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1. Introduction 
 

Integrated interpretation of a variety of indirect 

geophysical and numerous laboratory and experimental data 

shows that the Earth's core consists of an outer liquid sphere 

and inner solid globe. Enough deep survey of researches on 

the structure and constitution of the Earth’s core is made 

recently by Hirose et al. (2013), Ohtani et al. (2013), Badro 

et al. (2014), Litasov and Shatskiy (2016). They have truly 

noted that, despite some achievements in various directions, 

questions relating to the constitution and structure of the 

core and the lower mantle are far from unambiguous 

solutions. It is emphasized that further improvement of 

quantum chemical calculations by methods of molecular 

dynamics at high temperature would allow making progress 

in generation of consistent models of constitution and 

dynamics of the Earth’s mantle and core. 

Detailed information on the distribution of the physical 

parameters in the Earth's core is provided (Bullen 1978, 

Dziewonski and Anderson 1981, Anderson 1995, Kennett et 

al. 1995, Anderson 2007, Heiffrich and Kaneshima 2010, 

Nimmo 2015, Souriau and Calvet 2015, Litasov and 

Shatskiy 2016). Some results of this work are reflected in 

Fig. 1. Further detailization of models of the internal 

structure of the Earth is currently being conducted 

(Pushcharovsky and Pushcharovsky 2011, Dobretsov and 

Shatskiy 2012, Litasov and Schatskiy 2016). It is  
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considered that it will be able to refine the existing results 

on the constitution of the core, to understand the nature of 

magnetic and electric fields, gravitational characteristics, 

the value of the heat flux, the geodynamics of the Earth, etc. 

in such a way. Advances in the field of seismic tomography 

allow making some additional corrections to the 

quantitative results. The use of observational data on the 

Earth’s self-oscillations (Molodenskii and Molodenskaya 

2015) and their comparison with theoretical calculations 

(Akbarov et al. 2016) will allow conducting further 

corrections of results. 

Despite the current shortcomings and discrepancies 

between the results of the theoretical model concepts and 

experimental data, there is a general opinion that the inner 

core in the form of a solid deformable sphere consists of 

iron (Fe) and its alloys. This conclusion is based on a 

comprehensive analysis of the equation of state for Fe 

compounds, seismology data and thermodynamic modeling. 

Birch diagrams describing the relationship between the 

density and velocity of acoustic waves for iron and its 

compounds are used as the basic (primary) information. A 

great number of experimental studies had been 

implemented in this field (Mao et al. 2012, Ohtani et al. 

2013, Chen et al. 2014, Decremps et al. 2014, Li and Fei 

2014, Antonangeli and Ohtani 2015, Prescher et al. 2015) 

since F. Birch’s studies (Birch 1952). The recent results 

have been analyzed in detail in this direction (Litasov and 

Shatskiy 2016). The existing inconsistencies between 

various model and experimental results are outlined. The 

definition of the constitution of iron alloys, the results of 

which are more or less well justify the seismological data 
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plays an important role in these studies. 
It is assumed that the outer liquid core has a uniform 

structure and lack of density relative to Fe (about 10%), and 
the inner solid core has a nonuniform structure (see Fig. 
1(b)) with high anisotropy of seismic waves and lack of 
density about 5%. The problem of high uncertainty doesn’t 
have a unique solution in the estimation of values of shear 
velocities in the inner core which are significantly lower 
than that of iron and its alloys (Litasov and Schatskiy 
2016). 

It is noted that there are large zones of low velocities 

which are periodically activated in geological history and 

can change the geographical positions without going into 

the discussion of problems related to the nature and 

formation of mechanisms (see Fig. 1(b)). 
The data on distribution of pressure, density, elastic 

parameters and equations of state are listed in theoretical 
models of the structure and composition of the medium of 
the Earth’s core. They are coordinated with integral 
conditions concerning the mass and moment of inertia, the 
results of studies on the natural oscillations, nutation of the 
Earth and seismotomographic studies (Bullen 1978, 
Dziewonski and Anderson 1981, Molodensky 2001, 
Molodenskii 2010, Molodenskii and Molodenskaya 2015, 
Molodenskii and Molodenskii 2015, etc.). 

