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Abstract.  This study deals with simple solutions for a spherical or circular opening excavated in elastic-brittle 

plastic rock mass compatible with a linear Mohr-Coulomb (M-C) or a nonlinear Hoek-Brown (H-B) yield criterion. 

Based on total strain approach, the closed-form solutions of stresses and displacement are derived simultaneously for 

circular and spherical openings using original H-B and M-C yield criteria. Two simple numerical procedures are 

proposed for the solution of generalized H-B and M-C yield criteria. Based on incremental approach, the similarity 

solution is derived for circular and spherical openings using generalized H-B and M-C yield criteria. The classical 

Runge-Kutta method is used to integrate the first-order ordinary differential equations. Using three data sets for M-C 

and H-B models, the results of the radial displacements, the spreading of the plastic radius with decreasing pressure, 

and the radial and circumferential stresses in the plastic region are compared. Excellent agreement among the 

solutions is obtained for all cases of spherical and circular openings. The importance of the use of proper initial values 

in the similarity solution is discussed. 
 

Keywords:  rock; opening; total strain approach; incremental approach; similarity solution; elastic-brittle 
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1. Introduction 
 

Prediction of the stresses and displacements around a circular or spherical opening in the rock 

mass at great depth is an important problem in tunneling and underground space development such 

as the design of tunnels, boreholes and mine shafts (Zhang and Goh 2016, Nawel and Salah 2015, 

Vrakas and Anagnostou 2014, Wang et al. 2012). The analytical and numerical solutions for a 

spherical or circular opening problem have been developed by considering different models of 

material behavior, such as the elastic-perfectly plastic, elastic-brittle plastic and elastic-strain 

softening models, with the different yield criteria, like the linear Mohr-Coulomb (M-C) and 

nonlinear Hoek-Brown (H-B) criteria (Fahimifar et al. 2015, Serrano et al. 2011, Shin et al. 2011, 

Osgoui and Oreste 2010, Brown et al. 1983). 

The analysis for a spherical or circular opening excavated in elastic-brittle plastic rock mass 

can be carried out using mainly two alternative solution procedures: total strain approach and 

incremental approach. In total strain approach, the incremental form of the plastic flow rule is 

integrated directly to result in a relationship between total stresses and total strains. Brown et al. 
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(1983) presented closed-form solutions for the stresses and displacements of a circular opening in 

original H-B medium, followed by Sharan (2003, 2005, 2008) and Park and Kim (2006). Recently, 

Wang and Yin (2011) presented the closed-form solution of a spherical opening in M-C and 

original H-B media.  

The incremental approach relates stress to plastic strain increments and therefore involves 

space and time variables; as a result, it requires solving partial differential equations. Similarity 

solution method, based on incremental approach, has been used to analyze the opening problems 

(Detournay 1986, Carranza-Torres and Fairhurst 1999, Alonso et al. 2003, Park 2014a,b). In the 

method, partial differential equations are replaced by a small number of first-order ordinary 

differential equations, which can be solved by using relatively simple computational methods. 

Carranza-Torres (2004) presented the similarity solution for a circular opening excavated in the 

elastic-brittle plastic generalized H-B rock mass. 

From the literature review, it is noted that the closed-form solution has been developed using 

original H-B and M-C yield criteria, whereas numerical solutions have been developed for 

generalized H-B criterion. 

The main objective of this study is to examine the solutions, based on both total strain and 

incremental approaches, for a spherical or circular opening excavated in elastic-brittle plastic rock 

mass compatible with M-C or H-B yield criterion. Based on the total strain approach, the closed-

form solutions of stresses and displacement are derived simultaneously for circular and spherical 

openings using original H-B and M-C yield criteria. Two simple numerical procedures are 

proposed for the solution of generalized H-B and M-C criteria. Based on the incremental approach, 

the similarity solution is derived simultaneously for circular and spherical openings using 

generalized H-B and M-C yield criteria. The classical Runge-Kutta (R-K) method is used to 

integrate the first-order ordinary differential equations of stress and displacement as used for the 

opening problem in Detournay (1986) and Carranza-Torres (2004). The accuracy and practical 

application of closed-form solution, similarity solution, and two numerical procedures are 

illustrated by comparing the results for three data sets using M-C and H-B yield criteria. 

