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1. Introduction 
 

The non–linear behaviour of shallow foundations is a 

major objective for civil engineering researchers. On the 

one hand, the nonlinearities of rigid shallow foundations are 

related to the soil plasticity under a foundation and, on the 

other hand, to the uplift of the soil–foundation interface (Lu 

et al. 2016, Gazetas 2015, Anastasopoulos and Kontoroupi 

2014, Bhaumik and Raychowdhury 2013, Gazetas et al. 

2013, Gelagoti et al. 2012). They are not only related to the 

nature of the materials (soils+foundations) (Khebizi 2015, 

Khebizi and Guenfoud 2015), but also to the type of 

loading. The latter can be static, cyclic, or dynamic; they 

cause vertical displacement, horizontal displacement and 

rotation of the foundations (Fig. 1). Foundation systems are 

also subject to the action of seismic solicitations and are 

damaged, sometimes with very serious consequences for the 

structures (Gelagoti et al. 2012, Chatzigogos 2007). The 

conventional methods of calculation or those that give the 

current codes are insufficient to provide a reliable 

representation of the response of shallow foundations when 

the soil–foundation interaction is taken into account. 

In this paper, we present a simplified and reliable 

numerical modelling method which is able to take into 

account the soil–foundation interaction by considering all 

nonlinearities associated with foundation uplift and with 

soil yielding. The method uses a “gap” element connected 

in a series with a “non-linear link that follows Wen 

plasticity” (Wen 1976) in order to form a new macro-

element. The horizontal behaviour of the foundation is 

controlled by a non-linear horizontal link. The soil-

foundation system can be modelled by a single macro-

element located in the footing centre, as it can be modelled  

                                           

Corresponding author, Professor 

E-mail: Mourad_gc@yahoo.fr 

 

 

 

Fig. 1 Two-dimensional response of a rigid shallow 

foundation 

 

 

by a rigid beam resting on a set of the vertical macro-

elements according to the Winkler approach (see Section 3). 

 

 

2. Presentation of the macro-element 
 

The macro-element developed in this work is a “gap” 

element connected in a series with a non-linear link (Fig. 6). 

This macro-element is able to describe the material and 

geometrical nonlinearities. 

The “gap” element (Fig. 2) is used to simulate the 

footing uplift. This element carries compression loads only; 

it has zero stiffness when subjected to tension. The non-

linear force–displacement relationship is given by 
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where kg is the spring constant, and open is the initial gap 

opening, which must be zero or positive, and u the 

displacement (positive in compression). 

The non-linear link (Fig. 4) is used to simulate the soil 

plasticity under the foundation. The plasticity model is  
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Fig. 2 Structure and behaviour of the “gap” element 

 

 

Fig. 3 Sharpness of yielding 

 

 
(a) Structure of the Wen model 

 
(b) Behaviour of the Wen springs 

Fig. 4 Structure of the Wen model 
 

 

based on the hysteretic behaviour proposed by Wen (1976). 

The nonlinear force-displacement relationship is given by 
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Fig. 5 Behaviour of the Wen model 

 

 
(a) General structure of the macro-element 

 
(b) Behaviour of the macro-element 

Fig. 6 General structure and behaviour of the macro-

element 

 

 

where u is the displacement, Fy the yield force, uy the yield 

displacement, a is the ratio of post-yield to pre-yield 

(elastic) stiffness, and z is a dimensionless hysteretic 

parameter that obeys to single non-linear differential 

equation with zero initial condition 
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where exp is an exponent greater than or equal to unity. 

Larger values of this exponent increase the sharpness of 

yielding, as shown in Fig. 3. The practical limit for exp is 

about 20. The equation for 


z  is equivalent to Wen’s model 

(see Eq. (4)) with A = 1 and α = β = 0.5. 
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where A, α and β are dimensionless quantities controlling 

the behahiour of the model, sgn(•) is the signum function.  

It follows from Eq. (2) that the restoring force F can be 

divided into an elastic and a hysteretic part as follows 
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Thus, the model can be visualised as two springs 

connected in parallel (Fig. 4) where ki = Fy/uy and kf = aki 

are the initial stiffness and post-yielding stiffness of the 

system, respectively. 

Fig. 6 shows the general structure of the non-linear 

macro-element. The behaviour law associated with this 

macro-element is not symmetrical (Fig. 6) and is 

characterised, on one hand, by a yield load in compression 

Fy, and, on the other hand, by a reduction of the recall force 

as the foundation is uplifted. The recall force is finally 

approaches zero. 