The discussed problems are also directly related to the 
mechanics of continuous medium. Insufficient attention is 
paid on issues related to geomechanics (with the exception 
of some results of experimental studies) in the review 
(Litasov and Shatskiy 2016). Apparently, it is related with 
the limited scope of this paper. These problems had always 
been in the field of view of researchers (Bullen 1978, 
Anderson 1995, Sorokhtin and Ushakov 2002, Lobkovski et 
al. 2004, Anderson 2007, Zharkov 2012). 

Physical parameters of deformable solid media - such as 

the elasticity moduli, Poisson’s ratio, the velocity of 

propagation of body elastic waves in mechanics are 

determined under specific conditions (Lyav 1935, Sedov 

1970). It is required to comply with the conditions of 

smallness of uniformly distributed homogeneous 

deformation ɛ<<1 and the smallness of the ratio 
𝑝

𝜇
 (where 

P is a parameter of loading, in particular, pressure; μ are 

moduli of the medium shift; ɛ is deformation parameter) in 

classical linear theory of elasticity of isotropic 

homogeneous media within the framework of which the 

indicated parameters are interpreted in all theoretical 

models of the Earth. The condition of uniform distribution 

of homogeneous deformation should also be controlled in 

the process of deformation of specific structures (sphere in 

the considered case). First of all, it is necessary to achieve 

simultaneous fulfillment of commonly accepted 

requirements of the mechanics for the media and 

constructions in solving the problems on distribution of 

physical and mechanical properties in the Earth's interior, in 

particular in the solid core.  Specific data (see Fig. 1(b)) on 

violating the requirements of the mechanics are suggested 

for pressure P=329 GPa and shear modulus μ=157 GPa at a 

level of the sphere surface shown in publications 

(Bullen1978, Dziewonski and Anderson 1981, Anderson 

1995, Anderson 2007, Litasov and Shatskiy 2016). It can be 

seen that the value P exceeds the value μ more than 2 times. 
 

  
(a) (b) 

Fig. 1 α-profiles of the density distribution, velocities of 

sonic waves in the Earth’s core on model PREM 

(Dziewonski and Anderson 1981) and also the 

temperature (Nimmo 2015) (The numbers show the 

change in density and VP at the boundary of the inner 

core in %). b-scheme of structure of the Earth’s core 

reflecting the main results of the seismological researches 

(F-layer with the reduced velocities VP, isotropic 

structure of the upper layer of the inner core with the 

differences in the hemispheres, the presence of an 

additional inner core (in question) are shown. The 

amplitude of the anisotropy of seismic waves is indicated 

by icons in the polar and equatorial directions according 

to the data of papers (Deuss 2014, Souriau and Calvet 

2015) with changes. 1-low velocity, light damping; 2-

high velocity, heavy damping). (Fig. 1(a) and 1(b) taken 

from Litasov and Shatskiy 2016) 

 
 

According to Avsyuk (1973, 2001), Adushkin et al. (2000), 

Levin (2001) the sphere of solid core takes part in 

movements within the liquid outer core due to the rotational 

motion of the Earth and tidal influences. Pressure value can 

nonuniformly be increased even more due to the resistance 

to this movement.  

The conditions of carrying out the requirements 

concerning uniform distribution of homogeneous 

deformation are observed in standard laboratory 

experimental studies of physical and mechanical properties. 

Methods for conducting experiments, smallness of 

geometric dimensions of model samples, the actual 

impossibility of considering the mechanisms of long-term 

(over geological time) deformation and a number of other 

reasons don't allow providing possible violations of 

conditions of the mechanics under conditions of natural 

occurrence, as well as to exclude from the results of 

interpretations of influence of uncontrolled perturbations 

related to the mechanisms of long-term deformability of the 

structure of the sphere under the conditions of huge value of 

compression. 
 