 

 

2. Definition of the problem 
 

Fig. 1 shows a circular or spherical opening being excavated in a continuous, homogeneous, 

isotropic, initially elastic rock mass subjected to a hydrostatic stress po. The opening surface is 

subjected to an internal pressure pi. As pi is gradually reduced, the radial displacement occurs and 

a plastic region develops around the opening when pi is less than the initial yield stress. After 

yielding, the strength of rock suddenly drops and follows the post-yield behavior. The material 

behavior of elastic-brittle plastic model used in this study is shown in Fig. 2. It is required to solve 

for the stresses and displacement in the plastic region.  

Two most commonly used yield criteria for the rock are considered in this study: the 

generalized H-B yield criterion, 
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and the linear M-C yield criterion, 
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Y 31   (2) 

where σ1 = the major principal stress at failure, σ3=the minor principal stress at failure, σc=the 

uniaxial compressive strength of the intact rock material, a, m and s = semi-empirical parameters 

that characterize the rock mass, )sin1/()sin1(   , )sin1/(cos2   cY , c=the 

cohesion of the rock, and ϕ= the friction angle of the rock. 

Because of the axial symmetry of the problem, the radial and tangential stresses, σr and σθ, in 

the rock mass will be principal stresses, such as σ1= σθ and σ3=σr. Then Eqs. (1) and (2) can be 

expressed as 
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prp Y   for peak strength (5) 

rrr Y    for postpeak strength (6) 

where subscript p indicates the peak value, while subscript r indicates the residual value. 

The solutions for circular and spherical openings can be developed simultaneously, with the 

value of the dimensional parameter k being 1 for a circular opening and 2 for a spherical opening 

(Carranza-Torres and Fairhurst 1999). 
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Fig. 1 A spherical or circular opening in an infinite medium 
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Fig. 2 Elastic-brittle plastic model (Brown et al. 1983, Park and Kim 2006) 

 

 

3. Closed-form solution by total strain approach 
 

3.1 Stress equilibrium equation 
 

Assuming a state of plane strain or spherically symmetry around the opening, the equilibrium 

equation in polar coordinate system is given by 

  0






r

r

r

k

r
 (7) 

where σr is the radial stress and σθ is the circumferential stress. 

 
3.2 Constitutive equation 
 

The stress-strain relationship, with the consideration of initial hydrostatic stress, for an 

isotropic elastic material can be written as 

 o

e pG  2  (8) 

where  Tee

r

e

 ,  is the vector of elastic strains,  T

r  ,  is the vector of stress 

components, po is the initial stress, G is the shear modulus, superscript e indicates the elastic part, 

M is a dimensionless compliance matrix, such as 
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and ν is the Poisson’s ratio. 

The plastic strains are expressed in terms of the derivatives of a plastic potential function 

 rg   ,  and given by  
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where λ is the plastic multiplier and superscript p indicates the plastic part. 

By eliminating the plastic multiplier in Eqs. (10) and (11), the non-associated flow rule can be 

expressed as  
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where )sin1/()sin1( rrd    and ψr is the residual value of dilation angle. 

Substituting Eq. (8) into Eq. (12) results in 

    oorrr pApA
G
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where  

kdMMAMMAr    ;; 22122111               (14) 

 
3.3 Closed-form solution 
 

The closed-form solution can be obtained for the original H-B (that is, a=ar=0.5) and M-C 

yield criteria.  

Let’s consider the single dimensionless radial coordinate, 

er

r
                              (15) 

and the non-dimensionalized forms of radial displacement, u, and stresses 
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where re is the radius of the plastic region, and p1 is a suitably chosen reference, such as  

yo ppp 11                             (17) 

and p1y is the initial yielding stress. 

Then the stress equilibrium equation, Eq. (7) is rewritten as 

  0~~
~
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Considering that  
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
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the constitutive equation, Eq. (13), is rewritten as 
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Eqs. (4) and (6) are also rewritten as 
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3.3.1 Solution for stresses 
By substituting Eq. (22) into Eq. (18) and using the boundary condition at the inner face, that is 

ir p~~   at ρ = ρi, the stresses in the plastic region can be obtained for original H-B yield criterion 
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and the superscript H-B represents the Hoek-Brown yield criterion. 

