
Geomechanics and Engineering, Vol. 14, No. 6 (2018) 571-580 

DOI: https://doi.org/10.12989/gae.2018.14.6.571                                                                  571 

Copyright ©  2018 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=gae&subpage=7                                                             ISSN: 2005-307X (Print), 2092-6219 (Online) 

 
1. Introduction 
 

Chen (1975) expounded the principle of limit analysis 

method in detail, and the method was widely used to study 

the stability of tunnel. Leca and Dormieux (1990) 

calculated the upper bound of supporting force of shallow 

tunnel face under the active and passive failure mechanism. 

Atkinson and Potts (1977) built a wedge failure mechanism 

of tunnel in cohesionless soil to study the stability of tunnel, 

and calculated the upper bound and lower bound of 

supporting pressure respectively using the principle of limit 

analysis. Davis et al. (1980) obtained the upper bound 

solution and lower bound solution of stability coefficient of 

tunnel using limit analysis by constructing a failure 

mechanism consisting of multiple rigid blocks of different 

geometry. In order to research the failure mechanism of a 

deep rectangular cavity in Hoek-Brown rock medium, Li 

and Yang (2018) constructed a collapse mechanism of 

tunnel roof, and analyzed the influence of seepage forces on 

the failure mechanism. As for the failure mechanism under 

the limit state, a kind of parabolic failure mechanism was 

established, according to the analysis of shied and bias 

tunnels. 

However, the influences of the ground surface 

settlement and the layered character of soil on tunnels are 

not taken into account in above mentioned work.  In this 

paper, the collapse mechanisms of shallow tunnel 

considering stochastic settlement in homogeneous soil and 

in layered soils are discussed with the upper bound theorem  
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of limit analysis. 

 

 

2. Upper bound theorem and simplified stochastic 
medium theory 
 

2.1 Upper bound theorem 
 

The limit analysis upper bound theorem considers that 

the load calculated through equating the internal energy 

dissipation to external work rate is no less than the actual 

limit load if velocity boundary condition and compatibility 

condition of strain are satisfied (Chen 1975, Khezri et al. 

2016, Lee 2016). Upper bound theorem can be expressed as 

 
(1) 

in which σij is the stress tensor,  is the strain rate, Ti is the 

limit load on the boundary surface, S is the length of 

velocity discontinuity, Fi is the body force of the 

mechanism such as the force caused by self-weight, V is the 

volume of the plastic zone, and vi is the velocity along the 

velocity discontinuity surface. 

The limit analysis theory is adopted to make analysis 

about the moment of limit state when the tunnel or slope 

collapses (Xu et al. 2018a). At this moment, the limit state 

is between two scenarios described above. Any further 

change for ground surface settlement, no matter how small, 

will cause the tunnel roof collapse. The assumption in this 

work is also adopted by other scholars and their works are 

published already. 

From the standpoint of physical modelling experiments, 

Wu and Lee (2003) carried out a series of centrifuge model  
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Fig. 1 Ground loss of single tunnel excavation 

 

 

tests of unlined single and parallel tunnels in the plane 

strain condition to investigate the ground movement and the 

collapse mechanisms induced by tunneling. Based on this 

work and a large number of measured fields data, Osman 

(2010) put forward a simple plastic failure mechanism. 

Within this failure mode (in limit state), the settlement does 

not change any more, on the basis of work, Li and Yang 

(2018) used reliability method to introduce a new failure 

mechanism when the tunnel roof failures the settlement 

does not change.  

 

2.2 Simplified stochastic medium theory 
 

The stochastic medium theory was proposed by 

Litwiniszyn (1975) and extended to predict the ground 

surface movement caused by tunneling and mining. 