The global elastic stiffness K of the macro-element is 

calculated as follows 
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(7) 

Gazetas (1991) has developed equations that allow the 

computation of this stiffness according to the foundation 

shape and function of the soil characteristics. 

The yield load in compression is given by the following 

relationship adapted to a rectangular foundation (Davis and 

Booker 1973, Matar and Salençon 1979, Philipponnat and 

Hubert 2003) 
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(8) 

where q0 is the effective vertical stress brought by the soil at 

the base of the foundation, γ is the soil unit weight, Nγ, Nq, 

and Nc are the bearing capacity factors, which are functions 

of the soil friction angle. The relationships that allow the 

calculation of these factors are given in Caquot and Kérisel 

(1966). Recently, Dixit et al. (2013) have shown that the 

bearing capacity factor Nγ decreases by increasing the 

footing dimensions. Several experimental investigations 

have also been undertaken to study the bearing capacity 

(Smith-Pardo 2014, Mohamed et al. 2013).   
 

 

3. Vertical stiffness distribution 

 
Many results of experimental works conducted on 

shallow foundations under cyclic loading highlight that at 
the time of the rocking phenomenon, the soil tends to settle 
and densify at the edges of the footing. This is explained by 
the fact that when one of the ends is uplifted, the other is 
heavily loaded. The stiffness at the ends of the foundation is 
thus found to be higher than that in the centre (the stiffness 
in the end regions may increase due to densification). In 
order to take into account this behaviour in a Winkler-type 
modelling, it is possible to associate the degree of soil 
densification with the degree of coupling that exists 
between the vertical and rotational stiffness of the system. 
To reach this goal, FEMA 356 (American Society of Civil 
Engineers [ASCE] 2000) has adopted a simplified method 

to take into account this coupling. A non-uniform 
distribution of the vertical stiffness of the springs is 
recommended as shown in Fig. 7. The footing is divided 
into two regions: end region to represente the effect of the 
rotational stiffness and middle region to represente the 
vertical stiffness. The middle region stiffness intensity kmid 
is taken as that for an infinitely long strip footing (i.e., 
L/B→∞). The end region vertical stiffness intensity kend is 
based on the vertical stiffness of an isolated plate with an 
area of B× B/6. The resulting stiffness intensities using 
Gazetas’ (1991) equations are 
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and 
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where G is the shear modulus and υ is Poisson’s ratio. 

Finally, this stiffness variation along the foundation 

implicitly gives this system a rotational stiffness. In 

addition to this vertical stiffness variation along the 

foundation, the method recommends bringing the springs at 

the end zones closer if the studied systems are strongly 

dominated by the foundations rocking. 

From this method, Harden et al. (2005) have developed 

a more rigorous way to estimate kmid and kend. Whereas, in 

FEMA 356 (2000) the length of the end regions Lend is 

constant and equal to B/6. The method given by Harden 

assumes that Lend is a function of the B/L ratio, this method 

is based on the assumption that the length Lend is controlled 

by the value of the rotational stiffness which is not provided 

by the vertical stiffness intensity-in other words, by their 

degree of coupling. In the case, a parameter CR
K

-V is used to 

take into account the rotational stiffness deficiency of the 

system and the coupling between the vertical and the 

rotational stiffness, as given by the following expression 
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where B and L is the foundation dimensions, Iy = BL
3
/12 is 

the moment of inertia. 

If CR
K

-V is equal to zero, Kz and Kθy are not coupled. In 

this case, the stiffness intensity is constant over the entire 

length of the foundation and equal to k, where 
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In the other case, a greater rigidity is required at the 
ends so that the rotational global stiffness of the system is 
well represented. Where Lend is given by the following 
equation (Harden et al. 2005) 
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Once Lend is defined, the vertical stiffness intensities of 

the end regions and that of the middle region can be  

379



 

Mourad Khebizi, Hamza Guenfoud and Mohamed Guenfoud 

 
(a) Vertical stiffness distribution 

 
(b) Stiffness of springs 

Fig. 7 Simplified method proposed per FEMA 356 (2000) 

 

 

calculated so that the vertical and the rotational stiffness of 

the system are equivalent to those of the soil 
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The stiffness associated with each spring of the model is 

then obtained by multiplying the stiffness intensity by the 

tributary area of the spring 
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4. Applications 
 

4.1 Behaviour of a circular foundation under centred 
vertical loading 

 

4.1.1 Monotonic loading 
In order to see if the macro-element is able to reproduce 

the behaviour of a foundation under a monotonic static 

vertical load, we chose to model a circular footing of 

diameter D=1 m, resting on a layer of clay, whose 

parameters are G=200 kPa, c=1 kPa and υ=0.5. 