 

2. Problem statement 
 

This paper presents the results of geomechanical 

analysis of the data of geophysical studies within the non-

classical linearized approach (NLA) (Abasov et al. 2000, 

Guliyev 2010). At the same time the numerical data PREM 

(Dziewonski and Anderson 1981) are used taking into 

account the fact that the parameters of the inner core 

provided in this work taken as a basis in all pre-proposed 
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theoretical models of the medium (Bullen 1978, Kennett 

and Engdahl 1991, Morelli and Dziewonski 1993, Kennett 

et al. 1995, Anderson 2007, Pushcharovsky and 

Pushcharovsky 2011). There are only minor differences 

which have not significant meaning for the conducted 

geomechanical analysis in various models. 

The purpose of geomechanical analysis is to determine 

the conditions for pressure and strain ensure the correctness 

of the calculations of physical and mechanical properties of 

the model of solid core of the Earth on the basis of complex 

of geophysical data. The pressure and strain values should 

satisfy certain conditions in determining the physical and 

mechanical parameters of the medium. Only the results of 

measurements and calculations obtained in compliance with 

the conditions of uniform distribution of homogeneous 

strain is considered reliable. This condition may be violated 

in different situations. 

 
 

3. Achievements of theoretical limit of strength 
 

Let's consider the case when the medium is evenly and 

uniformly deformed prior to the beginning of fracture. In 

this case, all calculations on the physical and mechanical 

parameters are correct, if the pressure value does not exceed 

the theoretical limit of strength. It is shown in NLA (Kuliev 

1988a) that the value of the theoretical limit of the strength 

of the medium is defined as P=μ under the conditions of 

compression (we are interested in this variant of 

deformation) for a perfect elastic isotropic material. 

Theoretically, it is the maximum (limit) pressure until the 

achievement of which the medium is deformed evenly and 

uniformly without fracture. It is determined from the 

condition of the loss of the ellipticity of motion Eq. (2). In 

this case, the conditions 
2

0; 0
3

      of classical 

linear theory of elasticity (here λ, μ are Lame's elasticity 

moduli) are preserved. The ultimate strength value is even 

lower on classical theories of strength (Rabotnov 1988), 

which dramatizes the situation even more. Naturally, proof 

strength is significantly less than ultimate strength. 
 

 

4. Instability of equilibrium state 
 

The uniform distribution of strain in the medium may 

also be violated as a result of the instability (in various 

forms), without fracture. 

NLA allows defining the limits of change of strain 

within the framework of which the equilibrium of uniformly 

deformed states is stable. In case of violation of the stability 

conditions, the change of the equilibrium state of initially 

homogeneous uniform strain occurs. As a result, the strain 

in the body is unevenly distributed before reaching the limit 

strength of the material. 

The questions of density distribution of the medium 

depending on the change of the strain were studied (Guliyev 

and Askerov 2007, Guliyev 2010, 2011, 2013). It is shown 

that, this dependence is not continuous due to the instability 

of strain under compression. Therefore, the change of the 

medium density in the deformable body is not monotone, 

but spasmodic in certain situations. 

Let’s consider the problem of stability of solid sphere to 

concretize the discussion. It is necessary to determine the 

highest values of surface compressive loads in which the 

equilibrium state of solid sphere remains stable. Previous 

theoretical studies (Guz 1979) shows that this load is 

determined by solving the problem of axisymmetric form of 

buckling of isotropic homogeneous sphere. Let’s assume 

that the sphere is filled with homogeneous isotropic 

medium within the continuum approximation. The external 

compressive load is given on the surface of the sphere. 

The questions of stability of equilibrium state of 

isotropic sphere under the influence of uniform surface 

loadings were studied in detail (Guz 1979, 1986a). Studies 

were carried out within the framework of a three-

dimensional non-classical linearized theory (NLA), sources 

of which date back to the incremental theory of mechanics 

of deformable solid body (Biot 1965). At the present time, 

three-dimensional NLA is developed greatly and is used to 

study various problems of mechanics (Guz 1979, 1986a, b, 

1989, Kuliev 1988b, Akbarov 2013, 2015). 

The two states of deformable body are considered in 

NLA. The first state (motion, equilibrium, strain process) is 

primary or nonperturbed. The second condition is 

perturbed. All values relating to the second condition are 

presented as the sum of the corresponding values of the first 

and second state. Perturbations are considered to be small 

values compared to the corresponding values of the first 

(nonperturbed) state. Natural (undeformed) state, which 

corresponds to the case of lack of pressure and strain in the 

body is also used to describe the strain in the Lagrangian 

method. 