According to the theory, the movement of stratum equals 

the sum of movement of stochastic medium elements 

induced by tunnel excavation. As shown in Fig. 1, assuming 

that every element collapse completely in the whole 

excavation zone Ω, the ground surface settlement can be 

obtained by applying superposition principle, which can be 

written as 

 
2

2

2

tan tan
( ) exp d dW x x

  
  

 




 
   

 


 

(2) 

The detail of derivation of settlement equation is in 

Appendix 1. Supposing that Ω is the initial cross section of 

tunnel, ω is the cross section after shrinkage and the radial 

convergence is A     , the ground surface settlement 

can be written as 
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(3) 

where ( )W x  is the ground surface settlement and β is the 

influence angle of ground settlement. Then, the movement 

of ground surface can be obtained when the parameters β 

and ∆A re determined. Based on the theory, the ground 

surface settlement and transformation can be predicted 

considering the construction factors and formation 

conditions. The horizontal displacement of ground surface 

U(x), the differential surface settlement T(x), the horizontal 

deformation E(x) and the curvature of surface settlement 

profile K(x) can also be obtained as follows 
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(7) 

From the equations mentioned above, it can be found 

obviously that the ground surface settlement, horizontal 

displacement, the differential surface settlement, horizontal 

deformation and the curvature of surface settlement profile 

can be obtained with the given boundary conditions. 

However, these functions cannot be integrated and 

numerical solution can only be got using calculation 

software. In order to obtain these values easily, the 

stochastic medium theory is simplified, and the simplified 

ground surface settlement functions can be expressed as 

follows. The total ground surface settlement for the uniform 

convergence displacement mode can be written as 
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The total ground surface settlement for the non-uniform 

convergence displacement mode is expressed as 
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where g is the gap parameter, and the condition g=2∆A  

should be satisfied. Z0 is the distance between ground 

surface and the center of tunnel. It can also be noticed that 

the ground surface settlement for the uniform convergence 

displacement mode is the same as the settlement for the 

non-uniform convergence displacement mode. 

 

 

3. Tunnel roof collapse with settlement 
 

3.1 Roof collapse in homogeneous soil 
 

A large number of tests and theoretical studies have 
shown that geotechnical materials almost obey nonlinear 
failure criterion while the linear failure criterion is just a 
special case (Anyaegbunam 2015, Mohammadi and 
Tavakoli 2015, Xu et al. 2018b, Yang 2017, Yang et al. 
2017, Yang and Yao 2018). Due to the limitation that the 
non-linear Hoek-Brown criterion is bias towards hard rock 
(Hoek and Brown 1997), the employment of the Power-law 
yield function would become the most suitable choice in 
this work (Yang 2018). In order to study the failure 
mechanism of tunnel roof, the Power-Law failure criterion 
is used in this paper. The Power-Law failure criterion of  
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Fig. 2 Collapse of shallow tunnel under ground surface 

settlement in homogeneous soil 
 
 

geotechnical material can be expressed as 

 
1/

0 1
m
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(10) 

in which c0 is initial cohesion, σt is axial tensile stress, m is 

nonlinear coefficient and these parameters can be 

determined by tests. The linear Mohr-Coulomb criterion 

could also be converted from Power-Law yield function if 

let nonlinear coefficient m=1.  

The surface settlement mode put forward in this work is 

based on stochastic medium theory which assumes that 

every elemental excavation which occurs settlement is 

located at any point within tunnel region in any different 

soil layers. So the formulation describing settlement should 

not be affected by layered soils conditions. Furthermore the 

assumption that the layered soil condition does not affect 

the ground surface settlement is widely adopted by other 

scholars and their work is published. 

Ou et al. (1993) studied the characteristics of ground 

surface settlement during excavation in layered sandy and 

clayey deposits in different fields, and proposed an 

empirical formula (without being effected by layered soils 

conditions) to predict the ground surface settlement profile 

in plane-strain conditions based on a lot of field observation 

data. In the work of Lee and Xiao (2001), a new transfer 

function is presented for analysis of the behavior of pile 

groups in multilayered soils. And the conclusion that 

settlement is not affected by layered soils could be 

concluded. Moormann (2004) found that the horizontal 

displacements of the retaining walls, the effect of a 

groundwater drawdown as well as of unloading have 

influences on the measured settlements result from different 

deformation mechanisms based on an extensive database of 

more than 530 current international case. Yang and Zhang 

(2017, 2018) put forward a new failure mechanism of 

shallow tunnel roof with considering surface settlement in 

layered soils. They assumed that the surface settlement 

obeying Guassian curve is not affected by layered soils 

conditions (Li and Yang 2017). 
The failure mechanism of shallow tunnel is different 

from deep tunnel due to its failure mode extending to the 
ground surface (Fahimifar et al. 2015, Han and Liu 2016, Li 
et al. 2017). The failure mechanism of shallow tunnel in 
homogeneous soil considering stochastic settlement is 
established using upper bound theorem and variation 
method based on Power-Law failure criterion in this work, 
as shown in Fig. 2. The function W(x) is the surface 