Houlsby et al. (2005) studied analytically and 

numerically the response of the same foundation. They used 

the approach of hyperplasticity theory in order to review the 

modelling potential of the global behaviour of a shallow 

foundation by adopting Winkler’s assumption of decoupled 

springs. The basic idea is to define a yield surface in terms  

 

 
 

Fig. 8 Generalisation of the Winkler concept (Houlsby et 

al. 2005), considering local models at each point in the 

soil-foundation interface. 

 

Table 1 Macro-element parameters  

Vertical elastic stiffness, 

K 
Yield load, Fy Ratio of post-yield, a Exponent, Exp 

800 kN/m 4.7571 kN 0.001 1 

 

 

Fig. 9 Vertical load-displacement curve 

 

 

of the normal and shear stresses (σ, τ) for each point of the 

soil-foundation interface. It is a generalisation of the 

concept of Winkler springs, which defines a local model at 

any point of the interface. This idea is illustrated in Fig. 8. 

The global behaviour of the foundation can be obtained by 

integrating the behaviour at each point on the entire 

interface. The main assumption of the model is that there 

are no coupling stress-displacements between two 

neighbouring points in the soil-foundation interface. The 

advantage of this assumption is that it allows one to 

analytically obtain the global behaviour of the foundation. 

In our study, the foundation and the subjacent soil are 

modelled with only one non-linear macro-element localised 

in the centre of the foundation on which a monotonic 

vertical displacement is imposed (only one macro-element 

is sufficient, since only the translation according to the 

vertical axis is possible and the foundation is considered 

infinitely rigid). The elastic vertical stiffness of the macro-

element is calculated by using the equation developed by 

Gazetas (1991) 
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The maximum vertical load supported by the foundation 

Fy for a homogeneous cohesive soil is given by 
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The numerical parameters of the macro-element are 

presented in Table 1. 

Fig. 9 compares the results obtained with our macro-

element and those of Houlsby et al. (2005). It can be noted 

that the non-linear response of the foundation described by 

the macro-element is practically the same as that described 

analytically and numerically by Houlsby et al. (2005) at the 

time of the loading phase. Regarding the unloading phase, 

we noted a discrepancy between the results, as the 

foundation’s response described by the numerical model of 

Houlsby et al. (2005) at the time of the unloading phase 

after very large displacement produces an unrealistically 

large uplift of the foundation, as shown in Fig. 9, where 

there is a very significant decrease of the tangent to the 

curve in the unloading phase (this is a weakness of Houlsby 

et al.’s model). 

Fig. 9 also shows that the macro-element allows a good 

description of on one hand the material non-linearity of the 

foundation during the loading phase, and on the other hand 

the elastic behaviour during unloading, followed by a good 

description of the foundation uplift (geometrical non-

linearity) during the inversion of the loading sign 

(cancellation of the load by the activation of the gap 

element). It can be noted that during this loading-unloading 

cycle, the two components of total displacement are clearly 

observed, namely elastic and plastic displacements. 
 

4.1.2 Cyclic loading 
We will now study the cyclic response of a circular 

foundation of a diameter D=1 m, resting on a homogeneous 
cohesive soil. The same foundation has been studied by 
Chatzigogos (2007) with a numerical series of “swipe 
tests”. Table 2 regroups the soil characteristics. The 
maximum vertical load supported by the foundation is given 
by Eq. (19). 

The normalised elastic stiffnesses of the system are 

calculated with equations from Sieffert and Cevaer (1992) 

and Chatzigogos (2007) 
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In this paper, the soil–foundation system is modelled by 
a non-linear macro-element localised in the centre of the 
foundation. The normalised elastic stiffnesses of this macro-
element are calibrated compared to the numerical “swipe 
tests” conducted by Chatzigogos (2007) with a monotonic 
vertical load. Fig. 10 shows a comparison of the foundation 
response under a monotonic centred loading obtained with 
the present macro-element and that obtained by 
Chatzigogos (2007) with numerical tests. It is observed that  

Table 2 Soil characteristics 

Soil cohesion, c0 Shear modulus, G Poisson’s ratio, υ Soil unit weight, γ Yield load, Fy 

1 kPa 1000 kPa 0.3 20 kN/m3 4.76 kN 

 

 

Fig. 10 System response under monotonic loading 

 

 

Fig. 11 System response under cyclic loading (loading-

unloading-reloading) 
 

 

the two results are identical. 
Thereafter, cyclic loading controlled by displacements is 

applied to the foundation (loading-unloading-reloading). 

