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Abstract.    This work presents a simple and refined nth-order shear deformation theory for mechanical and thermal 
buckling behaviors of functionally graded (FG) plates resting on elastic foundation. The proposed refined nth-order 
shear deformation theory has a new displacement field which includes undetermined integral terms and contains only 
four unknowns. Governing equations are obtained from the principle of minimum total potential energy. A Navier 
type analytical solution methodology is also presented for simply supported FG plates resting on elastic foundation 
which predicts accurate solution. The accuracy of the present model is checked by comparing the computed results 
with those obtained by classical plate theory (CPT), first-order shear deformation theory (FSDT) and higher-order 
shear deformation theory (HSDT). Moreover, results demonstrate that the proposed theory can achieve the same 
accuracy of the existing HSDTs which have more number of variables. 
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1. Introduction 
 

Functionally graded materials (FGMs) are inhomogeneous composites which have smooth and 
continuous distribution of material characteristics in space (Mahi et al. 2015, Arefi 2015a, b, 
Nguyen et al. 2015, Tagrara et al. 2015, Pradhan and Chakraverty 2015, Chen 2015, Arefi and 
Allam 2015, Bouguenina et al. 2015, Saidi et al. 2016, Celebi et al. 2016, Aizikovich et al. 2016, 
Rajabi et al. 2016, Tounsi et al. 2016, Ebrahimi and Shafiei 2016, Benferhat et al. 2016, Ait 
Atmane et al. 2017). With increasing applications, functionally graded (FG) plates are found in 
many structures and components. FG plates are mainly designed for applications under thermal 
environment (Bouafia et al. 2017, Bousahla et al. 2016, Beldjelili et al. 2016, El-Hassar et al. 
2016, Akbaş 2015, Bouchafa et al. 2015, Attia et al. 2015, Zidi et al. 2014, Bouderba et al. 2013, 
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Tounsi et al. 2013). They are often fabricated from a mixture of ceramics and metals to attain the 
significant requirement of material characteristics (Belkorissat et al. 2015). Buckling response of 
FG structures under different types of loading is important for practical applications and has 
received considerable interest. 

Lanhe (2004) analytically investigated the thermal buckling problem of a FG plate with 
moderate thickness and simply supported boundary conditions based on the FSDT. Sohn and Kim 
(2008) dealt with the stabilities of FG panels subjected to combined thermal and aerodynamic 
loads. The FSDT was used to simulate supersonic aerodynamic loads acting on the panels. 
Matsunaga (2009) proposed a two-dimensional global HSDT for thermal stability of plates made 
of FGMs. He determined the critical buckling temperatures of a simply supported FG plate under 
uniformly and linearly distributed temperatures. Zhao et al. (2009) discussed the buckling 
behavior of FG plates under mechanical and thermal loads with arbitrary geometry, including 
plates that contain square and circular holes at the centre, via the element-free kp-Ritz method. 
Tung and Duc (2010) studied buckling of thick FG plates with initial geometrical imperfection 
under thermal loadings. By Galerkin procedure, the resulting equations were solved to obtain 
analytical solutions of critical buckling temperature difference. Bachir Bouiadjra et al. (2012) 
presented a four-variable refined plate theory for buckling analysis of FG plates subjected to 
thermal loads. Bourada et al. (2012) proposed a novel four-variable refined plate theory for 
thermal buckling analysis of FG sandwich plates. Bachir Bouiadjra et al. (2013) studied the 
nonlinear response of FG plates under thermal loads using an efficient sinusoidal shear 
deformation theory. Kettaf et al. (2013) examined the thermal buckling response of FG sandwich 
plates by proposing a new hyperbolic displacement model. 

