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Abstract.  Tensile strength is considered key properties for characterizing rock material in engineering 

project. It is determined by direct and indirect methods. Point load test is a useful testing method to estimate 

the tensile strengths of rocks. In this paper, the effects of rock shape on the point load index of gypsum are 

investigated by PFC2D simulation. For PFC simulating, initially calibration of PFC was performed with 

respect to the Brazilian experimental data to ensure the conformity of the simulated numerical models 

response. In second step, nineteen models with different shape were prepared and tested under point load 

test. According to the obtained results, as the size of the models increases, the point load strength index 

increases. It is also found that the shape of particles has no major effect on its tensile strength. Our findings 

show that the dominant failure pattern for numerical models is breaking the model into two pieces. Also a 

criterion was rendered numerically for determination of tensile strength of gypsum. The proposed criteria 

were cross checked with the results of experimental point load test. 
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1. Introduction 
 

The point load test (PLT) is useful and cheap testing method to estimate the tensile and 

compressive strengths of rocks due to simplicity of sample preparation, its ease of testing and 

possible field application. Also, it’s possible to performed point load test on irregular specimen. 

Protodyakonov and Voblikov (1957) have been the earliest to pursue systematically the testing of 

irregular specimens of rock, crushing them between two flat-surface platens. The paper by Broch 

and Franklin (1972), which popularized the point-load testing of drill cores, contains an extensive 

review of the topic. The ISRM commissions on testing methods (1972) issued recommended 

procedures for point-load testing. The revised recommended method for PL testing reflects 

repeated proposals to improve the method of calculating the PL strength index (Broch and Franklin 
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1972, Bieniawski 1975, Singh and Singh 1993, Chau and Wong 1996, Fener et al. 2005, Sonmez 

et al. 2004, 2006, Basu and Aydin 2006, Sönmez and Osman, 2008, Kahraman and Gunaydin 

2009, Kayabal  and Selcuk 2010, Ma 2010, Basu and Kamran 2010, Heidari et al. 2012, Singh 

2012, Basu et al. 2013, Li et al. 2013, Haeri et al. 2014a, 2014b, 2015a, 2015b, 2015c, 2015d, 

2015e, 2015f, Haeri 2015g, 2015h). Specimens can be of various shapes and be used to test both 

weak and strong rocks (ISRM 1985, Tsiambaos and Sabatakakis 2004, Society for Testing and 

Materials 2008, Kahraman and Gunaydin 2009, Heidari et al. 2012). There are different types of 

specimen geometries and testing procedures which can be used to evaluate compressive and tensile 

strengths under different loading conditions (Zhou et al. 2012, Ayatollahi and Alborzi 2013, 

Ramadoss and Nagamani 2013, Wei et al. 2015, Xu et al. 2015a, Kequan 2015, Lee 2015, Rajabi 

2016, Mohammad 2016, Yaylac 2016). Determination of a correlation between uniaxial 

compressive strength/tensile strength and point load index (Is(50)) is one of the critical concerns in 

applying the point load test on various rock types. Numerous experimental test has shown that the 

conversion factors is different in igneous, metamorphic, and sedimentary rocks (Tsiambaos and 

Sabatakakis 2004, Kahraman et al. 2005, Fener et al. 2005, Kahraman and Gunaydin 2009, 

Heidari et al. 2012, Singh et al. 2012). The relationship between the Is(50) and Brazilian tensile 

strength is also often considered (Heidari et al. 2012). The objective of this paper is to determine 

the influences of specimen shape on the point-load index Is(50). Also a new criteria was rendered 

to determine tensile strength based on the Is(50).  

 

 

2. Methods 
 

2.1 Point load test methods 
 
 

  

  
Fig. 1 Suggested methods for determining equivalent core diameter in irregular method 
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The methods suggested by ASTM (2008) is used for determining Is(50) with the following 

equation for the index 

 

(1) 

where P=peak load and De=equivalent core diameter for diametric and other states (De
2
=4 A/𝜋 

where A=WD, and W=the smallest specimen width perpendicular to the loading direction). If the 

sides of samples are not parallel, W is calculated as (W1+W 2)/2, as shown in Fig. 3, and 

D=distance between the platens at failure for axial point load testing, and =size correction factor, 

(D e/50)
0.45

 (Fig. 1). 
 
 

3. Numerical modelling 
 

Particle flow code in two dimensions (PFC2D) was used for investigation of the effect of 

sample shape on both of the Is(50) and tensile strength.  
 