Fig. 11 shows the path of the foundation response in 

terms of the generalised parameters (F/Fy, uz/D), and 

compares the results obtained with the present macro-

element and those of Chatzigogos (2007). We note that for 

the loading and reloading phases, our results are very close 

to those to the numerical tests, and it can be clearly 

observed that the response produced by our macro-element 

in the reloading phase has the same trend, as in the first 

loading response. However, the response produced by the 

numerical tests in the reloading phase is considerably 

different from that in the first loading phase.  
As for as the unloading phase is concerned, a certain 

difference between the two results is observed, where we 
noted that the model of Chatzigogos (2007) is quasi rigid in 
the unloading phase (the elastic stiffness is almost infinite), 
while the unloading stiffness of our macro-element is the 
same as the elastic stiffness in the loading phase. 

Then, it can be seen that the macro-element developed 
in this paper is able to reproduce the non-linear behaviour 
of a circular foundation under monotonic and cyclic 
loading. 
 

4.2 Behaviour of a circular foundation under 
horizontal loading  

 

In order to study the behaviour of a shallow foundation  
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Fig. 12 Numerical model of the soil–foundation system 

 

 
(a) Monotonic horizontal loading 

 
(b) A cyclic horizontal loading 

Fig. 13 System response under horizontal loading 
 
 

under monotonic and cyclic horizontal loading, the “swipe 

tests” carried out by Chatzigogos (2007) have also been 

used. In this case the foundation is initially subjected to a 

vertical displacement which brings the system to a certain 

level of yielding. Then, a horizontal displacement is applied 

until collapse.  
The numerical model of the soil-foundation system is 

shown in Fig. 12, in which we modelled the vertical 
behaviour by the macro-element developed previously and 
presented on Fig. 6. With regard to the horizontal behaviour 
of the system, a horizontal macro-element is used in which 
the model of plasticity is based on the hysteresis behaviour 
proposed by Wen (1976) (Figs. 4 and 5). The maximum 
horizontal load of the macro-element is given by 
Chatzigogos et al. (2009) 

AcF H

y 0
 

(23) 

where A is the area of the foundation. 

The results presented in this section are relative to the 

curves of the horizontal response of the foundation under 

monotonic and cyclic loading (one cycle and five cycles), 

respectively, in terms of normalised parameters (FH/Fy, 

ux/D). The displacement history defined for each case is as 

follows: 

In the first case (Fig. 13(a)), a vertical displacement of 

uz=0.03 m is initially applied. Then the vertical 

displacement is kept constant and a horizontal displacement 

is incrementally applied upto the value of ux=0.01 m. 

In the second case (Fig. 13(b)), a vertical displacement 

of uz= 0.01 m is applied, which brings the system to a value 

of FV/Fy=0.6. Then, a perfect cycle (loading-unloading-

loading negative-unloading) is applied while arriving at a 

value of ux=± 0.005 m. 

In the third case (Figs. 14(a) and 14(b)), the test is 

initiated by the application of a vertical displacement equal 

to uz=0.01 m. Then, five cycles of horizontal loading are 

applied. In each new cycle, the horizontal displacement 

applied is increased linearly. For the first cycle there is 

ux=±0.001 m and for the fifth one it reaches ux=±0.005 m. 

The diagram of FH/Fy–ux/D shows that each new cycle 

contains the preceding cycles, which are less important. 
It is finally noted, that the numerical model of our 

investigation allows a description of the system non-linear 
behaviour, for the monotonic horizontal loading as well as 
for cyclic horizontal loading. A good agreement with the 
tests carried out by Chatzigogos (2007) is observed. 
Nevertheless, certain differences are found, especially for 
the unloading phases. 

