initially stressed non homogeneous 

anisotropic half space (M3) where initial stress, density, and 

rigidities vary linearly and the cylindrical coordinate system 

(r, θ, z) is introduced to study torsional surface wave with z-

axis directed to downward positive. The origin O is taken at 

the common interface between inhomogeneous fluid 

saturated porous layer and the half space which pervades 

over  the region , 0r z     ,  see Fig.  1 .  The 

sandwiched layer (M2) of thickness H1 is inhomogeneous 

porous media with sinusoidal variation, which is also fluid 

saturated under presence of initial stress. The density and 

rigidities of the uppermost inhomogeneous anisotropic layer 

(M1) of thickness (H2−H1) are varying different types of  
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Fig. 1 Geometry of the problem 
 

 

inhomogeneities, viz. exponential, quadratic and hyperbolic 

with depth. 
 
 

3. Solution of the problem 
 

3.1 Solution for the upper inhomogeneous anisotropic 
layer (M1) 
      

The dynamical equilibrium equations of motion in the 

absence of external forces for the system in cylindrical 

coordinate are given by Biot (1966) 
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where , , , ,rr zz r rz      and z are the corresponding 

stress components in their conventional sense and u, v and 

w are the displacement components along radial, 

circumferential and axial direction respectively, and ρ
(1)

 is 

the density of the medium. 

Now, the stress-strain relations for anisotropic medium 

are given by generalized Hooke’s law 

 (2) 

where ij  are stress components, Cijmn are components of 

elasticity matrix, and emn are strain components. Here, linear 

elasticity, small strains, and the Cauchy stress tensor are 

considered. 

The strain-displacement relations for anisotropic 

material are 
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(3) 

Assuming that the torsional surface wave travels in 
radial direction and that of all the mechanical properties 
associated with it are independent of θ, so for torsional 
surface wave, u=0, v=v1(r, z, t) and w=0. So the only non-
vanishing equation of motion for the propagation of a 
torsional surface wave without body force may be written 
as 

   

2
(1) 1

2

1 2
( )r z

r

v
z

r r z r t

  


  
 



   
   

     
(4) 

with v1(r, z, t) being the displacement along the θ 

(azimuthal) direction. 

For an inhomogeneous anisotropic elastic medium, the 

non-vanishing stresses are related to the strain component 

by 

(1) (1)2 , 2r r z zN e L e     
 

(5) 

where N
(1)

 and L
(1)

 are the directional rigidities of the 

medium along the r- and z- directions, respectively. 

Using the above relations, Eq. (4) takes the form 
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The solution of Eq. (6) when a wave propagates along 

the radial direction with an amplitude of displacement as a 

function of depth may be taken as 
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where k is the wave number, c is the common wave velocity 

or phase velocity of torsional wave, ω(=kc) is the circular 

frequency and J1(kr) is the Bessel’s function of first kind 

and of order one. 

Putting (1)

10 11( ) ( )V z V z L in Eq. (8) we get 
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The following variations in directional rigidities and 

density of the layer are taken as follows 
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Using Eq. (10), Eq. (9) becomes 
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where λ1(l=1,2,3) are given in Appendix-A and indices  

l=1,2,3 denotes the cases for A, B, and C respectively and 

1 1 1c N  is the shear wave velocity in the layer. 

The solution of Eq. (11) is given by  

11 1 2( ) sin cosl lV z D z D z    (12) 

where D1 and D2 are arbitrary constants. Therefore the 
displacement component for torsional wave in the upper 
inhomogeneous anisotropic layer is given by 
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3.2 Solution for the intermediate fluid saturated 
porous layer under initial stress (M2) 
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 Neglecting the viscosity of the liquid and body force, 

dynamical equations for poroelastic medium under initial 

stress P
(2)

, are given by Biot 1962. Those are 
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where σij(i, j,=r, θ, z) are the incremental stress components 

and ( , , )r zu v w are the components of the displacement 

vector of the solid, (Ur, Vθ, Wz) are the component of the 

displacement vector of the liquid and σ is the stress vector 

due to liquid and 
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are the components of the rotational vector ω. 