subsidence curve which is obtained using simplified 
stochastic medium theory, f(x) is the expression of collapse 
block, H is the distance between ground surface and tunnel 
roof and R is tunnel radius. L1 and L2 are the half-width on 
the ground surface and the tunnel roof respectively. 
Assuming that the uniform convergence displacement mode 
is satisfied in this work, the expression of ground surface 
settlement curve is written as  
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in which ∆A is the radial convergence and β is the influence 

angle of ground settlement. According to flow rule, the 

normal stress on the detaching surface can be derived as 

follows 
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The derivation process of normal stress and energy 

dissipation density is illustrated in detail in Appendix 2. 

Based on the previous work (Fraldi and Guarracino 2009, 

Fraldi and Guarracino 2011, Zhang et al. 2010), the energy 

dissipation density of any point on the detaching surface 

results 

 

(13) 

By considering the falling block to be symmetrical with 

respect to y-axis, the total energy dissipation can be 

obtained by integrating the unit energy dissipation along the 

right half velocity discontinuity. The total energy 

dissipation of right half collapse block results 

  

(14) 

The work rate generated by the weight of soil mass of 

the falling block can be expressed as 
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(15) 

γ being the weight per unit volume of soil mass and the 

function c(x) describing the tunnel profile. The function of 

the tunnel profile can be written as  
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(16) 

The power of the supporting force q on the tunnel can be 

expressed as 

2arcsinq

L
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The work rate produced by the load on the ground 

surface is 
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According to upper bound theorem of limit analysis, the 

upper bound solution closed to actual solution is the 

extremum one among all the feasible solutions determined 

by optimization calculation. Therefore, an objective 

function should be constructed in accordance with internal 

energy dissipation and external work rate 

 
2 2 1

1

2
1

0 0
( ), ( ), d ( )d ( )d arcsin

sq

L L L

s
L

D P P P

L
v f x f x x x v c x x v W x x qR v L v

R

 

  

   

           
(19) 

in which the expression of  ( ), ( ),f x f x x  can be written 

as follows 
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It is obviously found from Eq. (19) that the extremum of 

the objective function ξ is completely determined by the 

function  ( ), ( ),f x f x x . Then, the problem transforms 

into a classical question of the calculus of variations, i.e., to 

find the extreme value of fonctionelle  ( ), ( ),f x f x x  so 

as to obtain the upper bound solution of collapse 

mechanism. According to variation principle, the Euler-

Lagrange equation for the function  ( ), ( ),f x f x x  

results 
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By substituting Eq. (20) into Eq. (21), a homogeneous 

second-order differential equation with constant coefficients 

can be obtained as follows 
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The function of detaching surface can be got through 

integrating the Eq. (22). The expression of collapse 

mechanism of tunnel can be written as 

 

(23) 

a0 and a1 being two constants to be determined by 

boundary conditions. A geometrical relationship can be 

found from Fig. 2, that is 
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As there is no distribution of shear stress on the ground 

surface, the following equation is obtained 
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Then, 0 1a L  and 1 1( )a W L . The final expression of 

falling block of shallow tunnel can be written as 
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Hence, the concrete expression of function ξ can be 

expressed through calculation. According to the upper 

bound theorem, the upper bound solution can be obtained 

through equating the energy dissipation to the external 

power, results 
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(27) 

It can be found that the concrete failure mechanism of 

tunnel roof can be obtained as long as the half-width on the 

ground surface L1 and half-width on the tunnel roof L2. 

However, the values of L1 and L2 cannot be got from Eq. 

(27). According to Fig. 2, a relationship between L1 and L2 

can be obtained as follows 
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By combining Eq. (27) with Eq. (28), a system of 

nonlinear equations about L1 and L2 can be obtained and the 

values of L1 and L2 can also be obtained. It is noticed that in 

Eq. (27) cannot be integrated for the simplest form. Then, 

coding the computer program, the numerical solution of this 

integral can be obtained and the values of L1 and L2 can be 

obtained afterwards. The concrete expression of failure 

mechanism of shallow tunnel subjected to surface 

settlement can be affirmed as long as the values of L1 and L2 

are ensured and substituted into Eq. (26), and the shape of 

collapse block can be drawn afterwards. 

