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1. Introduction 
 

Wall deflection and ground settlement generally occur 

as a result of cut-and-cover excavation to construct 

underground structures such as basement car parks and 

subway stations. Excessive ground settlement can 

frequently result in damage the adjacent buildings in urban 

areas. The magnitude of the wall deflection and ground 

settlement associated with deep excavations is generally 

dependent on the excavation geometry, the type of support 

system, the properties of the in situ soils, and the excavation 

procedure. For excavations in ground that comprises of 

thick soft clays overlying stiff clay, braced walls are usually 

used to minimize ground movements. It is common to 

extend the wall toe sufficiently into the stiff clay layer to 

prevent basal heave failure and also to reduce the 

movement of the wall toe. To ensure the serviceability limit 

state is not exceeded, a common design criterion is to limit 

the maximum wall deflection to a fraction of the excavation 

depth He, generally in the range of 0.05% to more than 2% 

of the excavation depth He (Yoo and Kim 1999, Long 2001, 

Moormann 2004). Unnecessarily severe restrictions will 

lead to uneconomic wall designs. Therefore, reliable 

estimates of wall deflections under working conditions are 

essential.  

The finite element (or finite difference) method, the  
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analytical method, and the empirical/semi-empirical method 

are three common approaches for estimating wall 

deflections induced by excavation. The finite element 

method is widely employed to model complex soil-structure 

interaction problems and the associated sequential 

excavations. For excavations in soft clays, the commonly 

used Mohr-Coulomb (MC) constitutive relationship may 

not always properly model the clay stress-strain behaviour, 

when the soil small strain effect is neglected. The 

importance of modelling the soil small strain behaviour for 

many geotechnical problems has been highlighted by 

Burland (1989) and Jardine et al. (1986). The influence of 

the soil small strain effect on excavation problems (Benz 

2007, Osman and Bolton 2006, Kung et al. 2009, Hsieh et 

al. 2016), have demonstrated improvements in the 

predictions of wall deflection and ground movement. 

Empirical and semi-empirical methods involve 

interpolating from a published empirical database or from 

data obtained from finite element analyses. Several 

empirical and semi-empirical methods are available for 

estimating the excavation-induced maximum wall 

deflection (Mana and Clough 1981, Wong and Broms 1989, 

Clough and O'Rourke 1990, Hashash and Whittle 1996, 

Addenbrooke et al. 2000, Ukritchon et al. 2003, Son and 

Cording 2005, Kung et al. 2007a, Wang et al. 2010, 

Koutsoftas 2012, Hsieh et al. 2012, Whittle et al. 2014, 

Zhang et al. 2015, Hsieh and Ou 2016, Hsiung et al. 2016, 

Zhang and Goh 2016, Goh et al. 2017). However, many of 

these methods that have been proposed for estimating wall 

movements assume that the wall is “floating” in the soft 

clay, without restraint at the wall toe. This paper focuses on 
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the specific situation of the braced wall penetrating into the 

stiff stratum, since as mentioned previously it is common to 

extend the wall length sufficiently into the stiff clay layer to 

prevent basal heave failure and to reduce the movement of 

the wall toe.  

In this paper, parametric studies were carried out using 

the plane strain finite element (FE) software Plaxis 

(Brinkgreve et al. 2006) in which the soft clay stress-strain 

behaviour was modelled using the hardening small strain 

(HSS) constitutive relationship that considers the small 

strain effect in consideration that the braced excavations are 

generally conservatively designed, which indicates that 

actually at low strain levels most soils exhibit a higher 

stiffness than at engineering strain levels. Analyses were 

carried out to evaluate the behaviour of excavations with 

braced walls in soft clays. Based on the numerical 

modelling results, this paper describes the use of a 

multivariate adaptive regression splines (MARS) model for 

relating the maximum wall deflection to various design 

parameters such as the excavation geometry, soil strength 

and stiffness properties, soil unit weight, the strut stiffness 

and wall stiffness.  

 

 

2. MARS methodology 
 

Friedman (1991) introduced MARS as a statistical 

method for fitting the relationship between a set of input 

variables and dependent variables. It is a nonlinear and 

nonparametric regression method based on a divide and 

conquer strategy in which the training data sets are 

partitioned into separate piecewise linear segments (splines) 

of differing gradients (slope). No specific assumption about 

the underlying functional relationship between the input 

variables and the output is required. The end points of the 

segments are called knots. A knot marks the end of one 

region of data and the beginning of another. The resulting 

piecewise curves (known as basis functions), give greater 

flexibility to the model, allowing for bends, thresholds, and 

other departures from linear functions. 