The porous medium represents volumetrically 

interacting solid-fluid aggregates, which can be modeled 

using continuum porous media theories by allowing for 

both solid-matrix deformation and fluid flow so the stress-

strain relations for the liquid saturated anisotropic porous 

layer under normal stress P
(2)

 are 
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where A
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, F
(2)

, C
(2)

, N
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 and L
(2)

 are elastic constants of the 

medium. N
(2)

 and L
(2)

 are in particular, shear moduli of the 

anisotropic layer in the radial and the z-direction 

respectively, and 
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Further, Sε being the measure of coupling between the 

volume change of the solid and the liquid is a positive 

quantity. The relation between stress vector σ due to 

presence of liquid in the porous solid and the fluid pressure 

P* can be represented as 

*P    (19) 

where ϕ is the porosity of the medium. The mass 

coefficients ρrr, ρrθ and ρθθ are related to the densities ρ, ρs 

and ρf of the layer, the solid and the liquid respectively by 
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So the mass density of the of the aggregate is 
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Also the mass coefficients obey the following 

inequalities 
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For the propagation of torsional surface waves along the 

radial direction and having displacement of particles along 

the θ direction we have 
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Using stress-strain relations of Eq. (17), Eq. (25) can be 

written as  
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 2 2rV d v   
 and follows    

22

2
2 22 2

( ) drr r

v
v V

t t
 


 

   
(28) 

where 2 .rr rd        

Using Eq. (28) in Eq. (27), we get 

2 2(2)
(2) (2)2 2 2 2 2

2 2 2

1

2

v v v v vP
N L d

r r r r z z t

        
        

         
(29) 

For the wave propagating alone r- direction, the solution 

of Eq. (29) can be assume as 

2 20 1( ) ( ) i tv V z J kr e   (30) 

where ω=ck is the angular velocity; c is the phase velocity; 

k is the angular wave number of the torsional surface 

waves; and J1(kr) is the Bessel’s function of first kind with 

order one. 

Thus, Eq. (29) can be expressed as 

2 (2) 2 (2)
(2) 220 20

202 (2) (2)

( ) ( )1
( ) 0

2

d V z dV zdL k P
N d c V z

dz L dz dz L


   
      

     
(31) 

where  2 2

11 12 22rr rd d                is a non-

dimensional constant, called poro- elastic parameter and 

11 12 22, ,rr r              are also non-

dimensional parameters. 
Here the following cases may be discussed, 
(i) For porous layer: If ϕ→1 then ρf→ρʹ, thus the bulk 

material becomes fluid i.e., γ11−γ
2
12/γ22→0 or, d→0. It 

means shear wave do not exist. 
(ii) For non-porous layer: If the layer is non porous then 

d→0and ρs→ρʹ which leads to γ11+γ12→1 and γ11+γ22→0, 
which gives to γ11−γ

2
12/γ22→1 or d→1. 
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Thus for porous layer 0<d<1. 

Putting the substitution  
1 2

(2)

20 21( ) ( ) ( )V z V z L z


  in Eq. 

(31), there follows 

2
2 2 (2) (2) 2 (2)

(2) 221
21 212 (2) 2 (2) (2)

( ) 1 1
( ) ( ) 0

2 2 2

d V z d L dL k P
V z N d c V z

dz L dz L dz L


         
           

         
(32) 

Now, the variation of directional rigidity, initial stress 

and density with depth z, in the fluid saturated 

inhomogeneous porous layer has been taken as 

       (2) (2) (2)

2 2 2 21 sin , 1 sin , 1 sin , 1 sinN N bz L L bz P P bz bz        
 (33) 

where b is the constant having dimension that is inverse of 

length. 

Using relation (33), Eq. (32) takes the form 

2
221

212

( )
( ) 0

d V z
q V z

dz
 

 
(34) 

The solution of Eq. (34) may be taken as 

 21 3 4( ) sin cosV z D qz D qz 
 

giving 

   
1 2

(2)

2 3 4 1sin cos ( ) i tv D qz D qz J kr L e 


 
 

(35) 

where 

2
2

2 2 2

2

2 2

1
4

N c b
q k d

L c k


    
      
     

, 
2

22

P

L
   and 

2
2

2

N
c




is the velocity of the shear wave in the corresponding initial 

stress free poroelastic layer along the radial direction.  
 

3.3 Solution for initially stressed inhomogeneous 
anisotropic half space (M3) 
 

Assuming r and θ are the radial and circumferential 
coordinates, respectively, and if the wave travels along the 
radial direction only, then the dynamical equation of motion 
for the initially stressed inhomogeneous anisotropic half 
space is given by Biot (1966) 

 
2

(3) (3) 3

2

2r z
r z

s s v
s P

r z r z t

 
  

  
   

     
(36) 

where v3(r, z, t) is the displacement along the θ directions; 

ρ
(3)

 is the initial stress in the medium along the r-direction 

and ρ
(3)

 is the density of the medium. 