 

 

 
(a) Present model 

 
(b) Model of Chatzigogos (2007) 

Fig. 14 System response under cyclic horizontal loading 

(five cycles) 
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Fig. 15 Numerical model of the foundation: rigid beam 

resting on 3 macro-elements 

 

Table 3 Soil characteristics 

Soil unit weight, γ 
Internal friction angle of 

soil, φ 
Poisson’s ratio, υ Shear modulus, G 

20 kN/m3 35° 0.35 29630 kPa 

 

 
(a) Boundary conditions and loading 

 
(b) Mesh (1311 triangular elements) 

Fig. 16 Finite elements model with Plaxis code 

 

Table 4 Foundation characteristics 

Elastic stiffness of foundation Kz 78000 kN/m 

Yield load of the foundation Fy 360.9 kN 

 

Table 5 Parameters of the macro-elements 

Parameters of the macro-elements Uniform repartition Harden repartition 

Tributary area of the middle macro-element 

𝐵 × 𝐿𝑚𝑖𝑑 
1 𝑚 × 0.5 𝑚 1 𝑚 × 0.74 𝑚 

Tributary area of the end macro-element 𝐵 × 𝐿𝑒𝑛𝑑  1 𝑚 × 0.25 𝑚 1 𝑚 × 0.13 𝑚 

Stiffness of the middle macro-element kmid 39000 kN/m 57783kN/m 

Stiffness of the end macro-element kend 19500 kN/m 24865 kN/m 

Ratio of post-yield (for all macro-elements) a 0.001 0.001 

Exponent (for all macro-elements) Exp 2 2 

 
 
4.3 Behaviour of a strip footing under monotonic 

eccentric loads 
 

In this section, we will study the non-linear behaviour of 
a strip foundation with a width of B=1 m, resting on a 
purely frictional soil. Table 3 summarises the soil 
parameters. A monotonic imposed displacement is applied 
to several eccentricities from the foundation centre (the 
loading in imposed displacements permits a direct 
investigation of the failure criterion to be conducted).  

 

Fig. 17 Load-displacement curve for a null eccentricity 

 

 
(a) Response for eccentricity e=B/12 

 
(b) Response for eccentricity e=B/6 

Fig. 18 Load-displacement curve for eccentricity, e=B/12 

and e=B/6 
 

 
Loukidis (2008) has also analysed the behaviour of the 

same foundation under a vertical static loading of increasing 
intensity applied to several eccentricities. He used the finite 
elements method to model the soil and the foundation with 
the SNAC code developed by Abbo and Sloan (2000). In 
his modelling, Loukidis has ignored the uplifting of the 
foundation (no interface element between the foundation 
and the soil was used), and he only takes into account the 
soil plasticity with an elastic-perfectly plastic behaviour 
following the Mohr-Coulomb failure criterion. 

In this work, we model the foundation with a rigid beam 
resting on three independent non-linear macro-elements 
(Fig. 15), where the material and geometric nonlinearities 
are considered. The vertical stiffness of the soil-foundation  
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(a) Response for eccentricity e=B/4 

 
(b) Response for eccentricity e=B/3 

Fig. 19 Load-displacement curve for eccentricity, e=B/4 

and e=B/3 

 

 

Fig. 20 Envelope of the normalised moment–vertical load 

interaction 
 
 
system is distributed through two methods: in the first one, 
we consider that it is uniformly distributed along the 
foundation, and in the second method, we use a non-
uniform distribution of the vertical stiffness macro-elements 
in accordance with the approach of Harden (2005). The 
following five cases of eccentricity are studied: e=0, 
e=B/12, e=B/6, e=B/4 and e=B/3. The parameters of the 
foundation and the macro-elements are shown in Tables 4 
and 5, respectively. 

For reasons of comparison, we also modelled the same 
foundation (only in the case of a null eccentricity), but this 
time with the finite element method using the Plaxis code. 
In this model, the soil is discretised in triangular elements 
with 15 nodes and the foundation is discretised by an 
imposed uniform displacement distributed along the width  

 
(a) Displacement at x-imposed displacement curve 

 
(b) Macro-element load-imposed displacement curve 

Fig. 21 Response of the foundation modelled by the 

macro-elements for the case of e=B/12 
 

 
(a) Displacement at x-imposed displacement curve 

 
(b) Macro-element load-imposed displacement curve 

Fig. 22 Response of the foundation modelled by the 

macro-elements for the case of e=B/6 
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(a) Displacement at x-imposed displacement curve 

 
(b) Macro-element load-imposed displacement curve 

Fig. 23 Response of the foundation modelled by the 

macro-elements for the case of e=B/4 
 

 

of the foundation (rigid foundation). The behaviour model 
used is the Mohr-Coulomb elastoplastic model with an 
associated flow law. Fig. 16 shows the details of this 
modelling (boundary conditions, loading, and mesh). 