MARS generates basis functions by searching in a 

stepwise manner. An adaptive regression algorithm is used 

for selecting the knot locations. MARS models are 

constructed in a two-phase procedure. The forward phase 

adds functions and finds potential knots to improve the 

performance, resulting in an overfit model. The backward 

phase involves pruning the least effective terms. An open 

source code on MARS from Jekabsons (2010) is used in 

carrying out the analyses presented in this paper. 
Let y be the target output and X = (X1, , XP) be a 

matrix of P input variables. Then it is assumed that the data 
are generated from an unknown “true” model. In case of a 
continuous response this would be 

y = f(X1, , XP)+e= f(X)+e (1) 

in which e is the distribution of the error. MARS 
approximates the function f by applying basis functions 
(BFs). BFs are splines (smooth polynomials), including 
piecewise linear and piecewise cubic functions. For 
simplicity, only the piecewise linear function is expressed. 
Piecewise linear functions are of the form max(0,x−t) with a  

 

Fig. 1 Knots and linear splines for a simple MARS example 
 
 
knot occurring at value t. The equation max(.) means that 
only the positive part of (.) is used otherwise it is given a 
zero value. Formally, 

,
max(0, )

0,

x t if x t
x t

otherwise

 
  

  

(2) 

The MARS model f(X) is constructed as a linear 

combination of BFs and their interactions, and is expressed 

as 

0

1

( ) ( )
M

m m

m

f X X  


 
 

(3) 

where each λm(x) is a basis function. It can be a spline 

function, or the product of two or more spline functions 

already contained in the model (higher orders can be used 

when the data warrants it; for simplicity, at most second-

order is assumed in this paper). The coefficients  are 

constants, estimated using the least-squares method. 

Fig. 1 shows a simple example of how MARS would 

use piecewise linear spline functions to attempt to fit data. 

The MARS mathematical equation is expressed as 

𝑦 = −44.08 + 4.24𝐵𝐹1− 3.67𝐵𝐹2 + 6.31𝐵𝐹3 − 2.50𝐵𝐹4 (4) 

where BF1=max(0, 16–x), BF2=max(0, x–10), BF3=max(0, 

x–5.5) and BF4=max(0,  5.5–x). The knots are located at x 

= 5.5, 10 and 16. They delimit four intervals where different 

linear relationships are identified. It is obvious that the 

MARS approach is good at analyzing problems in which 

there is significant scatter in both the explanatory 

independent variables and the target responses. 
The MARS modelling is a data-driven process. To fit the 

model in Eq. (3), first a forward selection procedure is 
performed on the training data. A model is constructed with 
only the intercept, β0, and the basis pair that produces the 
largest decrease in the training error is added. Considering a 
current model with M basis functions, the next pair is added 
to the model in the form  

^ ^

1 2( )max(0, ) ( )max(0, )M Mm j m jX X t X t X      
 

(5) 

with each β being estimated by the method of least squares. 
As a basis function is added to the model space, interactions 
between BFs that are already in the model are also 
considered. BFs are added until the model reaches some 
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maximum specified number of terms leading to a purposely 
overfit model.  

To reduce the number of terms, a backward deletion 

sequence follows. The aim of the backward deletion 

procedure is to find a close to optimal model by removing 

extraneous variables. The backward pass prunes the model 

by removing the BFs with the lowest contribution to the 

model until it finds the best sub-model. Thus, the BFs 

maintained in the final optimal model are selected from the 

set of all candidate BFs, used in the forward selection step. 

Model subsets are compared using the less computationally 

expensive method of Generalized Cross-Validation (GCV). 

The GCV equation is a goodness of fit test that penalizes 

large numbers of BFs and serves to reduce the chance of 

overfitting. For the training data with N observations, GCV 

for a model is calculated as follows (Hastie et al. 2009) 

2

1

2
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( 1) / 2
[1 ]
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i ii
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M d M
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(6) 

in which M is the number of BFs, d is the penalizing 

parameter, N is the number of observations, and f(xi) 