For the anisotropic elastic medium under initial stress, 

the stresses are related to strain by 

(3) (3)2 , 2r r z zs N s L     
 

(37) 

where
3 3 31 1

,
2 2

r z

v v v

r r z
  

    
     

    
and 

(3) (3),N L
are 

rigidities of the medium along the r- and z- directions 

respectively. 

Using the above relations, Eq. (37) becomes 

 
(38) 

where . 

The solution of Eq. (38) when a wave propagates along 
the radial direction with amplitude of displacement as a 
function of depth may be taken as 

3 30 1( , , ) ( ) ( ) i tv r z t V z J kr e 
 (39) 

where V30(z) is the solution of  

 
(40) 

where k is the wave number, c is the common wave 
velocity, ω(=kc) is the circular frequency and J1(kr) is the 
Bessel’s function of first kind and of order one. 

On substituting  in Eq. (40) we get 

 
(41) 

Now, the variations in directional rigidities (elastic 

moduli), density and initial stress in the substratum are 

taken as 

(3) (3) (3) (3)

3 3 3 3 3 3 3 3(1 ), (1 ), (1 ), (1 )N N z L L z P P z z              (42) 

where α3, β3, γ3 and δ3 are the constants having dimension 

that are inverse of length. 

Using Eq. (42) in Eq. (41), there follows 

 

2
2 2

231 3 3
3122

3 3

1 1 1
0

1 1 4 1

d V z zc
V

dz c z z z

  


  

      
      

        

(43) 

where  
2

2 3 3 3 3
3

3

, 1 , ,
1 2

k N P
L

L

 
   




    


h

h
and 3

3

3

N
c




 

is the shear wave velocity. 

On substituting 
31(z) ( )V   in Eq. (43), where 

 2 (1 )F z    
 

we get 

2

1 1
( ) ( ) 0

4 4
   

 

 
     

 

M

 
(44) 

                                               

where 

2

3 3

3

c
F

c

 

 

 
   

 
and 

2

2

3

1
2

c
F

F c





   
    

   

M are 

dimensionless quantities and Eq. (44) is the Whittaker 

equation (Whittaker and Watson (1991)) and solution is 

obtained as  

5 ,0 6 ,0( ) ( ) ( )D W D W     M M  (45) 

where D5 and D6 are arbitrary constants and WM,0(χ) is the 

Whittaker function. 

As the solution of Eq. (44) must be bounded and 

vanishes as z→∞ for the surface wave, i.e., χ→∞, we may 

take the solution as 5 ,0( ) ( )D W   M . 

Therefore, the displacement in a pre-stressed non-

homogeneous anisotropic half-space is given by              

  3 5 ,0 1( , , ) 2 (1 ) (1 ) ( ) i tv r z t D W F z z J kr e      hM  
(46) 

Considering Whittaker function up to linear term, Eq. 

(46) takes the form 

(1 z)

5
3 1

2 (1 ) 1 2 (1 )
1 ( )

2(1 )

F

i tD F z F z
v e J kr e

z

 

    

 


    

    
   h

M

 
(47) 

 

 

4. Boundary conditions and frequency equation 
 

Assuming that the interface of the layers is of welded 

contact, geometry of the problem leads to the following 
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boundary conditions; 

1. At the free surface z=˗H2, stress of the upper layer 

vanishes, i.e.,  

 
1

0z M 
 

(48) 

2. At the interface of the upper layer and the 

intermediate layer, the displacement component and stress 

component are continuous, i.e., 

 
(49) 

 
(50) 

3. At the interface of the intermediate layer and the 

lower half space, the displacement component and stress 

component are continuous, i.e., 

 
(51) 

 
(52) 

Using the above boundary conditions, Eqs. (48)-(52), 

with the help of Eq. (13), Eq. (35), and Eq. (47) we get five 

homogeneous equations with five unknowns, D1, D2, D3, D4 

and D5 and eliminating the arbitrary constants we get  

 
  
  

( ) ( )

1 2 2 1

1 ( ) ( )

3 4 2 1

tan
tan

tan

l l

l

l l

l

H H
qH

H H





   

   

 

(53) 

where ( ) ( 1,..,4; 1,2,3)l

j j l   are given in Appendix A. 