It is also worthy noticing that the roof of collapse block 

extends to the ground surface exactly when L1=0 is 

satisfied. Then, the critical height Hcr can be obtained by 

combing Eq. (27) with Eq. (28). And this failure mechanism 

of shallow tunnel is considered valid when the condition 

crH H  is satisfied. 
 

3.2 Roof collapse in layered soils 
 

In practical engineering, the soil mass is frequently not 
homogeneous, so the collapse mechanism of shallow tunnel 
in layered soils is established in this section. As shown in 
Fig. 3, it is assumed that the failure mechanism is 
symmetrical with respect to y-axis and the curve of falling 
block is smooth. The function W1(x) is the surface 
subsidence curve which is obtained simplified stochastic 
medium theory and the curve of falling block is made up of 
two functions f1(x) and f2(x). h1 is the height between 
ground surface and the layered position and h2 is the height 
between the layered position and the top of tunnel. L3, L4 
and L5 are the half-width of the falling block on the ground 
surface, the layered position and the tunnel roof  

 

 

 

Fig. 3 Collapse of shallow tunnel under ground surface 

settlement in layered soils 
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respectively. The 1 and 2 in the subscript of soil’s 

parameters c0, σt, m and γ represent the upper soil and lower 

soil respectively.  
The expression of ground surface settlement curve 

shown in Fig. 3 is expressed as follows 
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Through calculating, the dissipation densities of the 
internal forces on the detaching surface in two layers result 
respectively  
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Thus the total energy dissipation can be obtain by 

integrating the  and  along the velocity discontinuity 
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For the tunnel in layered soils, the work rate produced 

by self-weight is expressed as 
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where the expression of circular tunnel is written as follows  
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load on the ground surface result respectively 
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In order to obtain the upper bound solution, an objective 

function should be established using the energy dissipation 

and power of external forces, results 
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(39) 

The problem also transforms into a typical calculus of 

variations, i.e., to find two functions, y=f1(x) and y=f2(x) 

when the extremum of objective function ψ is obtained. It 

can be found from Eq. (37) that the extremum of ψ is 

determined completely by functions ψ1 and ψ2. Thus, it is 

assumed that the extremum of objective function ψ can be 

obtained when the extreme values of two functions ψ1 and 

ψ2 are obtained simultaneously. According to variation 

principle, the Euler-Lagrange equations for the functions 

1 1 1( ), ( ),f x f x x 
   and 2 2 2( ), ( ),f x f x x 

   result 
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(41) 

The expressions of the detaching curve f1(x) and f2(x) 

can be derived by integral calculation 

 
(42) 

 
(43) 

a2, a3, a4 and a5 being constants which can be 

determined by boundary conditions. A geometrical 

relationship can be found from Fig. 3, that is 

1 3 1 3( ) ( )f x L W x L  
 (44) 

As there is also no distribution of shear stress on the 

ground surface, the following equation is obtained 

3 1 3( , ( )) 0xy x L y W L   
 

(45) 

The expressions of a2 and a3 can be determined, 

2 1 3a L  and 3 1 3( )a W L . Thus, the concrete expression of 

falling block in upper soil can be written as follows 

  1

1 1 3 1 3( ) ( )
m

f x k x L W L  
 

(46) 

When the curve of collapse block is smooth, the 

equations, 1 4 2 4( ) ( )f x L f x L     is satisfied. Another 

geometrical relationship 2 4 1( )f x L h   can also be found 

from Fig. 3. Thus, the expressions of a4 and a5 can be 

obtained, 4 2 4( )a L Z   and 2

5 1 2

m
a h k Z   in which 
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 

  
   

(47) 

The concrete function of collapse block in lower soil 

results 

  2 2

2 2 4 1 2( ) ( )
m m

f x k x L Z h k Z    
 

(48) 

The concrete expression of objective function ψ can be 
obtained through integral. To get the upper bound solution, 
an equation can be obtained by equating the internal energy 
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dissipation to the external work rate, in other words 
equating the function ψ to zero, that is 
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(49) 