denotes the predicted values of the MARS model. The 

numerator is the mean squared error of the evaluated model 

in the training data, penalized by the denominator. The 

denominator accounts for the increasing variance in the case 

of increasing model complexity. Note that (M−1)/2 is the 

number of hinge function knots. The GCV penalizes not 

only the number of the model’s basis functions but also the 

number of knots. A default value of 3 is assigned to 

penalizing parameter d (Friedman 1991). At each deletion 

step a basis function is removed to minimize Eq. (3), until 

an adequately fitted model is found. MARS is an adaptive 

procedure because the selection of BFs and the variable 

knot locations are data-based and specific to the problem at 

hand.  
After the optimal MARS model is determined, by 

grouping together all the BFs that involve one variable and 
another grouping of BFs that involve pair-wise interactions 
(and even higher level interactions when applicable), the 
procedure known as analysis of variance (ANOVA) 
decomposition (Friedman 1991) can be used to assess the 
contributions from the input variables and the BFs through 
comparing (testing) variables for statistical significance. 
Previous applications of MARS algorithm in civil 
engineering can be found in Attoh-Okine et al. (2009), 
Zarnani et al. (2011), Samui and Karup (2011), Lashkari 
(2012), Zhang and Goh (2013), Adoko et al. (2013), Goh 
and Zhang (2014), Khoshnevisan et al. (2015). Zhang et al. 
(2015), Goh et al. (2016), Zhang et al. (2017). 
 

 

3. Soil model 
 

The hardening-soil (HS) model (Brinkgreve and 
Vermeer 1997, Schanz et al. 1999) is an advanced 
constitutive model for simulating the behaviour of soils. 
The model involves frictional hardening characteristics to 
model plastic shear strain in deviatoric loading, and cap 
hardening to model plastic volumetric strain in primary 
compression. Failure is defined by the Mohr-Coulomb 

failure criterion. The main input parameters are E50
ref

, a 
reference secant modulus corresponding to the reference 
confining pressure p

ref
, a power m for stress-dependent 

stiffness formulation, effective friction angle cohesion c, 
failure ratio Rf, Eur

ref
 the reference stiffness modulus for 

unloading and reloading corresponding to p
ref

, and ur the 
unloading and reloading Poisson’s ratio. This model has 
been used for analyses of deep excavations by a number of 
researchers including Finno and Calvello (2005) and 
Bryson and Zapata-Medina (2005). 

The main parameters of the HSS model include G0
ref

, ϕ, 

and E50
ref

. G0
ref 

is a reference initial shear stiffness 

corresponding to the reference pressure p
ref 

and shear strain 

γ0.7 at which the secant shear modulus is reduced to 70% of 

G0. Following the approach recommended by Brinkgreve et 

al. (2006), G0
ref

 was obtained by first determining the 

𝐸0 𝐸𝑢𝑟⁄  ratio based on the chart by Alpan (1970) and 

assuming Eur = 3E50, where E0 is the small strain Young’s 

modulus, and subsequently using the expression 𝐺0
𝑟𝑒𝑓

=

𝐸0
𝑟𝑒𝑓

(2(1 + 𝑢𝑟))⁄  with 𝑢𝑟 assumed as a constant. Since the 

chart for estimating the parameter  γ0.7 based on Vucetic 

and Dobry (1991) and reported in Brinkgreve et al. (2006) 

shows that γ0.7 only varies within a narrow range between 

110
-4

 and 410
-4

, in this paper γ0.7=210
-4

 was assumed. 

The G0 is defined as 

𝐺0 = 𝐺0
𝑟𝑒𝑓

(
𝑐′𝑐𝑜𝑠− 3

′ 𝑠𝑖𝑛

𝑐′𝑐𝑜𝑠+ 𝑝𝑟𝑒𝑓𝑠𝑖𝑛
)𝑚 (7) 

where σ′3 is the effective confining stress (assuming 

compressive stress is negative). The effective friction angle 

ϕ is computed using the correlation proposed by Wroth and 

Houlsby (1985) 

𝑐𝑢
𝑣
′ = 0.5743

3𝑠𝑖𝑛

3 − 𝑠𝑖𝑛
 (8) 

in which cu is the undrained shear strength and σv is the 

vertical effective stress. When the ground water table is at 

the ground surface and assuming m=1, cu/σv = , soil 

stiffness ratio E50/cu = and 3
′ = 𝐾01

′  in the HSS model, 

E50
ref

 can be expressed as 

𝐸50
𝑟𝑒𝑓

=
𝐸50

(
3
′

𝑝𝑟𝑒𝑓
)𝑚

=
𝑐𝑢

(
𝐾0𝑐𝑢
𝑝𝑟𝑒𝑓

)𝑚
=
𝑝𝑟𝑒𝑓

𝐾0
 

(9) 

The HSS model accounts for the increased stiffness of 

soils at small strains. At low strain levels most soils exhibit 

a higher stiffness than at engineering strain levels, and this 

stiffness varies non-linearly with strain. In the TNEC case 

history back analysis, Kung et al. (2009) used a small-strain 

constitutive model as well as a Modified Cam Clay (MCC) 

model for soft/medium clay. Their results indicated that the 

small-strain model was able to predict the wall lateral 

deflection and ground surface settlement fairly well, but 

that the MCC model could not predict accurately the 

surface settlement. Other publications in which small strain 

has been used to model excavation in soft/medium clay 

include Hashash and Whittle (1996), Borja et al. (1997), 

Rampello et al. (1997), Jen (1998), Kung (2003), Finno and 

Tu (2006), Kung et al. (2007b), Lam (2010), Clayton 

(2011), and Lashkari and Mahboubi (2015). 