Deformation is taken in the following form under the 

uniform initial state 

 0 1m m mu X 
 

(1) 

Here um are displacement components along the 

coordinate axis; λm are coefficients of elongation 

(shortening) along the coordinate axis; Xm are the Cartesian 

coordinates. 

In homogeneous initial state, equation systems of 

motions take the form within the compressible medium in 

the Lagrangian coordinates (which coincide with the 

Cartesian coordinates in the natural state) (Guz 1986а, b) 

2
2

im 0m

i

u
x x

  



  
 

   
    , 

, , , 1,2,3,4i m  
; 

im const 
. 

(2) 

Boundary conditions at the surface of the domain S1 in 

terms of stress 

i ij j

u
N P

x












 

(3) 

Here uα are vector components of disturbance of 
displacement; Pj is disturbance of surface forces; ρ is the 
medium density; Ni are components of unit normal vector to 
the surface of the body in the natural state; δmα is the 

21



 

Hatam H. Guliyev 

Kronecker symbol; ωimαβ are covariant components of the 
tensor of the fourth rank characterizing linear, non-linear 
physical-mechanical properties of the medium and its initial 
state of stress. In considering the problems of the static, 
inertial component 2

m   is omitted in the Eq. (2) where 
 is cyclic frequency of harmonic wave. 

Various classifications are possible in the formulation of 

problems of NLT. “Follower” (non-conservative) and 

“dead” (conservative) surface forces are distinguished 

depending on the nature of the action of surface loads. 

Surface “follower” forces are those forces which keep up 

changes of configurations of body surface in the process of 

deformation, i.e., they can change the direction of an action 

and value according to deformation process. An action of 

liquid and gas is modeled as “follower” loads in the 

calculation practice. Surface “dead” forces retain their 

original direction and value in the process of deformation. 

Three various variants of theory are also distinguished in 

the NLT depending on values of deformation in the initial 

state (Guz 1986a) а) theory of large (finite) initial strain; b) 

the first variant of the theory of small initial strain (shifts 

and elongation are small in comparison to the unit); c) the 

second variant of the theory of small initial strain (it is 

considered that the relationship between the components of 

the strain tensor and the first derivatives from displacements 

are linear in addition to the first variant of the theory of 

small initial strain). Two cases are also distinguished to 

provide plane harmonic wave. The variation of distance 

isn’t considered between material particles due to initial 

strain, and the velocity of wave propagation is called 

“natural” in the first variant (Thurston and Brugger 1964, 

Guz 1986b). The variation of distance isn’t considered 

between material particles due to the initial strain, and the 

velocity of wave propagation is called “true” in the second 

variant. The formulations of buckling problem are also 

distinguished for compressible and non-compressible 

models in the deformable bodies. The problems are 

considered only for compressible and non-compressible 

media and case of “true” velocities in the present paper. The 

generalization of results is of technical nature for other 

cases. 

In the case of the uniform homogeneous deformation of 

singly connected isotropic media λ1=λ2=λ3 for all the 

above-mentioned variants of the theory of the initial strain 

ωijαβ in a single form (Guz 1986a) 

   0 0 0ij ij i j i j ij i jS                        
 
(4) 

where the designations are respectively introduced for the 

theory of large initial strain and the first variant of small 

initial strain theory and the second variant of small initial 

strain theory  

2
0 1 0 0а S  

; 

2
0 1 0 0b S  

 
(5) 

2
0 1 0 0а S  

; 
2

0 1 0 0b S  
; 0 0S 

 
(6) 

0 0 0а S  
; 0 0 0b S  

; 0 0S 
 (7) 

Values a0,b0,S0 and σ0 in terms of λ1=λ2=λ3  are 
determined from expressions a0=Aβi−2μij; b0=μij; S0=S

0
ββ; 

σ0=σ
0
ββ. 

The summation isn’t conducted on indices in these 

formulae; σ
0
ββ are normal components of the stress tensor in 

the initial state.  

Explicit algebraic expressions for Aβi, μij and S
0
ββ are 

obtained in considering the concrete elastic potentials (Guz 

1986а). 