The most inner radius ρi can be obtained by considering the continuity of the radial stress at the 

elastic-plastic interface. 
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The radius of the plastic region re is obtained from Eqs. (15) and (27) 
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i
i

e

r
r                               (28) 

where ri is the radius of opening. 

In the same way, using Eq. (23), the stresses in the plastic region and the radius of the plastic 

region can be obtained for M-C criterion 
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and the superscript M-C represents the Mohr-Coulomb yield criterion. 
 

3.3.2 Solution for displacement 
The integration in Eq. (21) can be made analytically and the solution for the radial 

displacement can be simplified as 

 )1()1()1()1(~)()()(
1~

3322113322111
fDfDfDufDfDfD

u





 
  (33) 

where 

 




1
)(

1

1






 df                        (34) 


































 




1

1

1
)(

1

2

















ii

BH ndnf               (35) 

 

 

 

  





















11

1
)(

11

1

1

2

r

k

k

i

k

i

CM

k
df

r

r

r




















            (36) 

  













































 




2

2
1

2

3
1

2

1

2

1
)(






















iii

BH nndnf     (37) 

591



 

 

 

 

 

 

Kyungho Park 

Table 1 Summary of the constants and functions for Eq. (33) 
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and )1(~u , f1(1) , f2(1) , f3(1) are the values at ρ=1. 

Table 1 summarizes the constants, D1, D2 and D3, and functions, f1(ρ), f2(ρ) and f3(ρ), for 

original H-B and M-C yield criteria. 

 

 

4. Numerical procedures for generalized H-B criterion 
 

It is noted that the necessary equations for the closed-form solutions, Eqs. (18) and (21), 

obtained from stress equilibrium and constitutive law, are first-order ordinary differential 

equations.  

For the generalized H-B criterion, two numerical procedures can be proposed: 

(1) Numerical Procedure-1 

In Numerical Procedure-1, Eqs. (18) and (21) are rearranged as  
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Here 
~ is obtained by Eq. (22). 

(2) Numerical Procedure-2 

In Numerical Procedure-2, instead of Eq. (22), Eq. (40) is used  
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as well as Eqs. (38) and (39). 

In order to obtain the solution from Eqs. (38)-(40), the standard ordinary differential equation 

system solver library routines can be used. In this study, the classical fourth-order R-K method is 

used without any adaptive step size (Chapra and Canale 2002). 
 

4.1 Initial values at elastic-plastic boundary 
 

Using the solutions for stress and displacement in the outer elastic region given by 
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the necessary initial values at ρ=1can be obtained as 

1~)1(~  or p                           (43) 

k
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1
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The initial value of 


~  is obtained from the yield criterion, such as 
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5. Similarity solution by incremental approach 
 

In the previous section, two first-order ordinary differential equations for stress and radial 
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displacement are used for the analysis. On the other hand, the second-order ordinary differential 

equation for radial displacement was used in the previous study by Carranza-Torres (2004). In this 

section, the derivation of the second-order ordinary differential equation for radial displacement is 

made using the rate forms of stress and strain. 

 

5.1 Constitutive equation 
 

The elastic stress-strain relationship for an isotropic elastic material can be written in the rate 

form 

  eG2                            (46) 

where  Tee

r

e

  ,  is the vector of elastic strain rates,  T

r   ,  is the vector of stress rates. 

Considering the non-associated flow rule of Eq. (12), Eq. (46) becomes 
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5.2 Displacement equation 
 

Now let’s consider the single dimensionless radial coordinate, 
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and the non-dimensionalized forms of radial displacement and stresses 
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where τ is the fictitious time variable. 

From Eq. (48), the time and space derivatives occurring in the governing partial differential 

equations can be expressed in terms of the single ordinary derivative d/dρ, such as 
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Considering that  
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the constitutive equation, Eq. (47), is rewritten as 
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It is noted that Eq. (54) is the second-order ordinary differential equation, which is similar type 

used by Carranza-Torres (2004). Eq. (54) can also be obtained directly by taking a derivative of 

Eq. (21) with respect to ρ. 