The Plaxis default values are used to define the power 
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for stress-level dependency of the stiffness m, the 

coefficient of earth pressure at-rest K0
nc

, the Poisson’s ratio 

ur and Eur with m=1, K0
nc

=1–sinϕ, ur=0.2 and Eur=3E50. 
 

 

4. Finite element analyses and parametric studies 
 

Parametric studies have been carried out using the HSS 

model for the soft clay with emphasis on the maximum wall 

deflection predictions. Fig. 2 shows schematically the cross 

section of the excavation system, with a slightly simplified 

soil profile comprising of a thick normally consolidated soft 

clay layer overlying a stiff clay layer, typical of soil 

conditions in many coastal areas. The Mohr-Coulomb 

constitutive relationship was used to model the stiff clay 

(γ=20 kN/m
3
, cu=500 kPa, Eu=250 MPa) underlying the soft 

clay deposit. The soft clay thickness is denoted as T and He 

is the final excavation depth in Fig. 2. The penetration depth 

of the wall into the stiff layer was varied between 3 and 5 

m. Results indicated minimal differences in the wall 

deflections for these penetration depths. 
 

 

 

Fig. 2 Cross-sectional soil and wall profile 

 

Table 1 Range of parameters 

Parameter Range 

Relative soil shear strength ratio cu/ v 0.21, 0.25, 0.29, 0.34 

Relative soil stiffness ratio E50/cu 100, 200, 300 

3) 15, 17, 19 

Soft clay thickness T (m) 25, 30, 35 

Excavation width B (m) 20,30, 40, 50, 60 

Excavation depth He (m) 11, 14, 17, 20 

Wall stiffness EI ( 106kNm2/m) 0.36, 1.21, 2.88, 5.63 

 

Table 2  and K0values for soft clay in HSS model 

𝑐𝑢 𝑣
′⁄  0.21 0.25 0.29 0.34 

 () 19 22.3 25.6 29.6 

𝐾0 0.674 0.621 0.568 0.506 

 

Table 3 E50
ref 

values for soft clay in HSS model 

𝑐𝑢 𝑣
′⁄  

𝐸50
𝑟𝑒𝑓

(kPa) 

𝐸50 𝑐𝑢⁄ = 100 𝐸50 𝑐𝑢⁄ = 200 𝐸50 𝑐𝑢⁄ = 300 𝐸50 𝑐𝑢⁄ = 400 

0.21 3114 6228 9342 12456 

0.25 4031 8062 12093 16124 

Table 3 Continued 

𝑐𝑢 𝑣
′⁄  

𝐸50
𝑟𝑒𝑓

(kPa) 

𝐸50 𝑐𝑢⁄ = 100 𝐸50 𝑐𝑢⁄ = 200 𝐸50 𝑐𝑢⁄ = 300 𝐸50 𝑐𝑢⁄ = 400 

0.29 5105 10210 15315 20420 

0.34 6721 13442 20163 26884 

 

 

The analyses considered a plane strain excavation 

supported by a retaining wall system. Considering 

symmetry, only half the cross-section was considered. The 

soil was modelled by 15-noded triangular elements. The 

structural elements were assumed to be linear elastic with 

the wall represented by 5-noded beam elements and 3-

noded bar elements were used for the 7 levels of struts 

located at depths of 1 m, 4 m, 7 m, 10 m, 13 m, 16 m and 19 

m below the original ground surface. The nodes along the 

side boundaries of the mesh were constrained from 

displacing horizontally while the nodes along the bottom 

boundary were constrained from moving horizontally and 

vertically. The right vertical boundary extends far from the 

excavation to minimize the effects of the boundary 

restraints. The ranges of properties varied are shown in 

Table 1. The various , 𝐾0, and E50
ref

 values derived from 

empirical equations in section 2 are listed in Tables 2 and 3, 

respectively. 