Recently, investigations of FG plates resting on elastic foundations are identified as an 
interesting field. Duc and Tung (2011) studied the buckling and post-buckling responses of thick 
FG plates supported by elastic foundations and subjected to in-plane compressive, thermal and 
thermo-mechanical loads. Yaghoobi and Torabi (2013) presented an exact solution for thermal 
buckling of FG plates resting on elastic foundations with various boundary conditions. Ait Amar 
Meziane et al. (2014) proposed an efficient and simple refined theory for buckling and free 
vibration of exponentially graded sandwich plates under various boundary conditions. Yaghoobi 
and Fereidoon (2014) presented a refined nth-order shear deformation theory for the mechanical 
and thermal buckling responses of FG plates resting on elastic foundation. Bakora and Tounsi 
(2015) studied the post-buckling of thick plates made of functionally graded material resting on 
elastic foundations and subjected to in-plane compressive, thermal and thermo-mechanical loads. 
Tebboune et al. (2015) investigated the thermal buckling of FG plates resting on elastic foundation 
based on an efficient and simple trigonometric shear deformation theory. Taibi et al. (2015) 
presented a simple shear deformation theory for thermo-mechanical behavior of FG sandwich 
plates on elastic foundations. Hadji et al. (2016a) analyzed FG beam using a new first-order shear 
deformation theory. Barati and Shahverdi (2016) presented a four-variable plate theory for thermal 
vibration of embedded FG nanoplates under non-uniform temperature distributions with different 
boundary conditions. Ghorbanpour Arani et al. (2016) examined the dynamic buckling of FGM 
viscoelastic nano-plates resting on orthotropic elastic medium based on sinusoidal shear 
deformation theory. Laoufi et al. (2016) studied the mechanical and hygrothermal behavior of FG 
plates using a hyperbolic shear deformation theory. Bouderba et al. (2016) investigated the thermal 
stability of FG sandwich plates using a simple shear deformation theory. Ghasemabadian and 
Kadkhodayan (2016) presented an investigation of buckling behavior of FG piezoelectric 
rectangular plates under open and closed circuit conditions. Barka et al. (2016) discussed the 
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thermal post-buckling behavior of imperfect temperature-dependent sandwich FGM plates resting 
on Pasternak elastic foundation. Abdelhak et al. (2016) examined the thermal buckling response of 
FG sandwich plates with clamped boundary conditions. Trinh et al. (2016) analyzed the post-
buckling responses of elastoplastic FGM beams on nonlinear elastic foundation. Becheri et al. 
(2016) studied the buckling of symmetrically laminated plates using nth-order shear deformation 
theory with curvature effects. Ebrahimi and Jafari (2016) presented the thermo-mechanical 
vibration analysis of temperature- dependent porous FG beams based on Timoshenko beam theory. 
Chikh et al. (2016) analyzed the thermo-mechanical postbuckling of symmetric S-FGM plates 
resting on Pasternak elastic foundations using hyperbolic shear deformation theory. Benahmed et 
al. (2017) presented a novel quasi-3D hyperbolic shear deformation theory for FG thick 
rectangular plates on elastic foundation. 

The present work deals with the nth-order shear deformation theory (Xiang et al. 2011). 
Moreover, the present article mainly utilizes the ideas behind the new FSDT (Mantari and 
Granados 2015) that the authors include undetermined integral terms to model the warping effect 
of the shear deformation theories. In the present work, the authors combine this idea for 
developing the nth-order shear deformation theory with modified displacement field to its 
optimization. The present theory contains only four variables and four governing equations, but it 
satisfies the stress-free boundary conditions on the top and bottom surfaces of the plate without 
requiring any shear correction factors. Governing equations are obtained from the principle of 
minimum total potential energy. Analytical solutions for mechanical and thermal buckling 
response of FG plates resting on elastic foundations are determined. Numerical examples are 
proposed to demonstrate the accuracy of the present theory. 
 