Considering Eq. (4), the Eqs. (2) and (3) take the form 

  2
0 0 02 0grad divu rot rot u u     

r r r

 
(8) 

     0 0 0 0 0 02N S divu S N u S N rotu P           
 

uur r uur urr uur r ur

 
(9) 

In setting “follower” load at the surface the right side of 

the condition (9) takes the form 

 0P S Ndivu N u N rotu    
ur uur r uur urr uur r

 
(10) 

Eq. (8) completely coincides with Lame’s equation of 

classical linear theory of elasticity, if replace Lame’s 

parameters λ and μ to the parameters λ0 and μ0 according to 

Eqs. (5)-(7). 

It follows from Eqs. (9) and (10) that in general such an 

analogy is absent in the linear theory under the boundary 

conditions. The analogy holds only in the case of "follower" 

loads. 

Thus, the mathematical problem of stability of an 

isotropic sphere under uniform compression is formulated 

in the form of Eq. (8) and the boundary condition of Eq. (9). 

It is necessary to take 0Р   in case of setting the external 

load on the surface of the sphere in the form of “dead” loads 

in the right side of the boundary conditions of Eq. (9). 

In such formulation, the problem of stability of the 

equilibrium state of the body of an arbitrary geometrical 

shape from the compressible media was studied in detail 

under uniform compression (Guz 1979, 1986а). It is shown 

that in case of setting “follower” loads on the whole body 

surface, equilibrium state defined by Eq. (1) is stable under 

the fulfillment of conditions 

0 0

2
0

3
  

; 0 0 
 

(11) 

Conditions of Eq. (11) should always be fulfilled, and 

therefore, they are considered as the restriction on the 

structure of the equation of state. It is considered as specific 

models of the medium a) elastic isotropic body with 

potential of harmonic type within the theory of large initial 

strain and stability conditions are obtained in the form  

10 1  ; 

1

1

2 4
1

3 3
    


  

     
   . 

(12) 

b) an elastic body with a quadratic potential within the 

second variant of small initial strain theory and stability 

condition is obtained in the form   

 1

2
2 0

3
  

 
   

  ; 
 1

2
3 1 0

3
   

 
    

  . 
(13) 
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c) elasto-plastic body (deformation theory) within the 

second variant of small initial strain theory and stability 

condition is obtained in the form  

Р 
. (14) 

d) elasto-plastic body (Prandtl-Reuss theory of 

plasticity) within the second variant of small initial strain 

theory  

2
1Р  

. (15) 

It is shown for all the considered models of the medium 

that equilibrium state is stable in case of setting follower 

loads on the surface of an isotropic sphere under the 

fulfillment of conditions of Eqs. (11)-(15). Herein, the 

distribution of homogeneous deformation is uniform. 

Considering the body in the form of a sphere (medium 

material is given as: quadratic elastic potential, deformation 

theory of small elasto-plastic deformation and Prandtl-

Reuss theory of plasticity; hereditary-elastic linear body of 

ageless type; viscous elasto-plastic body), it is shown that in 

case of “dead” surface loads, there is a critical load Pcr. 

(according to the value this load is less than the value μ) in 

reaching of which the equilibrium state of the sphere 

defined by Eq. (1) is unstable. As a result, the distribution 

becomes uniform in the body of homogeneous deformation. 

Similar results have also been obtained within the theory of 

large initial strain using various elastic potentials. 

In this case, in general terms it is impossible having 

taken the inequality for λ0, μ0 and S0, and so that it is 

ensured the fulfillment of the condition of Eq. (11) 

regardless of the body shape. Therefore, the following 

standard equation (Guz 1979, 1986а) is obtained to define 

low values of the critical load in the considered problem 

providing general homogeneous solutions of the Eq. (8) 

similar to the classical theory of elasticity and requiring the 

fulfillment of the boundary conditions of Eq. (9) (it is 

necessary to take 0Р   in the right side) 

   0 0 0 0 0 02 3 0S       
. (16) 

Critical forces or strain leading to the buckling of the 

equilibrium state of the sphere are calculated using Eqs. (5)-

(7) from Eq. (16). 