The influence of the wall stiffness was studied by 

varying the wall thickness d while keeping the Young’s 

modulus of the wall constant (E = 2.010
7 

kN/m
2
). The 

corresponding natural logarithm of the system stiffness 

ln(𝐸𝐼 
𝑤
ℎ𝑎𝑣𝑔
4⁄ )(denoted as ln(S) in the following sections 

for brevity) for the wall thickness of 0.6, 0.9, 1.2 and 1.5 m 

with average vertical strut spacing ℎ𝑎𝑣𝑔=3 m are 6.097, 

7.313, 8.176, and 8.846, respectively. 
The strut stiffness per meter (EA)strut is assumed as a 

constant at 1.010
6
kN/m since the influence of (EA)strut on 

wall deflection is not very significant when the strut is stiff 
(Poh and Wong 1997). However, taking into account the 
excavation width, the strut stiffness parameter kstrut is 
introduced as  

( ) ( ) 2( )

( / 2)

strut strut strut
strut

EA EA EA
k

ls B s Bs
  

 
(10) 

where kstrut=stiffness of strut; (EA)strut is the strut stiffness 

per meter, l=half-length of each strut; and s=horizontal 

spacing of each strut. For l=10 m (i.e., if the excavation is 

symmetrical with width B=20 m) 

The construction sequence comprised the following 

steps:  

(1) the wall is installed (“wished into place”) without 

any disturbance in the surrounding soil;  
(2) the soil is excavated uniformly 1 m below each strut 

level prior to adding the strut support with struts at 3 m 
vertical spacing until the final depth He is reached. The soil 
is assumed to be subjected to undrained shearing (undrained 
analysis method A in Plaxis) during excavation. Analyses 
were performed assuming the groundwater table to be at the 
original ground surface. 

Fig. 3 presents the wall deflections corresponding to 

different excavation stages (h denotes the depth of  
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Fig. 3 Wall deflection profile for different excavation stage 

 

 

Fig. 4 Effect of soil stiffness on normalized wall 

deflection for He=20 m, γ=17 kN/m
3
, B=30 m and T=30 

m) 

 

 

excavation) for the case of kstrut=31667 kN/m
2
, He=20 m, 

cu/σv=0.29, E50/cu=200, =17 kN/m
3
, ln(𝑆) =7.313 and 

T=30 m with a penetration depth of 5 m. The cantilever wall 

deflection profile (h=2 m) can be observed at first 

excavation stage (prior to installation of the top level strut). 

The diaphragm wall then displays deep inward movements 

at subsequent stages. The maximum wall deflection δhm 

increases as excavation proceeds.  

The influence of the soil stiffness ratio E50/cu and system 

stiffness ln(𝑆) (denoted by wall thickness) is shown in 

Fig. 4 for cases with γ=17 kN/m
3
, kstrut=42222 kN/m

2
, and 

T=30 mfor cu/σv=0.25, 0.29, and 0.34, respectively. It is 

obvious that the normalized wall deflection decreases with 

the increase of the relative soil stiffness ratio E50/cu. In 

addition, the influence of E50/cu is more significant for 

lower wall thickness d. For the same system stiffness (same 

d), the normalized wall deflection decreases with the 

increase of relative soil shear strength ratio cu/σv. 

The influence of strut stiffness kstrut for the cases with 

He=20 m, cu/σv=0.34, d =0.9 m is presented in Fig. 5 for 

E50/cu =100, 200 and 300, respectively. The results show the 

normalized maximum wall deflection decreases with the 

increase of the strut stiffness. It is also obvious that the 

normalized wall deflection increases with the increase of 

the soft clay thickness T. In addition, the influence of soil 

the influence of strut stiffness kstrut for the cases with He=20 

m, cu/σv=0.34, d =0.9 m is presented in Fig. 5 for  

 
(a) 

 
(b) 

 
(c) 

Fig. 5 Effect of strut stiffness kstrut on normalized wall 

deflection for (a) E50/cu=100, (b) E50/cu=200, and (c) 

E50/cu=300 (cu/σv= 0.34, d=0.9 m, and He=20 m) 

 

 

E50/cu =100, 200 and 300, respectively. The results show the 

normalized maximum wall deflection decreases with the 

increase of the strut stiffness. It is also obvious that the 

normalized wall deflection increases with the increase of 

the soft clay thickness T. In addition, the influence of soil 

unit weight γ is more significant for larger soft clay 

thickness T. 
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The influences of both the wall stiffness and the strut 

stiffness for the cases with γ=17 kN/m
3
, E50/cu=200, 

cu/σv=0.29 is presented in Fig. 6(a)-6(c) for T =25 m, 30 m 

and 35 m, respectively. Fig. 6(a) shows the normalized wall 

deflection δhm/He for kstrut=25333 and 42222 (strut 

moderately stiff and very stiff). It is obvious from Fig. 6(a) 

that δhm/He decreases with the increase of the system 

stiffness ln(S) and the strut stiffness kstrut. Fig. 6(b) shows 

the normalized wall deflection δhm/He for kstrut=21111 and 

42222 (strut less stiff and very stiff). It is obvious from Fig. 