3.1 Particle flow code 
 

In simulation of rock by PFC2D, rock material is presented as an assembly of disks bonded 

together at their contact and confined by walls. There are two bonding models: a contact bonded 

model and a parallel bonded model. A contact bond approximates the physical behaviour of 

vanishingly small cement like substance lying between and joining the two bonded particles. The 

contact bond behaves as a parallel bond of radius zero. Thus, a contact bond does not have a radius 

or shear and normal stiffness’s, as does a parallel bond, and cannot resist a bending moment; 

rather, it can only resist force acting at the contact point. The parallel bonds are assigned with 

specified tensile and shear strength which allows resistance to tension and shear to exist at the 

contacts until the force at the contact exceeds the strength of the bond. In order to generate a 

parallel bonded particle model for PFC2D, using the routines provided in (Cundall 1979), the 

following micro parameters should be defined: ball-to-ball contact modulus, stiffness ratio kn over 

ks, ball friction coefficient, contact normal bond strength, contact shear bond strength, ratio of 

standard deviation to mean of bond strength both in normal and shear direction, and mini mum 

Ball radius. Defining a parallel-bonded particle model requires three addition al micro parameters, 

which are: parallel-bond radius multiplier, parallel-bond modulus, and parallel-bond stiffness ratio. 
 

3.2 Preparing and calibrating the numerical model 
 

Brazilian test was used to calibrate the tensile strength of model in PFC2D. Adopting the 

micro-properties listed in Table 1, with the standard calibration procedures (Potyondy and Cundall 

2004), three calibrated PFC particle assembly was created. The diameter of the Brazilian disk 

considered in the numerical tests was 54 mm. The specimens were made of 5,615 particles with 

different clump particle distributed in it to gain the best results. The disk was crushed by the lateral 

walls moved toward each other with a low speed of 0.016 m/s. Fig. 2(a) and 2(b) illustrate the 

failure patterns in numerical and experimental tested samples, respectively. The failure planes 

experienced in numerical and laboratory tests are well matching.  

Experimental measurements of tensile strength, 1 MPa, show good agreements with those of 

the numerical results, 1.1 MPa. 
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Table 1 Micro properties used to represent the model with tensile strength of 1.1 MPa 

Property Value Property Value 

Type of particle disc Parallel bond radius muliplier 1.4 

Densiy (kg/m
3
) 2000 Youngs modulus of parallel bond (GPa) 40 

Minimum radius (mm) 0.27 Parallel bond stifness ratio (pb_kn/pb_ks) 1.7 

Size ratio 1.56 Particle friction coefficien 0.4 

Porosity ratio 0.08 Parallel normal strength, mean (MPa) 5 

Local damping coefficient 0.7 Parallel normal strength, std. dev (MPa) 2 

Contact young modulus (GPa) 4 Parallel shear strength, mean (MPa) 5 

Stiffness ratio (kn/ks) 1.7 Parallel shear strength, std. dev (MPa) 2 

 

  
(a) (b) 

Fig. 2 Failure pattern in (a) numerical model and (b) experimental samples 

 

  

 
 

(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Fig. 3 Various models with different shapes in PFC2D 
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(i) (j) (k) (l) 

    

(m) (n) (o) (p) 

   

 

(q) (r) (s)  

Fig. 3 Continued 

 

 

3.3 Numerical simulation of point load test 
 
3.3.1 Preparing the model 
After calibration of PFC2D, numerical simulation of point load test was simulated by creating a 

various model with different shape in the PFC2D (Fig. 3). Two loading walls were situated in top 

and bottom of the model. Upper wall moves in Y direction and lower wall moves in opposite side 

of Y direction with a low speed of 0.016 m/s.  

Vertical Distance between two loading walls shown in Fig. 3(a), 3(b), 3(c), 3(d), 3(e), 3(f), 3(g), 

3(h), 3(I), 3(j), 3(k), 3(l), 3(m), 3(n), 3(o), 3(p), 3(q), 3(r), and 3(s) were 25 mm, 27 mm, 54 mm, 

44 mm, 40 mm, 35 mm, 24 mm, 29 mm, 54 mm, 33 mm, 35 mm, 40 mm, 48 mm, 24 mm, 38 mm, 

30 mm, 30 mm, 25 mm and 30 mm. 
 

3.3.2 Failure mechanism of sample with different shape  
Fig. 4 shows progress of cracks in the models. Black line and red line represent tensile cracks 

and shear cracks, respectively. It’s clear that tensile cracks are dominant mode of failure occurs in 

all models. 

The failure of sample 1, 2, 4, 7, 14, 16, 17 and 19 (Fig. 4(a), 4(b), 4(d), 4(g), 4(n), 4(p), 4(q) 

and 4(s)) shows that tensile cracks initiates from wall-sample contacts and propagates nearly 

parallel to the loading direction till coalesces with each other. The failure of sample 5, 6, 12, 13 

and 18 (Fig. 4(e), 4(f), 4(l), 4(m), 4(n) and 4(r)) shows that tensile major fractures initiates from 

wall-sample contacts and propagates nearly parallel to the loading direction till coalesces with 
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each other. Other tensile fractures initiates from wall-sample contact and propagate diagonally till 

coalesce with sample edge. The failure of sample 3, 8, 9, 10 and 11 (Fig. 4(c), 4(h), 4(i), 4(j), and 

4(k)) shows that tensile cracks initiates from wall-sample lower contact and propagates diagonally 

for a short distance till coalesces with model edge. In this condition loading wall is in vicinity of 

sample edge, i.e., L<0.5 D, so non-ideal failure pattern occur in these samples. These results were 

not proper for analysis. 
 