It can also be found that the failure mechanism of 

shallow tunnel can be determined as long as the values of 

L3, L4 and L5. According to Fig. 3, two geometrical 

conditions are still left, which can be expressed as 

   2 2 2 2

2 5 4 1 2 1 2 5( )
m m

k L L Z h k Z h h R R L        
 
(50) 

  1

1 4 3 1 3 1( )
m

k L L W L h  
 

(51) 

Combining Eqs. (49)-(51), the values of L3, L4 and L5 

can be solved by using software. The integral 
3

1
0

( )d
L

W x x  in 

Eq. (49) cannot also be integrated for the simplest form, so 

the numerical solution of this integral is also calculated, and 

is substituted into the system of equation. Based on L3, L4 

and L5, the final forms of detaching curves f1(x) and f2(x) are 

obtained, and the shape of failure surface is drawn by Eq. 

(46) and Eq. (48). 
 

 

4. Numerical results and discussions 
 

4.1 Influence of parameters on collapse mechanism 
in homogeneous soil 

 
It can be noticed through Eq. (11) or Eq. (29) that the 

surface settlement curve is just related to the tunnel radius, 

buried depth, section convergence value and the influence 

angle of ground settlement when the movement of ground 

surface is estimated using simplified stochastic medium 

theory. Fig. 4 illustrates the settlement curve W(x) (or 

W1(x)) in the scope of 15 m on each side of tunnel central 

line corresponding to R=5 m, H=5 m (or h1+h2=5 m), 

∆A=20 mm and tanβ=0.9. In other word, the values of 

surface settlement will not be impact by the parameters c0, 

σt, m and γ. 
 

4.1.1 Influence of initial cohesion 
In order to investigate the influence of initial cohesion c0 

on potential collapse block, Fig. 5 illustrates the effects of 
the initial cohesion c0 on the range of falling block 
corresponding to σt=30 kPa, m=1.3, σs=10 kPa, R=5 m, H=5 
m, q=50 kPa, γ=22 kN/m

3
, ∆A=20 mm and tanβ=0.9 with 

initial cohesion c0 varying from 6 kPa to 14 kPa. It can be 
seen from Fig. 5 that the initial cohesion c0 has a significant 
influence on the failure mechanism of tunnel roof in 
homogeneous soil. When the other parameters remain 
constant, the potential collapse range of circular tunnel 
increases with the increase of initial cohesion c0. 

 

4.1.2 Influence of nonlinear coefficient 

 

Fig. 4 Ground surface settlement curves with constant R, 

H, ∆A and tanβ  
 

 

Fig. 5 Effects of initial cohesion c0 on failure 

mechanisms 
 

 

Fig. 6 Effects of nonlinear coefficient m on failure 

mechanisms 

 

 

Fig. 7 Effects of unit weight γ on failure mechanisms 
 

 
To investigate how the collapse mechanism of shallow 

tunnel roof in homogeneous soil is influenced by nonlinear 
coefficient m, the failure surfaces of shallow tunnel 
corresponding to σt=30 kPa, c0=10 kPa, σs=10 kPa, R=5 m, 
H=5 m, q=50 kPa, m=1.3, ∆A=20 mm and tanβ=0.9 with 
nonlinear coefficient m varying from 1.1 to 1.5 are plotted 
in Fig. 6. It can be observed that the proportion of potential 
collapse block decreases with the nonlinear coefficient m 
increasing when other parameters remain constant. 
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(a) Potential collapse blocks with varying R 

 

(b) Ground surface settlement curves 

Fig. 8 Effects of tunnel radius R on failure mechanisms 
 

 

(a) c02=10 kPa 

 
(b) c01=8 kPa 

Fig. 9 Effects of initial cohesions on failure mechanisms 
 

 
4.1.3 Influence of unit weight 
Fig. 7 represents the influence of unit weight γ of soil 

mass on the collapse mechanism corresponding to σt=30 

kPa, c0=10 kPa, σs=10 kPa, R=5 m, H=5 m, q=50 kPa, γ=22 

kN/m
3
, ∆A=20 mm and tanβ=0.9 with unit weight γ varying 

from 20 kN/m
3
 to 24 kN/m

3
. It can be seen from Fig. 7 that 

the proportion of collapse block will decrease with the unit 

weight of the soil increase. From the perspective of energy 

analysis, this means that in order to set the equation ζ=0 to 

be satisfied, the size of collapse block will be large when 

the values of unit weights is low. 