6(b) for less stiff strut, to keep the δhm/He within a 

reasonable limit, the system stiffness ln(S) must increase 

accordingly. In addition, it can be observed that for very 

stiff strut, the influence of excavation depth He on δhm/He is 

less significant while the influence of system stiffness is 

still considerable. Fig. 6(c) shows the normalized wall 

deflection δhm/He for v= 25333 and 31667 (strut moderately 

stiff and stiff) with a great thickness of soft soil. It is 

obvious from Fig. 6(c) that the influence of excavation 

depth He on δhm/He is becoming less significant as the 

 

 

system stiffness increases for He=11 and 14 m. The 

difference of δhm/He is marginal even when the system 

stiffness ln(S) is at a small value of 6.097. 

Based on Figs. 4-6, it is obvious that δhm/He is 

significantly influenced by excavation geometries T, B and 

He, soil parameters cu/σv, E50/cu and γ, strut and wall 

stiffness kstrut and ln(S). Thus, estimation of δhm/He is a 

multivariate geotechnical problem. 

 

 

5. The developed MARS model 
 

A total of 1120 hypothetical cases were analyzed (Xuan 

2009). Based on the results, a MARS model has been 

developed for estimating the normalized maximum wall 

deflection δhm/He (%) as a function of six input parameters: 

γ, kstrut, cu/σv, E50/cu, system stiffness in logarithmic scale 

ln(𝑆), and T. It should be noted that Zhang et al. (2015) had 

developed a polynomial regression model using those cases 

with δhm/He 1.5% (a total of 1032 of the original  

  
(a) T=25 m 

  
(b) T=30 m 

  
(c) T=35 m 

Fig. 6 Effect of excavation depth He on normalized wall deflection for (a) T=25 m, (b) T=30 m and (c) T=35 m 

(cu/σv=0.29, E50/cu = 200, and γ= 17 kN/m
3
) 
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Table 4 Sample data sets of the testing patterns 

kstrut 

(kN/m2) 

T 

(m) 
cu/σv E50/cu ln(𝑆) γ(kN/m3)  δhm/He(%) 

31667 35 0.29 100 7.313 19 1.191 

31667 30 0.34 200 6.097 15 1.407 

25333 25 0.29 200 7.313 17 0.827 

42222 30 0.34 300 7.313 19 0.382 

31667 35 0.34 300 8.176 19 0.405 

42222 30 0.34 400 8.846 19 0.241 

25333 35 0.34 100 7.313 17 1.291 

31667 30 0.34 200 8.176 19 0.509 

25333 35 0.25 200 7.313 17 1.273 

31667 25 0.29 200 6.097 19 0.900 

 

 
(a) 

 
(b) 

Fig. 7 Comparison between target and MARS predicted 

δhm/He, (a) training data and (b) testing data 

 

Table 5 ANOVA decomposition for MARS model 

Function No. GCV STD #basis variable(s) 

1 0.011 0.052 2 kstrut 

2 0.028 0.129 2 T 

3 0.020 0.075 2 cu/σv 

4 0.049 0.181 2 E50/cu 

5 0.109 0.289 2 ln(S) 

6 0.029 0.133 2  γ 

7 0.011 0.052 2 T, cu/σv 

8 0.008 0.028 2 T, E50/cu 

9 0.010 0.043 2 T, γ 

10 0.009 0.031 2 cu/σv,E50/cu 

11 0.027 0.113 3 cu/σv, ln(𝑆) 

Table 5 Continued 

Function No. GCV STD #basis variable(s) 

12 0.009 0.030 2 cu/σv, γ 

13 0.010 0.046 3 E50/cu,ln(𝑆) 

14 0.019 0.098 4 ln(𝑆), γ 

 

 

Fig. 8 Relative importance of the input variables in the 

MARS model 
 

 

1120 cases) considering that the serviceability limit state is 

likely to be exceeded for δhm/He >1.5%. However, a review 

of measured diaphragm wall displacements from various 

published case histories of successful deep excavations 

show that wall deflections can be up to 3% times the 

excavation depth, without any serviceability problems (Fok 

et al. 2012). Therefore, the results of all 1120 hypothetical 

cases were used for MARS model building. 
Of the 1120 cases, 840 patterns were randomly chosen 

as the training data sets and the remaining as the testing 
sets. The criterion of data pattern selection used in this 
study was based on ensuring that the statistical properties 
including the mean and standard deviations of the training 
and testing subsets were similar to each other. Table 4 lists 
sample data sets of the testing patterns. 