Eq. (53) gives the dispersion equation of torsional 

surface wave in an initially stressed inhomogeneous fluid 

saturated porous media sandwiched between 

inhomogeneous anisotropic layer and initially stressed 

inhomogeneous anisotropic half space. 

The expression for group velocity regarding the studied 

three layered model is given explicitly as 

         

        

    

( ) ( ) ( ) 2

1 2 2 1 3 2 1 2 1 1

( ) ( ) 2 ( ) ( )

4 3 2 1 1 1 5 6 2 1

( ) 2

7 2 1 2 1

tan sec tan

tan sec tan

sec 0

l l l l
l l

l l l l

l l

l l
l

d
H H H H H H qH

dk

dq
H H qH H H H

dk

d
H H H H

dk


 

 




 
      
 

      

   
 

(54) 

where ( ) ( 1,..,7; 1,2,3)l

j j l   are given in Appendix A. 

For l=1, 2 and 3 in both Eqs. (53) and (54) correspond to 

the case when upper anisotropic layer is of exponential 

variation (case A), quadratic variation (case B) and 

hyperbolic variation (case C) respectively. 

 

 

5. Particular cases 
 

Case I: When uppermost layer is homogeneous (i.e.,

1 11/ 0,a N L  ) i.e., the directional rigidities and density 

becomes constant then the dispersion Eq. (53) takes the 

form (all three cases) 

 

which is the dispersion equation of torsional surface wave 

in an initially stressed inhomogeneous anisotropic fluid 
saturated porous media constrained between homogeneous 
layer and initially stressed inhomogeneous anisotropic half 
space and  are given in Appendix-B. 

Case II: When uppermost layer is homogeneous (i.e.,

1 11/ 0,a N L  ) i.e., the directional rigidities and density 
becomes constant and also sandwiched layer is non porous 
homogeneous isotropic elastic without initial stress (i.e., 

2 2 2, 1, 0, 0N L d P b    ) then the dispersion Eq. (53) 
takes the form (all three cases) 

 

which is the dispersion equation of torsional surface wave 
in an isotropic homogeneous elastic media constrained 
between homogeneous layer and initially stressed 
inhomogeneous anisotropic half space and  are given in 
Appendix B. 

Case III: When uppermost layer is homogeneous (i.e.,

1 11/ 0,a N L  ) i.e., the directional rigidities and density 
becomes constant and sandwiched layer is non porous 
homogeneous isotropic elastic without initial stress (i.e.,

2 2 2, 1, 0, 0N L d P b    ) and also lower half space is 
without initially stressed and isotropic homogeneous (i.e.,

3 3 3 3, 0, 0,N L      3 30, 0P   ) then the 
dispersion Eq. (53) takes the form (all three cases) 

 

which is the dispersion equation of torsional surface wave 

in an isotropic homogeneous elastic media constrained 

between two homogeneous media and , and 

are given in Appendix B. 

Case IV: When uppermost layer is inhomogeneous 

anisotropic and sandwiched layer is non porous isotropic 

homogeneous elastic without initial stress (i.e.,

2 2 2, 1, 0, 0N L d P b    ) and lower half space is 

inhomogeneous anisotropic without initial stress (i.e.,

3 0P  ) then the dispersion Eq. (53) takes the form 

 

which is the dispersion equation of torsional surface wave 

in an isotropic homogeneous elastic media constrained 

between two non-homogeneous anisotropic media and 

, , , ; (l=1, 2, 3) are given in 

Appendix-B. 
Case V: When uppermost layer is inhomogeneous 

anisotropic and sandwiched layer is initially stressed fluid 
saturated porous inhomogeneous layer and lowermost half-
space is isotropic homogeneous elastic, without initial stress 
(i.e., 3 3 3 3 3 3, 0, 0, 0, 0N L P       ) then the 
dispersion Eq. (53) takes the form 

 

which is the dispersion equation of torsional surface wave 
in an inhomogeneous anisotropic fluid saturated porous 
media constrained between inhomogeneous anisotropic 
layer and homogeneous isotropic half space and , 

, , ; (l=1, 2, 3) are given in Appendix B. 
Case VI: When uppermost layer is inhomogeneous 

anisotropic and sandwiched layer is non porous isotropic 
homogeneous elastic without initial stress (i.e.,
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2 2 2, 1, 0, 0N L d P b    ) and also lowermost half-
space is isotropic homogeneous elastic, without initial stress 
(i.e., 3 3 3 3 3 3, 0, 0, 0, 0N L P       ) then the 
dispersion Eq. (53) takes the form 

 

which is the dispersion equation of torsional surface wave 

in an isotropic homogeneous elastic media constrained 

between inhomogeneous anisotropic layer and 

homogeneous isotropic half space and , , , 

, ; (l=1, 2, 3) are given in Appendix-B. 