 

(a) m2=1.3 

 
(b) m1=1.5 

Fig. 10 Effects of nonlinear coefficients on failure 

mechanisms 
 
 

4.1.4 Influence of tunnel radius 
The failure surfaces corresponding to σt=30 kPa, c0=10 

kPa, σs=10 kPa, γ=22 kN/m
3
, H=5 m, q=50 kPa, m=1.3, 

∆A=20 mm and tanβ=0.9  with tunnel radius R varying 
from 3.5 m to 6.5 m are plotted so as to analyze the 
influence of tunnel radius R, as shown in Fig. 8(a). Fig. 8(b) 
illustrates the settlement curves with tunnel radius 
changing. It can be observed that the values of ground 
settlement increase with the radius increasing. However, the 
potential collapse block decreases with the tunnel radius R 
increasing when other parameters remain constant. 
 

4.2 Influence of parameters on collapse mechanism 
in layered soils 
 

In order to study the influence of initial cohesions on the 

failure mechanism, the detaching surfaces corresponding to 

σt1=σt2=30 kPa, m1=1.5, m2=1.3, γ1=21 kN/m
3
, γ2=23 kN/m

3
, 

σs=10 kPa, q=50 kPa, h1=h2=2.5 m, ∆A=20 mm and 

tanβ=0.9 are plotted in Fig. 9 with varying c01 and c02. It can 

be observed through Fig. 9 that the possible collapse block 

decreases with c01 and the potential falling block increases 

with only c02 increasing. 
In order to investigate how nonlinear coefficients 

influence the failure mechanism of shallow tunnel, the 
falling blocks corresponding to σt1=σt2=30 kPa, c01=8 kPa, 
c02=10 kPa, γ1=21 kN/m

3
, γ2=23 kN/m

3
, σs=10 kPa, q=50 

kPa, h1=h2=2.5 m, ∆A=20 mm and tanβ=0.9 are plotted in 
Fig. 10 with varying m1 and m2. It can be seen from Fig.10 
that the possible collapse block increases with m1 increasing 
or m2 decreasing when other parameters remain constant. 
 

 

5. Conclusions 
 

Considering the influence of the ground surface 
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settlement, the failure mechanism of shallow tunnel is 

proposed with nonlinear failure criterion and limit analysis 

method. The influence of the ground surface settlement is 

considered using simplified stochastic medium theory. The 

expressions of falling block in homogeneous media and in 

layered media are derived with variation principle. Through 

calculation analysis, it is found that the initial cohesion, 

nonlinear coefficient and unit weight have an important 

effect on collapse scope. 

As to the tunnel in homogeneous soil, the potential 

collapse block increases with the increase of initial 

cohesion, and decreases with the increase of nonlinear 

coefficient and unit weight. With the tunnel radius 

increasing, the ground surface settlement increases but the 

possible falling block decreases. 

As to the tunnel in layered stratum, the possible failure 

mode of shallow tunnel is made up of two equations y=f1(x) 

and y=f2(x). The failure mechanism of shallow tunnel is 

obtained with boundary conditions and limit analysis 

method. Through calculation analysis, the initial cohesions 

and nonlinear coefficients have significant influence on the 

possible range of collapse block. The potential collapse 

block decreases with the initial cohesion c01 and nonlinear 

coefficient m2 increasing. The possible collapse block 

increases with the initial cohesion c02 and nonlinear 

coefficient m1 increasing. 
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Appendix 1: Derivation of the settlement equation 
 

It is assumed that an underground excavation can be 
divided into infinitesimal excavation can be divided into 
infinitesimal excavation elements and that the ground 
movement induced by the excavation equals the sum of the 
movement due to each elemental excavation. The elemental 
excavation has dimensions of by dξ by dζ by dη. According 
to Liu (1993), based on the stochastic medium theory of 
Litwiniszyn (1957), the ground surface settlement at a point 
(x,y), we(x,y), due to an elemental excavation can be 
expressed below 

   
 2 2

2 2

1
( ,  y) exp d d dew x x y

r z r z


  

 
   
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(52) 

in which r(z)= radius of influence zone=z/tanβ. β=angle of 

influence zone of ground settlement. 
For a long excavation with the excavation axis in y 

direction, the ground settlement profile normal to y axis, we(x), 
can be obtained by integrating dζ along axis ζ. The resulting 
equation is as follows 