We obtain within the second variant of small initial 

strain theory for elastic isotropic body from Eq. (16) 

considering Eq. (7)  

 
 

1
2 2

. 5 4 16 8 9
4 1 2

crР
 

        


  


 

(17) 

where  is Poisson's coefficient of the medium. 

In case of large initial strain theory and application of 

harmonic elastic potential using Eq. (5) from the Eq. (16) 

we define the critical value of shortening as follows 

 
        

 

1
2 2

1 *

5 3 2 5 3 2 4 1 2 4 1 2
1

8 2 1 2

      


 

                
  

 

  

    

3 2 1

3 2 1 1 2

 

  

 


     

(18) 

Similarly, we can obtain the calculation formulae for the 

case of quadratic, Murnaghan and other forms of elastic 

potentials. Eqs. (17) and (18) indicate that the buckling of 

the equilibrium state is implemented for both small and 

large deformations and is general in nature. 
 

4.1 Internal instability 
 

Critical values of stress and strain leading to violation of 

conditions of Eq. (11) cause the phenomenon in the body, 

which is called the “internal” instability in theory (Biot 

1965, Guz 1986a, b). In the case of initially isotropic media, 

as if the initial pressure plays the role of an internal 

structure similar to the internal structure of the composite 

media in the anisotropic approximation within the 

phenomenological (continuum) approach. 
“Internal” instability is studied for an infinite body in 

the continuum description of materials when a certain load 

is given on “infinity”. At the same time the instability is not 

related to the influence of boundary conditions and 

geometrical dimensions of the body or structural elements. 

The critical values of the stress and strain are determined 

from the study of system types of differential Eqs. (2) and 

(8) in an infinite domain. The system of Eq. (2) loses the 

property of ellipticity under the conditions of occurrence of 

the phenomenon of “internal” instability. In this case, the 

condition of uniqueness of the solution of Eq. (11) of the 

linearized problems is violated. The limit value of 

coefficient of elongation (shortening) is determined from 

(11) λ
*
1 by setting the structure of the elastic potential. In 

case of modeling the deformation process using harmonic 

elastic potential within the theory of large initial strain from 

Eqs. (5) and (11), we get 

*

1

1

2









 ;  
*

0 2

3 2 1

2 2










. 

(19) 

We obtain in case of quadratic elastic potential from 

Eqs. (11) and (12) within large initial strain theory  

1

2
*

1

1

2






 
  

  ; 

*

0

1 2 1

2 2









 . 

(20) 

We obtain in case of linear elastic isotropic material 

within the second variant of small initial strain theory 

.crР  
; 

*

0

1 2 1

2 1









 . 
(21) 

ɛ0 is a parameter of uniform deformation in Eqs. (19)-(21). 

It follows from the above mentioned Eqs. (11)-(15) and 

Eqs. (19)-(21) that  the “internal” instability occurs within 

the NLA in uniform deformation (compression) of the 

isotropic sphere on the level of pressure comparable in 

value with shear moduli for different elastic potentials 

obtained within the second variant of small and large initial 

strain theory. 
 
 

5. Elastic wave propagation in the deformed medium 
 

The implementation of condition of Eq. (11) also 
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provides validity (not negative values) velocities of 

propagation of small perturbations (such as the Hadamard 

conditions (Truesdell 1975, Guz 1986b)) in the form of 

small-amplitude waves in media with initial deformations. 

Consequently, equality to zero or invalidity of velocities 

of propagation of acoustic waves correspond to the 

phenomenon of “internal” instability of the stressed media. 

Basic kinematic parameters of the wave field-velocities 

of propagation of elastic waves significantly depend on the 

pre-deformation. Theoretical and applied problems are 

intensively studied in this field by Biot (1965), Guz 

(1986b), Kuliev and Jabbarov (1998, 2000), Akbarov 

(2015), Hadji et al. (2015), Li and Tao (2015), Tao et al. 

(2016), Teachavorasinskun and Pongvithayapanu (2016), 

Kakar and Kakar (2016). Problems of propagation of elastic 

waves are also intensively studied in the solid core of the 

Earth by Deuss (2014), Wang et al. (2015). Below provided 

results were obtained within the framework of non-classical 

linearized theory considering small and large initial 

deformations. 