The first results presented are relative to the curve of the 

vertical load-displacement response for the null eccentricity 

case. Fig. 17 shows a comparison between the results 

obtained from our simulations (through macro-elements and 

FE with Plaxis), with those of Loukidis (2008). We see that 

our modelling through macro-elements gives generally 

comparable results to those of Loukidis (2008). However, 

the small differences between the results can be associated 

to a mesh effect of the Loukidis model. An agreement 

between the results obtained by FE (with the Plaxis code) 

and those of the macro-elements, as well as the results of 

Loukidis, can be observed. Moreover, a slight difference is 

noted between the results obtained from the three models. 

This difference is related to the model size, mesh type, and 

the load increment. 
Figs. 18 and 19 present the non-linear response of the 

foundation for the eccentricities e=B/12, e=B/6, e=B/4 and 
e=B/3, respectively. We see that the results obtained by our 
simulation (with macro-elements) are very close to those of 
Loukidis (2008). However, the small differences between 
the results are obvious, since Loukidis has ignored the 
geometric nonlinearities, while all nonlinearit ies are 
considered in our modelling with the macro-elements. It is 
also observed that the stiffness of the soil-foundation 
system, represented by that of the macro-elements, 
decreases as the eccentricity increases. This decrease is  

 
(a) Displacement at x-imposed displacement curve 

 
(b) Macro-element load-imposed displacement curve 

Fig. 24 Response of the foundation modelled by the 

macro-elements for the case of e=B/3 
 

 

caused mainly by the uplift of the foundation.  
We also notice a certain difference between the results 

of two simulations carried out with the macro-elements with 

a uniform distribution and a non-uniform distribution, 

where it is can seen that the response of the model 

described by macro-elements with a non-uniform 

distribution is more rigid than that obtained by macro-

elements with a uniform distribution of vertical stiffness, 

especially in the case of a low eccentricity (e=B/12). In the 

case of significant eccentricities, a good agreement between 

the results of the three models is noted. Nevertheless, a 

slight decrease in system stiffness is observed for the model 

with a uniform distribution of the macro-elements stiffness. 

The diagram in Fig. 20 shows the envelope of the 

normalised moment-vertical load interaction (M/BFy–F/Fy). 

It indicates that when the safety factor Fs=Fy/F is less than 

2, the dominant mechanism is that of soil plasticity, but for 

values of Fs greater than 2, the uplifting mechanism 

becomes the dominant one. 
Fig. 21 shows that nonlinearities produced for the case 

of eccentricity e=B/12 are related only to the soil plasticity 
under the foundation; the foundation uplifting is not 
observed because of the small loading eccentricity (there is 
no uplifting, as the vertical load is applied in middle third of 
the foundation, i.e., e ∈ [–B/6 B/6]). Fig. 22 also shows 
that nonlinearities produced for the case of eccentricity 
e=B/6, are related to the soil plasticity under the foundation. 
However, an initiation to foundation uplifting is observed. 

Figs. 23 and 24 show that the left end of the foundation 
(x=–B/2) is clearly uplifted when the eccentricity attains 
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e=B/4. For the case of eccentricity e=B/3, the percentage of 
the foundation uplifting is equal to about 50% (i.e., a 
foundation rotation around its centre). 

 

 

5. Conclusions 
 

In this paper, we proposed a new macro-element 
oriented to the application of earthquake engineering while 
insisting on the simplicity of the model. It is able to 
describe the material nonlinearities associated with soil 
plasticity, as well as geometric nonlinearities relative to 
foundation uplifting. Five numerical applications in the 
literature were studied in order to validate the response of 
the proposed macro-element under monotonic and cyclic 
quasi-static loads. The effect of the load eccentricity was 
also analyzed. According to these applications it was noted 
that: 

• A good agreement exists between the results obtained 

from the proposed macro-element and those obtained from 

other numerical models in the literature. 

• The nonlinearities of soil-foundation system are well 

reproduced by the present macro-element. 

• The effects of the soil-foundation interaction should be 

taken into account in the design of the structures. 
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