 
2

2

2

tan tan
( ) exp d dew x x

  
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 

 
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   

(53) 

In the analysis of horizontal displacement, the soil is 

assumed to be incompressible. This requires that the sum of 

normal strains in x, y, and z directions must be equal to 

zero. Meanwhile, for a long excavation with a plane strain 

condition, the strain in y direction equals zero. Thus 

( ) ( )
0e eu x w x

x z

 
 

   
(54) 

in which, ue(x) and we(x) are displacements in x and z 

directions, respectively. Solving for ue(x) with a boundary 

condition of ue(x)=0 at x→8 yields the following equation 

 
2

2

2

tan tan
( ) exp d de

x
u x x

  
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 

 
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   
(55) 

Both Eqs. (54) and (55) are the basic formulae for 

developing the equations for ground surface movement due 

to tunnelling.  

The preceding formulation is applicable to tunnels with 

different shapes of cross section. As before, the tunnel is 

assumed to be composed of infinitesimal elements of 

excavation, each having dimensions of dξ by dη. The 

elemental excavation is located at (ξ,η) within the tunnel 

region Ω. Based on Eq. (2), the ground surface settlement, 

w(x), due to tunnel excavation can be expressed below 

 
2

2

2

tan tan
( ) exp d dw x x

  
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 
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 


 
(56) 

Ground surface movements depend on the nature and 

extent of convergence over the cross section of the working. 

The ground settlement induced by the convergence from Ω 

to ω can be determined from the difference in settlement 

due to region Ω and that due to region ω as shown below 
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(57) 

The tunnel cross section has a maximum height of 2B, 

and a maximum width of 2A. Its center is located at H 

below the ground surface. Assume that the amount of radial 

convergence from Ω to ω equals A the ground settlement, 

w(x), can be expressed as follows 
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(58) 

in which 
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For a circular tunnel, A=B, with a radial convergence 

of∆A, the ground settlement, w(x), can be computed using 

Eq. (58) together with the following limits of integration 
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By following the same principle and reasoning, the 

horizontal displacement of ground surface, u(x), due to 

convergence from Ω to w can be expressed as 
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(59) 

For the determination of ground surface settlement and 

deformation, a computer program was developed by Yang et 

al. (2017) to solve the differential equations. The program 

adopted the Gaussian numerical integration method. This 

program is used to perform further analysis presented 

below. 
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Appendix 2: Derivation of the normal stress and 
internal energy dissipation 
 

In the appendix, the derivation of the dissipation density 

of a random point on the failure surface, Eq. (13), is shown 

in detail. By assuming the plastic potential, ζ, the plastic 

strain rate can be written as follows 

 

(60) 

where λ is a scalar parameter,  is normal plastic strain 

rate and  is shear plastic strain rate. The plastic strain 

rate components can be written in the form 

 

(61) 

where f(x) is the function of velocity discontinuity surface 

and fʹ(x) is the first derivative of f(x). v is the velocity of the 

failure block. A dot denotes differentiation with respect to 

time and a prime with respect to x, i.e., v=∂u/∂t, 

fʹ(x)=∂f(x)/∂x. 

In order to enforce compatibility, from Eqs.(60) and (61) 

it follows 

1
2 2( ) 1 ( )

v
f x f x

w




    
 

(62) 

Based on Eq. (62) and considering the equal of , the 

normal component of stress can be written as 

1
1

0

( )

m
mm

t m
n t t

m
f x

c


  




 
    

   

(63) 

Substituting Eq. (63) into Eq. (10), the shear stress can 

be written as 

 

1

11

1
0

0

m
t m

n

m
c f x

c







 

   
   

(64) 

So that, by virtue of the Greenberg minimum principle, 

the effective collapse mechanism can be found by 

minimizing the total dissipation, the dissipation density of 

the internal forces on the detaching surface, , results 

 

(65) 

It can be concluded the normal stress of any point on the 

velocity discontinuity both in upper and lower soil layers 

are  

 

(66) 

During the process of the impending collapse, the 

dissipation densities of the internal forces on the detaching 

surface,  and , are 

 

 

(67) 

The 1 and 2 in the subscript of soil’s parameters c0, σt, m 

and γ represent the upper soil and lower soil respectively.  
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