 

5.3 Numerical implementation 
 
In order to obtain the similarity solution, four equations are needed: Eq. (38) for  dd r /~ , Eq. 

(40) for  dd /~ , and  
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For the solutions of Eqs. (38), (40), (55) and (56), the R-K method is again used without any 

adaptive step size. 

 

5.4 Initial values at the elastic-plastic boundary 
 

For an elastic-strain softening model, Alonso et al. (2003) derived the initial values at ρ=1 

using the solutions for stress and displacement in the outer elastic region, such as  

k
po

1~)1(~                            (57) 

1)1(~                               (58) 

as well as Eqs. (43) and (44). In the elastic-brittle plastic model, however )1(~
 and )1(~ in the 

plastic region is suddenly changed from those in the elastic region. So the initial values of Eqs. 

(57) and (58) cannot be used in the analysis of elastic-brittle plastic model. Even in the analysis of 

elastic-strain softening model, if the model is suddenly changed from elastic to residual regions 

through the softening region, the use of Eqs. (57) and (58) can cause the unstable results. 

In this study, instead of using Eqs. (57) and (58), the initial value of 
~

 is obtained from the 

yield criterion, such as Eq. (45), and the initial value of ~ is obtained from Eq. (21), such as  
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It is noted that Carranza-Torres (2004) also used the similar equation for initial value of ~ . 

 

 

6. Application 
 

In order to show the applicability and accuracy of the proposed solutions, the results of the 

radial displacements, the variations of re/ri (which can show the spreading of the plastic radius 

with decreasing pressure), and the radial and circumferential stresses in the plastic region are 

compared using three data sets.  

Tables 2 and 3 show the data set for original H-B and M-C criteria, respectively. These data 

sets are used to compare the results among closed-form solution, similarity solution, and two 

numerical procedures. Table 4 shows the Data Set 3, which is used to show the application of 

numerical procedures and similarity solution for the generalized H-B criterion. 

Figs. 3-5 show the results of the radial displacements at the opening surface and the variations 

of re/ri, and the radial and circumferential stresses within the plastic region for each data set. Since 

the solutions for circular and spherical openings have been developed simultaneously, the results 

are shown together, using k=1 for a circular opening and k=2 for a spherical opening in the figures.  

 

 
Table 2 Data Set 1 (original H-B criterion) 

Radius of opening, ri 5.35 m Initial stress, po 3.31 MPa 

Young’s Modulus, E 1380 MPa Poisson’s ratio, ν 0.25 

σc 27.6 MPa a 0.5 

mp 0.5 mr 0.1 

sp 0.001 sr 0 

ψp 19.47
 o
 ψr 5.22

 o
 

 
Table 3 Data Set 2 (M-C criterion) 

Radius of opening, ri 3.0 m Initial stress, po 20 MPa 

Young’s modulus, E 10 GPa Poisson’s ratio, ν 0.25 

cp 1.0 MPa cr 0.7 MPa 

p
 30 

o
 r  22 

o
 

ψp = ψr 3.75 
o
   

 
Table 4 Data Set 3 (Carranza-Torres 2004) 

Radius of opening, ri 2 m Initial stress, po 15 MPa 

Young’s Modulus, E 5.7 MPa Poisson’s ratio, ν 0.3 

σcp 30 MPa σcr 25 MPa 

ap 0.55 ar 0.6 

mp 1.7 mr 0.85 

sp 0.0039 sr 0.0019 

ψp = ψr 0   
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(a) Ground response curve (b) Variation of re/ri 

  

(c) Variation of radial stress for pi=0 (d) Variation of circumferential stress for pi=0 