Case VII: When sandwiched layer is absent {i.e., 

H1→0} and uppermost layer is homogeneous and perfectly 

elastic (i.e.,
1 1 11/ 0,a N L    ) and lowermost half-space 

is isotropic homogeneous elastic, without initial stress (i.e.,

3 3 3 3 3 3, 0, 0, 0,N L P      
3 0  ) then the 

dispersion Eq. (53) takes the form (all three cases) 

     2 2 2 2 2 2

2 1 3 3 1 1tan 1 1 1kH c c c c c c    
 

Case VIII: When uppermost layer is absent {i.e.,

 2 1 0H H  }, sandwiched layer is non porous 

homogeneous isotropic elastic without initial stress (i.e.,

2 2 2 2, 1, 0,N L d P    0b  ) and lowermost half-

space is isotropic homogeneous elastic, without initial stress 

(i.e., 3 3 3 3 3 3 3, 0, 0, 0, 0N L P         ) then the 

dispersion Eq. (53) takes the form 

     2 2 2 2 2 2

1 2 3 3 2 2tan 1 1 1kH c c c c c c    
 

Dispersion equation for the cases VII and VIII are the 

well known classical Love wave equation. 
 

 

6. Numerical results and discussion 
 

In order to emerge with the effect of various parameters 

such as  3 31/ ( ), / , / , / ,ak b k k k  3 3/ , / ,k k   porosity 

{d}, initial stresses , ,  ratio of thickness of the layers

 2 1( / )H H H  on the propagation of torsional wave, the 

curves have been plotted from the dispersion equations (Eq. 

(53)), and from group velocity (Eq. (54)) for different 

values of elastic constants. For the purpose of numerical 

computation, following data have been considered:  

For uppermost anisotropic non-homogeneous layer: 

(Tierstein 1969) 

10 2 10 2 3

1 1 13.99 10 / , 5.79 10 / , 2649 /N N m L N m kg m      
(Anisotropic quartz material) 

For initially stressed fluid saturated homogeneous 

intermediate layer: (Samal and Chattaraj 2011) 

 

For lowermost initially stressed anisotropic non-

homogeneous half space: (Gubbins 1990) 

10 2 10 2 3

3 3 36.34 10 / , 7.5 10 / , 3338 /N N m L N m kg m    

(Anisotropic sandstone material) 

 
(a) 

 
(b) 

Fig. 2 Variation of the non-dimensional wave number kH1 

against the (a) dimensionless phase velocity c/c2 and (b) 

dimensionless group velocity (Ω) for different values of 

(1/(ak)) 

 

 
(a) 

 
(b) 

Fig. 3 Variation of the non-dimensional wave number kH1 

against the (a) dimensionless phase velocity (c/c2) and (b) 

dimensionless group velocity (Ω) for different values of 

(d). 
 

 

For graphical representation, the numerical values of all 
non-dimensional parameter in the figures have been 
consider as 1/(ak)=0.3, b/k=0.25, d=0.90123, ξ=0.2, 
α3/k=0.1, β3/k=0.2, γ3/k=0.2, δ3/k=0.2, μ=0.3, H=1.7 and 
ω/k=0.5, unless otherwise stated.  
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(a) 

 
(b) 

Fig. 4 Variation of the non-dimensional wave number kH1 

against the (a) dimensionless phase velocity (c/c2) and (b) 

dimensionless group velocity (Ω) for different values of 

(b/k) 

 

 