 

  

 
 

(a) (b) (c) (d) 

  

  

(e) (f) (g) (h) 

 
  

 

(i) (j) (k) (l) 

    

(m) (n) (o) (p) 

Fig. 4 Failure pattern in different models 
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(q) (r) (s) 

Fig. 4 Continued 

 
Table 2 Is(50) in different Samples 

Sample with different De (mm) Is (50) (MPa) 

24 0.407 

24 0.405 

25 0.415 

25 0.416 

27 0.431 

29 0.452 

30 0.468 

30 0.468 

30 0.468 

35 0.518 

40 0.578 

40 0.578 

44 0.650 

 

 

3.4 Determination of Is(50) and relationship with tensile strength 
 

The Is(50) for different samples, which have ideal failure pattern, was measured by equation 1 

and listed in Table 2.  

Fig. 5 shows variation of Is(50) with model diameter. Is(50) increases with increasing the 

model scale. The curve fitting equation on these data is 

Is(50)=0.011*De+0.123 (2) 

De is model size between loading walls. Eq. (2) is useful for calculation of Is(50) based on 

model size. Fig. 5 shows normalized tensile strength with Is(50) versus model size. The 

normalized tensile strength with Is(50) decreases with increasing the model scale. The curve fitting 

equation on these data is 

σt/Is(50)=-0.05*De+3.887 (3) 

σt is tensile strength and can be calculated by Is(50) and model size, De.  
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(a) (b) 

Fig. 5 (a) variation of Is(50) related to equal core diameter (De) and (b) 16 variation of normalized tensile 

strength with Is(50) for different equal core diameter (De) 

 

   
(a) (b) (c) 

Fig. 6 Three different samples under point load test 

 

     
(a) (b) (c) 

Fig. 7 Failure pattern in different samples 

 
Table 3 Is (50) calculated by Eq. (1) and tensile strength rendered by Eq. (3) 

Sample number Is(50) Tensile strength (MPa) 

1 0.56 1.2 

2 0.45 1.15 

3 0.52 1.25 

Average  1.2 
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4. Experimental procedures 
 

Three irregular specimens were prepared from the gypsum. A point load system of 100 kN load 

capacity with a deformation sensor (range=50 mm; resolution=0.01 mm) attached to the test frame 

was used (Fig. 6) in this investigation. The data acquisition system supplied by the manufacturer 

along with the instrument was used to continuously record the load and the corresponding 

displacement (i.e., depth of cone penetration) as a function of time throughout the tests.  

A unique failure mode was observed in samples where the specimen failed in two pieces. The 

tensile cracks initiate from loading wedge and propagate within the model till coalescence with 

each other (Fig. 7). Inspection of failure surface shows that it was polished without pulverized 

material. These failure patterns are in a good accordance with those obtained by numerical 

simulation (Fig. 4). 

The IS (50), calculated by Eq. (1), and tensile strength rendered by Eq. (3) were listed in Table 

3. The results show that point load tensile strength was nearly equal to Brazilian tensile strength 

which is 1.1 MPa. A bit discrepancy between tensile strength results is due to differences between 

tensile force distributions on the failure surface. 

 

 

5. Conclusions 
 

Numerical point load test was performed to investigate the effect of sample shape on the point 

load index and tensile strength. Calibration of PFC was performed with respect to the Brazilian 

experimental data. Then, 19 models with different shape were built and tested under point load 

test. Concurrently, three gypsum samples were tested under point load condition. The results show 

that: 

• When loading wall is in vicinity of sample edge, i.e., L<0.5 D, non-ideal failure pattern 

occurs in samples. The standard failure pattern occurs when L>0.5 D. 

• Tensile cracks are dominant mode of failure occur in the numerical models. They initiate from 

wall-sample interfaces and propagates nearly parallel to the loading direction till coalesces with 

each other. 

• Dominant failure pattern for numerical models is breaking the model into two pieces what 

occurs in experimental test. 

• Is(50) increases with increasing the model scale. 

• The shape of particles has no major effect on its tensile strength.  

• The normalized tensile strength with Is(50) decreases with increasing the model scale. 

• By inserting physical Is(50) in Eq. (3), tensile strength was determined which is nearly similar 

to Brazilian tensile strength. 

• Comparison between numerical simulation and experimental test results shows that good 

accordance is established between them. 

• Particle flow code is capable software for simulation of crack growth under point load test. 

• This paper focus on the applicability of numerical simulation in prediction of point load index 

for gypsum block with different shapes. Whereas PFC was calibrated only for gypsum specimen, 

therefore the criterion rendered by numerical simulation is nearly capable to predict the tensile 

strength in this type of material. The authors attempt to do other new simulations on a wide range 

of crystalline rocks to present Is for crystalline rocks, too. 
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