Fig. 3 Results for Data Set 1 

 
Table 5 Results of radial displacements (2Gu/(po-p1y)ri) at the opening surface  

(a) Circular opening (b) Spherical opening 

pi/po Case 1 Case 2 Case 3 Case 4 pi/po Case 1 Case 2 Case 3 Case 4 

0.5 0.7903 0.7903 0.7903 0.7903 0.5 0.3427 0.3427 0.3427 0.3427 

0.4 0.9484 0.9484 0.9484 0.9484 0.4 0.4112 0.4112 0.4112 0.4112 

0.3673 1.0 1.0 1.0 1.0 0.3 0.4798 0.4798 0.4798 0.4798 

0.3 1.4155 1.4154 1.4154 1.4154 0.2705 0.5 0.5 0.5 0.5 

0.2 2.5323 2.5323 2.5323 2.5323 0.2 0.7286 0.7286 0.7286 0.7286 

0.1 5.2041 5.2041 5.2041 5.2041 0.1 1.3861 1.3861 1.3861 1.3861 

0.08 6.2156 6.2156 6.2156 6.2156 0.08 1.6204 1.6204 1.6204 1.6204 

0.06 7.5854 7.5855 7.5855 7.5855 0.06 1.9280 1.9280 1.9280 1.9280 

0.04 9.5785 9.5786 9.5786 9.5786 0.04 2.3586 2.3586 2.3586 2.3586 

0.02 12.9288 12.9289 12.9288 12.9288 0.02 3.0471 3.0472 3.0472 3.0472 

0.01 15.9455 15.9456 15.9456 15.9456 0.01 3.6377 3.6377 3.6377 3.3677 

0.001 22.4643 22.4649 22.4649 22.4649 0.001 4.8433 4.8434 4.8434 4.8434 
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(a) Ground response curve (b) Variation of re/ri 

  

(c) Variation of radial stress for pi=0 (d) Variation of circumferential stress for pi=0 

Fig. 4 Results for Data Set 2 

 

  

(a) Ground response curve (b) Variation of re/ri 

  

(c) Variation of radial stress for pi=0 (d) Variation of circumferential stress for pi=0 

Fig. 5 Results for Data Set 3 
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Case-1, 2, 3, and 4 indicate the results by closed-form solution (using Eqs. (29), (30) and (33)), 

Numerical Procedure-1 (Eqs. (38), (22) and (39)), Numerical Procedure-2 (Eqs. (38), (40) and 

(39)), and similarity solution (Eqs. (38), (40), (55) and (56)), respectively. The step size of 

h=0.0001 is used for numerical procedures and similarity solution.  

For the quantitative comparison, the results of the radial displacement at the surface opening, as 

shown in Fig. 3(a), are summarized for circular and spherical openings in Table 5. 

From Figs. 3-5 and Table 5, the following observations can be made:  

(1) Excellent agreement among the results from closed-form solution, similarity solution, and 

numerical procedures can be seen for Data Set 1 and Set 2 in both circular and spherical openings. 

Thus, the accuracy of the proposed numerical procedures and similarity is satisfactory. It is noted 

that the results by the presented closed-form solution are also compared with those by the previous 

closed-form solution of Park and Kim (2006). The identical results are obtained from two 

solutions.  

(2) Excellent agreement among the results from similarity solution and two numerical 

procedures can be seen for Data Set 3 in both circular and spherical openings. Thus, the 

applicability of the proposed solutions in the analysis of generalized H-B and M-C yield criteria is 

further verified. 

(3) The displacements induced by opening from the spherical solution are about 4.7-4.9 times 

smaller than those from the circular solution. As expected, the range of plastic region induced by 

opening from the spherical solution is about 2.1-2.3 smaller than those from the circular solution. 

(4) The use of initial values, such as Eq. (45) for 


~  and Eq. (59) for ~ , is verified. Those 

initial values and similarity solution can be used for the analysis of elastic-strain softening model 

(Park 2014a). 

 

 

7. Conclusions 
 

Simple analytical and numerical solutions of the stresses and displacement for a spherical or 

circular opening excavated in elastic-brittle plastic rock masses compatible with M-C and H-B 

yield criteria have derived based on both total strain and incremental approaches. The accuracy 

and practical application of the proposed solutions were illustrated by solving three examples.  

Excellent agreement among the results from closed-form solution, similarity solution, and 

numerical procedures were obtained in both circular and spherical openings using the data set of 

H-B and M-C yield criteria. The importance of the use of proper initial values in the similarity 

solution is discussed.  

Although the solutions proposed in this paper are limited in scope, it appears to be useful for 

the preliminary design of a spherical or circular rock opening to obtain the ground response curve. 

The solutions can also be used for the validation of numerical methods, such as the finite element 

method. 
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