The optimal MARS model consisted of 32 BFs of linear 
spline functions with second-order interaction. A plot of the 
MARS predicted wall deflection values versus the FEM 
calculated values for the training and testing patterns is 
shown in Fig. 7. It can be observed that most of the MARS 
estimations of the data patterns fell within ±20% of the 
target values. 

Table 5 lists the ANOVA decomposition of the 
developed model. The first column lists the ANOVA 
function number. The second column gives an indication of 
the importance of the corresponding ANOVA function, by 
listing the GCV score for a model with all BFs 
corresponding to that particular ANOVA function removed. 
The third column provides the standard deviation of the 
function. It gives an indication of its relative importance to 
the overall model and can be interpreted in a manner similar 
to the standardized regression coefficient in a linear model. 
The fourth column gives the number of BFs comprising the 
ANOVA function. The last column gives the particular input 
variables associated with the ANOVA function.  

Fig. 8 gives the plot of the relative importance of the 

input variables for the MARS model, which is evaluated by 

the increase in the GCV value caused by removing the 

321



 

Yuzhou Xiang, Anthony Teck Chee Goh, Wengang Zhang and Runhong Zhang 

considered variables from the developed MARS model. The 

results indicate that the normalized maximum wall 

deflection is more sensitive to the system stiffness ln(S) 

compared with the relative soil stiffness ratio E50/cu and 

clay unit weight . kstrut and ln(S) represent the structural 

stiffness of the bracing and supporting systems. T, the 

thickness of clay, can be individually categorized into the 

excavation geometry since it defines the soil profile. 

Similarly, unit weight , relative soil stiffness ratio E50/cu 

and relative shear strength ratio cu/σv are soil physical and 

mechanical parameters. For the three categories, the total 

relative importance values for structural stiffness, 

excavation geometries and clay physical and mechanical 

parameters are 112, 46, and 153 %, respectively. 

Table 6 lists the BFs and their corresponding equation 

for the developed MARS model. It is observed from Table 6 

that interactions have occurred between BFs (20 of the 32 

BFs are interaction terms). These terms include interaction 

between ln(S) and γ, ln(S) and cu/σv, ln(S) and E50/cu, T and 

γ, T and cu/σv, T and E50/cu, γ and cu/σv, E50/cu and cu/σv. 

The presence of various interactions suggests that the built 

MARS model is not simply additive and that interactions 

play a significant role in building an accurate model for 

normalized maximum wall deflection δhm/He predictions. 

This again indicates that MARS is capable of capturing the 

nonlinear and complex relationships between δhm/He and a 

multitude of soil parameters, excavation geometries, and 

structural stiffness with interactions among each other 

without making any specific assumption about the 

underlying functional relationship between the input 

variables and the dependent response. The equation of 

MARS normalized maximum wall deflection model is 

given by 

*

6 6

( ) (%) 0.987 0.296 1 0.373 2 0.0013 3 0.0032 4

1.68 5 4.35 6 0.069 7 0.113 8 0.045 9 0.042 10

0.054 11 0.13 12 1.9 13 1.7 14 9 10 15 7 10 16

0.0007 17 0.

MARShm eH BF BF BF BF

BF BF BF BF BF BF

BF BF BF BF BF BF

BF



 

        

           

             

   001 18 0.012 19 0.011 20 0.3 21 0.3 22

0.037 23 0.051 24 0.00024 25 0.00012 26 2.52 27

0.265 28 0.427 29 0.009 30 0.005 31 0.0008 32

BF BF BF BF BF

BF BF BF BF BF

BF BF BF BF BF

        

         

           

(11) 

 
                                     

Table 6 Expressions of BFs for MARS model 

BF Equation BF Equation 

BF1 max(0, ln(S)7.3132) BF17 BF2 × max(0, E50/cu200) 

BF2 max(0, 7.3132 ln(S)) BF18 BF2 × max(0, 200 E50/cu) 

BF3 max(0, E50/cu200) BF19 BF9 × max(0, γ17) 

BF4 max(0, 200 E50/cu) BF20 BF9 × max(0, 17γ ) 

BF5 max(0, cu/σv0.25) BF21 BF5 × max(0, T30) 

BF6 max(0, 0.25cu/σv) BF22 BF5 × max(0, 30 T) 

BF7 max(0, γ17) BF23 BF1 × max(0, γ17) 

BF8 max(0, 17γ ) BF24 BF1 × max(0, 17γ ) 

BF9 max(0, T30) BF25 BF4 × max(0, T30) 