In case of uniform pre-compression of isotropic 

medium, the "true" velocities of propagation of elastic 

waves in it are defined by the expressions (Guz 1986b) 

2 2 R

l pС PK    
; 

2 R

S SС PK   . 
(22) 

Here Cl, Cs are the “true” velocities of quasi-pressure 

and quasi-shear elastic waves; K
R

P, K
R

S are coefficients of 

nonlinear action of isotropic medium (Sadovsky and 

Nikoalev 1982, Guliyev 2009). Structures of expressions 

for K
R

P and K
R

S are concretized by assignment the form of 

elastic potentials.  

It was obtained in the case of application of elastic 

potential of Murnaghan's form and “true” velocities within 

the second variant of small initial strain theory (Guliyev 

2009) 

 
0

1
5 6 2 5 3

3

R
pK c b a

K
        

;

 
0

1
3 4 3

3

R
SK c b

K
    

. 

(23) 

within the first variant of small and large initial strain 

theory.  

 
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1
7 10 2 5 3
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pK c b a
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 
0

1
3 2 3

3

R
SK с b

K
       

. 

(24) 

Here a, b, c are the elasticity moduli of the 3rd order 

0

2

3
K   

. If a=b=c=0 is accepted in Eqs. (23) and (24), 

we obtain the results corresponding to quadratic elastic 

potential within the second variant of small initial strain 

theory  
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1 3
5 6
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within the first variant of small and large initial strain 

theory  
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(26) 

The presence of Eqs. (23)-(26) allows calculating the 

influence of non-linear strain on the velocity of propagation 

of elastic waves. 

We derive conditions under the implementation of 

which the velocities of propagation of elastic waves are true 

in pre uniformly strained isotropic medium using the Eq. 

(22). Accordingly, pressure elastic wave couldn't be 

propagated with true velocity in cases of the second variant 

of small and large initial strain theory in the quadratic 

elastic potential in terms of implementation   

 
  

22 1
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  
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

 
. 

(27) 

in the stressed isotropic medium. This condition for shear 

elastic waves takes the form  

1

2

Р 

 




 ; 
 

1

3 1

Р 

 





. 

(28) 

It follows from the Eqs. (29) and (24) that it is also 

necessary to have numerical information on the elasticity 

moduli of the 3rd order a, b, c along with the data of Lame's 

coefficients to obtain the numerical evaluation in the case of 

using the potential of Murnaghan's form. 

 

 

6. Conclusions 
 

Based on the results obtained in the previous sections Eqs. 

(11)-(21) for the theoretical limit of strength and instability of 

the equilibrium state and Eqs. (22)-(28) for propagation of 

elastic waves in the deformable media), the appropriate 

calculations are performed. Numerical values of critical forces 

and elongations are shown in Table 1 corresponding to the 

buckling of the equilibrium state in Eq. (1) in setting of “dead” 

forces and “internal” instability on the surface of the sphere.  
The results for 

*Р

  are calculated on Eq. (17), for (λ1)* on 
Eq. (18), and λ

*
1 on Eq. (19). They show that the equilibrium 

state of the sphere is unstable both within the theory of small 
and large initial strain in the considered type of loading. The 
critical values of forces and coefficient of elongation 
(shortening) in obtaining of which “internal” instability is 
respectively implemented under small and large initial strain in 
the sphere are shown (lines of 2 and 4 of Table 1). It follows 
from the comparison of results of the second and fourth lines to 
the results of the third and fifth lines of Table 1 that the 
buckling of the equilibrium state of elastic homogeneous  
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Table 1 Critical force and deformation parameters  

  0 0.1 0.2 0.3 0.4 0.41 0.45 

*P


 

1 1 1 1 1 1 1 

*P


 

0.5 0.53 0.57 0.60 0.64 0.64 0.65 

*

1  
0.5 0.58 0.67 0.76 0.88 0.89 0.94 

 1 *


 
0.75 0.79 0.84 0.89 0.94 0.94 0.97 

 

Table 2 Coefficients of non-linear actions and critical force 

parameters  

  0 0.1 0.2 0.3 0.4 0.41 0.45 

R

PK
 

1.5

2.5



  