In all of the figures, curves have been plotted with 

horizontal axis as dimensionless wave number kH1 against 

vertical axis as (i) dimensionless phase velocity (c/c2) or (ii) 

dimensionless group velocity (Ω=d(kc)/dk) and also each of 

the figures, curves are in red, green and blue colours 

correspond to the case when upper layer is of exponential 

variation (Case-A), quadratic variation (Case-B) and 

hyperbolic variation (Case-C) respectively. 
Fig. 2 reflects the effect of inhomogeneity factor (1/(ak)) 

associated with directional rigidities and density of the 
upper non-homogeneous layer. Under the above-considered 
values in this figure we observed that, in presence of 
inhomogeneity, for a fixed value of wave number kH1, 
phase velocity (c/c2) of torsional surface wave decreases 
with the gradual increase of dimensionless inhomogeneity 
parameter (1/(ak)) but group velocity (Ω) increases with the 
inhomogeneity parameter (1/(ak)). Fig. 3 represents the 
variation of dimensionless (a) phase velocity (b) group 
velocity against the dimensionless wave number for 
different values of porosity parameter (d) in the sandwiched 
layer. From these figures it have been observed that as the 
porosity of the intermediate layer decreases, the phase 
velocity (c/c2) of the torsional wave number increases for a 
particular wave number kH1. More interestingly, it has been 
observed that for a slight change in porosity parameter 
associated with the intermediate layer, the velocity is 
affected considerably. In addition to this, it can be quoted 
that the porosity existing in the layer resists the velocities of 
torsional wave propagating through it. Fig. 4 delineates the 
influence of inhomogeneity parameter (b/k) present in the 
poroelastic layer on the phase and group velocities of 
torsional wave. It is evident from this figure that as long as 
inhomogeneity prevails in the medium, the phase velocity 

gets increased for a particular wave number in all 
considered cases. It is adduced from this figure that group 
velocity of torsional wave increases with increase in 
inhomogeneity associated with poroelastic layer in all 
considered cases. Fig. 5(a) has been plotted to depict the 
effect of non-dimensional initial stress parameter (ξ) 
associated with the intermediate porous layer on the phase 
velocity (c/c2) of the torsional surface wave in anisotropic 
inhomogeneous porous layer. When ξ >0, it is termed as 
compressive initial stress, whereas for ξ <0, is called tensile 
initial stress. Under these considered values and for a fixed 
wave number this leads to the facts that initial stress (ξ) of 
the sandwiched medium is inversely proportional to the 
phase velocity (c/c2) of the torsional surface wave. Fig. 5 
(b) describes the effect of non-dimensional initial stress 
parameter (μ) associated with the non-homogeneous 
anisotropic half space. Here we show the effect of two types 
of initial stress, namely compressive initial stress and 
tensile initial stress. Thus one can conclude that under these 
mentioned values, as the value of initial stress (μ) decreases, 
the dimensionless phase velocity (c/c2) increases at the 
same frequency except the case of quadratic variation but 
after certain wave number it shows resemblance. Fig. 6(a) 
demonstrates the effect of dispersion curves and group 
velocity in the presence of the anisotropy parameter (α3/k) 
incorporated in the directional rigidity associated with the 
half space on the torsional wave velocity. The effect found 
here in this figure is that the value of phase velocity 
decreases as the anisotropy factor increases for a fixed 
value of the wave number. 

In Fig. 6(b), an attempt has been made to come out with 

effect of anisotropy factor (β3/k). It has been observed that 

as the rigidity increases the phase velocity increases for a 

particular wave number. This figure manifests that the 

phase velocity of torsional wave is directly proportional to  
 

 

 
(a) 

 
(b) 

Fig. 5 Variation of the dimensionless phase velocity (c/c2)  

against the non-dimensional wave number kH1 for 

different values of initial stress parameter (a) ξ and (b) μ 
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(a) 

 
(b) 

Fig. 6 Variation of the dimensionless phase velocity (c/c2)   

against the non-dimensional wave number kH1 for 

different values of non-dimensional anisotropy parameter 

(a) (α3/k) and (b) (β3/k)  

 

 
(a) 

 
(b) 

Fig. 7 Variation of the dimensionless phase velocity (c/c2)    

against the non-dimensional wave number kH1 for 

different values of non-dimensional parameter (a) (γ3/k)  

and (b) (δ3/k) 
 

 

rigidity of the half-space. Fig. 7(a) signifies the effect of 

anisotropy factor (γ3/k) present in the initial stress in the half 

space. These curves elucidate that the phase velocity (c/c2) 

of the torsional surface wave decreases remarkably as the 

value of anisotropy factor increases but it gets reversed as  

 
(a) 

 
(b) 