BF10 max(0, 30 T) BF26 BF4 × max(0, 30 T) 

BF11 BF2 × max(0, γ 17) BF27 BF2 × max(0, 0.29 cu/σv) 

BF12 BF2 × max(0, 17γ ) BF28 BF5 × max(0, γ17) 

BF13 BF5 × max(0, ln(S)8.1763) BF29 BF5 × max(0, 17γ ) 

BF14 BF5 × max(0, 8.1763 ln(S)) BF30 BF5 × max(0, E50/cu300) 

Table 6 Continued 

BF Equation BF Equation 

BF15 max(0, kstrut 31667) BF31 BF5 × max(0, 300 E50/cu) 

BF16 max(0, 31667 kstrut) BF32 BF1 × max(0, 200 E50/cu) 

 

 

Fig. 9 Effect of all parameters on normalized maximum wall 

deflection at 0 to 1 scale 
 

 

In all the previous numerical analyses, the ground water 
table was assumed at the ground surface, which is 
considered to be the most unfavourable condition. In many 
situations with soft clay, the water could be 1-2 m below the 
ground surface. Additional analyses carried out to 
investigate the influence of the ground water table indicate 
that the maximum wall deflection decreases almost linearly 
with decreasing ground water level. For brevity, these plots 
have been omitted. The water table correction factor w can 
be approximated as 

𝑤
= 1 − 0.1𝑙, where l is the depth of 

the ground water table below the ground surface (in metres) 
and l ≤ 2. Thus, the predicted maximum wall deflection 
ℎ,𝑃𝑅 can be estimated using 

*( ) ( )
MARShm e MARS w hm eH H  

 
(12) 

Eqs. (11) and (12) were obtained from multivariate 

regression analysis of numerical data for excavations in the 

following ranges: kstrut =21111 to 42222kN/m
2
, T = 25 to 35 

m, cu/σv=0.21 to 0.34, E50/cu= 100 to 300, ln(S) = 6.097 to 

8.846 and =15 to 19 kN/m
3
. Therefore, when predicting the 

normalized maximum wall deflection using the above 

approaches, it is better that the excavation geometry and 

soil properties conform to the ranges used in the parametric 

study. 
 

 

6. Parametric sensitivity analysis 
 

To validate the MARS normalized maximum wall 
deflection model, a parametric analysis was performed, aiming 
to find the effect of each input variable on δhm/He. This 
parametric sensitivity analysis investigates the response of 
δhm/He predicted by the MARS model to a set of 
hypothetical input data generated over the ranges of the 
minimum and maximum data sets. One input variable was 
changed each time within its range while the others were 
kept at the average values of their entire data sets. As 
suggested by Alavi et al. (2011), a set of synthetic data for 
the single varying parameter was generated by increasing 
the value of this in increments. These values were presented 
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to the MARS prediction model and δhm/He was calculated. 
This procedure was repeated using another variable until the 
responses of the models were tested for all of the predictor 
variables (Alavi et al. 2011). To better illustrate the effects 
of all parameters on normalized maximum wall deflection, 
the range of all parameters is considered in the scale of 0 to 
1. An example for changing the range of clay thickness 
from normal scale to =0 to 1 scale is given in Eq. (13) 

actual clay thickness - lower value (25 m)
=

upper value (35 m) - lower value (25 m)
T

 
(13) 

The effects of all parameters on δhm/He on a zero to 1 

scale is shown in Fig. 9, plotting the influence of the δhm/He 

predictions to the variations of kstrut, T, cu/σv, E50/cu, ln(S) 

and , respectively. It is obvious that ln(S) influences δhm/He 

most, followed by E50/cu and , while kstrut is the least 

influential factor, which is consistent with the finding in 

Fig. 8. 

 

 

7. Conclusions 
 

This paper presents a semi-empirical MARS model 

relating the maximum wall deflection to various parameters 

including the excavation geometry, soil strength and 

stiffness parameters, soil unit weight and the wall and strut 

stiffness. Major findings obtained in this research include: 

i) MARS is capable of capturing various interaction 

terms without making any specific assumption about the 

underlying functional relationship between the input 

variables and the response.  

ii) MARS is able to provide the relative importance of 

the input variables and also enables engineers to have better 

insights and understanding of where significant changes in 

the data may occur. 

It should be noted that since the built MARS model 

makes predictions based on the knot values and the basic 

functions, thus interpolations between the knots of design 

input variables are more accurate and reliable than 

extrapolations. Consequently, for cases in which the input 

parameter values are beyond the specific ranges in this 

study, the proposed MARS model should be used with 

caution. 
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