1.3182

2.1364



  

1.1668

1.8333



  

1.0385

1.5769



  

0.9286

1.3571



  

0.9184

1.3369



  

0.8793

1.2586



  

R

SK
 

1
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0.8636

1.2273
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
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0.6538

0.8077
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0.5714

0.6429
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0.5638

0.6277


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0.5345

0.569


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lP


 

0.6667

0.4  

0.8534

0.5266  

1.1429

0.7273  

1.6852

1.1098  

3.2308

2.2105  

3.5689

2.4518  

6.2549

4.3699  

SP


 

0.5

0.3333  

0.5789

0.4074  

0.6667

0.5  

0.7647

0.6190  

0.875

0.7778  

0.8868

0.7966  

0.9355

0.8788  

 

 

 

isotropic sphere on a geometric forming in case of influence of 

“dead” loads on its surface precedes the “internal” instability. 

The equilibrium state of the sphere is stable on geometric 

forming in case of influence of “follower” loads on the surface. 

Therefore, the “internal” instability occurs without preliminary 

forming in this case. It should be emphasized that it is clear 

from the formulae of critical forces and elongation that they 

don't depend on the geometric parameters of the sphere and 

buckling mode. An exhaustive explanation is given to this case 

(Guz 1986а). The boundary surface is one of the coordinate 

surfaces of the spherical system of coordinates in the 

considered problems. Eigen-values should not depend on the 

geometric parameters of the problem due to the nature of 

Lame's Eq. (8) (which includes derivatives of the same order) 

and the indicated case. The critical loads will depend on the 

geometric parameters (for example, thin-walled parameters) in 

case of considering the problems of stability of bodies bounded 

by several coordinate surfaces. The lack of effects of plastic 

and viscous properties of the material (Eqs. (14) and (15)) on 

the value of the critical parameters is related with the fact that 

inelastic deformation is incompressible due to the adopted laws 

of state, and inelastic deformation does not occur due to 

uniform compression in the initial state. 

Calculation results implemented on Eqs. (25)-(28) are 

shown in Table 2. The data relating to the second variant of 

small initial strain theory is given in the numerator but in 

denominations - large initial strain theory. 

The numbers given in lines 4 and 5 of the Table 2 show that 

if these values are exceeded, the conditions of Eqs. (27) and 

(28) aren’t fulfilled within the considered variants of NLT, i.e., 

elastic pressure and shear waves can't be propagated in the 

medium with true velocity accordingly. The subscript in P l-  

indicates that these values relate to pressure and S to shear 

waves. Contrary to that it follows from the data of Fig. 1(a), (b) 

that velocities of pressure and shear elastic waves in the sphere 

are true in PREM in conditions P≥2μ. It shows once again that 

the data on the physical and mechanical, acoustic and density 

characteristics in the theoretical models should be distributed 

in accordance with relevant requirements of the mechanics of 

deformable media with initial stress considering nonlinear laws 

of state. The obtained results relate to the data of the inner core. 

At the same time, they predict that it is necessary to process 

and interpret the relevant geological and geophysical data on 

the basis of non-linear (at least within NLT) theories 

considering preliminary deformation of the medium in solving 

the problem on the distribution of mantle and lithosphere 

parameters. 

Data on the composition of the inner core material indicate 

its anisotropy (Fig. 1(b)) (Litasov and Shatskiy 2016). 

Naturally, phenomenon of “internal” instability will occur at 

much lower levels of loads and strain than in the isotropic 

approximations in the anisotropic medium because of the 

smallness of the shear stiffness. 

It should be noted that the results presented in this article 

are obtained without considering the influence of temperature, 

the distribution of which is shown in Fig. 1(a). The 

consideration of temperature influence on critical values of 

instability worsens the situation. Buckling process is 

implemented at significantly lower pressure level under the 

influence of temperature fields. Therefore, the consideration of 

temperature will not provide a qualitative impact on the 

conclusion on the insufficiency of interpretation of geophysical 

data within the classical theory. The consideration of 

temperature is necessary to solve specific problems of the local 

distribution of the considered parameters. 
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