Fig. 8 Variation of the non-dimensional wave number kH1 

against the (a) dimensionless phase velocity (c/c2)     

and (b) dimensionless group velocity (Ω) for different 

values of H 

 

 
the wave number increases. A minute observation of Fig. 
7(a) illustrates that difference in phase velocity becomes 
little considerable with growing magnitude of wave number 
for all three cases. Fig. 7(b) renders the dispersion curves of 
a torsional surface wave under the effect of the 
inhomogeneity factor (δ3/k) associated with the density in 
the half space. It has also been observed that initially as the 
inhomogeneity parameter of the half space decreases, 
velocity of the torsional surface wave also decreases at the 
same frequency but after particular point it gets reversed 
(except in case of quadratic variation). This figure shows 
that density inhomogeneity parameter (δ3/k) has perfect 
influence over the velocity of torsional surface wave. Fig. 8 
discusses the dispersion curves at different values of ratio of 
thickness (H) of the upper and intermediate layer. Also, it 
has been noted that as the ratio of thickness of the layers 
(H) decreases, (a) the phase velocity (c/c2) of torsional 
surface decreases but (b) group velocity (Ω) increases at a 
particular frequency of wave number kH1, which justifies 
the fact that phase velocity of torsional surface wave is 
directly proportional to the ratio of thickness of the layers. 
An overview of all the curves in Figs. 2-8, that the influence 
of inhomogeneity associated with upper layer on phase 
velocity for the case when layer is with hyperbolic variation 
is much more pronounced as compared to the case when the 
layer is of quadratic variation.  
 

 

7. Conclusions 
 

In this present study we investigated the propagation of 
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torsional surface waves in an initially stressed 
inhomogeneous fluid saturated porous media sandwiched 
between inhomogeneous anisotropic layer and initially 
stressed inhomogeneous anisotropic substratum. The 
analytical solution for displacement for each medium have 
been derived separately and also the final dispersion 
equation thus obtained in a closed form reduces into 
classical equation of Love wave, thereby validating the 
proposed solution of the problem when one of the layer 
vanishes and also initial stress, other technical parameters 
are neglected. Regarding this model we have also 
elucidated expression for group velocity. The numerical 
computations for the dispersion relation and group velocity 
are performed and the effects of relevant parameters are 
studied and shown graphically by using MATLAB. From 
the overall study, we arrive at the following conclusions: 

•As the inhomogeneity parameter (1/(ak)) associated 
with upper layer increases, group velocity of a torsional 
surface wave increases, but it gets reversed in case of phase 
velocity. 

•The porosity of the medium plays an important role in 

the wave propagation. As the porosity parameters (d) 

decreases, the intermediate layer  will become an elastic 

solid with less pores and the phase velocity of torsional 

surface waves decreases and ultimately vanishes when the 

medium is elastic solid, also observed that in the limiting 

case if the porous medium changes to a liquid layer then a 

torsional surface wave does not exist. Similar behavior of 

the porosity parameter was found by Ghorai et al. (2010) on 

Love wave propagation. 

•The anisotropy in the medium also reduces the velocity 

of torsional wave propagation. 
•Form the present study it is clear that width of the 

intermediate porous layer and width of the topmost layer 
plays an important role in the study of torsional surface 
waves. 

•The initial stresses present in the half space and fluid 
filled porous layer also have effect in the phase velocity of 
propagation. In porous medium as decreases of initial stress, 
phase velocity increases. This result is similar to that 
observed by Shekhar and Parvez (2016a).  

From this study, it can be concluded that the presence of 
heterogeneity, porosity, layer width, and initial stress in the 
layer and substratum affect the torsional wave energy. 
Torsional wave in an inhomogeneous prestressed elastic 
layer overlying an inhomogeneous elastic half-space under 
the effect of rigid boundary was illustrated by Kakar (2015). 
Singh et al. (2017) studied the propagation of torsional 
surface wave in an initially stressed visco-elastic layer 
sandwiched between upper and lower initially stressed dry-
sandy Gibson half-spaces. In this present study, torsional 
surface wave in layered media has possible application in 
geophysics and for better understanding the cause and effect 
due to earthquake and artificial explosions and also 
important to seismologists and geophysicists to find the 
location of the earthquakes as well as their energy, 
mechanism etc. So, these types of studies enable the 
seismologists and geophysicists to sketch the real Earth 
model more profoundly, imparting a detailed notion about 
the interior of the Earth at all scales and also helpful for 
civil engineers in estimating the damages during an 
earthquake, empowering them to better deal with the 
practical situations. 
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