 
2. Material properties of FG plate 
 

In this work, material characteristics of a FG plate are assumed to be graded in accordance with 
the rule of mixtures as (Sugano 1990). Simple power law variation from pure metal at lower face 
(z = ‒h / 2) to pure ceramic at the upper face (z = +h / 2) in terms of the volume fractions of the 
constituents is assumed (Praveen and Reddy 1998, Bousahla et al. 2014, Al-Basyouni et al. 2015, 
Ait Yahia et al. 2015, Ait Atmane et al. 2015, Hadji et al. 2015, Hassaine Daouadji and Hadji 
2015, Bounouara et al. 2016, Ahouel et al. 2016, Boukhari et al. 2016, Hadji et al. 2016b, Houari 
et al. 2016, Bellifa et al. 2016). The mechanical and thermal characteristics of FGMs are obtained 
from the volume fraction of the material constituents. We suppose that the material characteristics 
such as the Young’s modulus (E), the thermal conductivity (K), coefficient of thermal expansion 
(α) and Poisson’s ratio (v) can be obtained by (Yaghoobi and Torabi 2013, Meksi et al. 2015) 
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where k is the power law exponent and subscripts M and C denote denote the metallic and ceramic 
components, respectively. The value of k equal to zero and infinity represents a fully ceramic and 
metal plate, respectively. 
 
 

3. Novel refined nth-order plate theory 
 

3.1 Kinematics and constitutive equations 
 

In this work, further simplifying suppositions are adopted to the nth-order shear deformation 
theory so that the number of variables is reduced. The kinematic of the conventional nth-order 
shear deformation theory is given by (Xiang et al. 2011) 
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where u0, v0, w0, ϕx and ϕy are five unknown displacement functions of the mid-plane of the plate; 

and h is the thickness of the plate. By considering that  dxyxx ),(  and ,),( dyyxy   the 

displacement field of the new refined theory can be expressed in a simpler form as (Chikh et al. 
2017, Bourada et al. 2016, Merdaci et al. 2016, Hebali et al. 2016, Meftah et al. 2017, Meksi et al. 
2017) 
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It can be observed that the displacement field in Eq. (3) uses only four unknowns (u0, v0, w0 and 
θ). The nonzero strains associated with the kinematic in Eq. (3) are 
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where 
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The integrals appearing in the above expressions shall be resolved by a Navier type solution 
and can be expressed as follows 
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where the coefficients A′ and B′ are expressed according to the type of solution used, in this case 
via Navier. Therefore, A′ and B′ are expressed as follows 
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where α and β are defined in expression (19). 
It should be noted that unlike the FSDT, this theory does not require shear correction factors. 

Moreover, the constitutive relations of a FG plate can be written as 
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where T(z) is the temperature difference with respect to the reference and Cij (i, j = 1, 2, 4, 5, 6) is 
the elastic stiffness of the FG plate given by 
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3.2 Stability equations 
 
The equilibrium equations of FG plates resting on elastic foundation under thermo-mechanical 

loadings may be determined on the basis of the stationary potential energy (Reddy 1984). The 
equilibrium equations are deduced as 
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where Kw is the modulus of subgrade reaction (elastic coefficient of the foundation) and Ks is the 
shear moduli of the subgrade (shear layer foundation stiffness). 

Using constitutive relations, the stress and moment resultants are expressed as 
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Upon substitution of Eq. (5) into Eq. (9) and the subsequent results into Eq. (12) the stress 

resultants are determined in the matrix form as 
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where stiffness components are given as 
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The stress and moment resultants, ;T
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In order to obtain the stability equations and investigate the mechanical and thermal buckling 
response of the FG plate resting on elastic foundation, the adjacent equilibrium criterion is 
employed (Brush and Almroth 1975). By employing this approach, the governing stability 
equations are determined as 
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where ,0
xN 0

xyN  and 
0
yN  are the pre-buckling forces. Eq. (16) can be written in terms of 

displacements ) , , ,( 11
0

1
0

1
0 wvu  by substituting for the stress resultants from Eq. (13). For FG plate 

resting on elastic foundation, the governing equations Eq. (16) take the form 
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4. Analytical solution 
 

The Navier solution method is used to determine the analytical solutions for which the 
displacement functions are expressed as product of arbitrary parameters and known trigonometric 
functions to respect the governing equations and boundary conditions. 
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where Umn, Vmn, Wmn, Xmn are arbitrary parameters to be determined. α and β are defined as 

 
am /     and   bn /   (19)

 
Substituting Eq. (18) into Eq. (17), the closed-form solution of buckling load can be obtained 

from 
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By using the condensation technique to eliminate the axial displacements Umn and Vmn, Eq. (20) 
can be rewritten as 
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The system of homogeneous Eq. (22) has a nontrivial solution only for discrete values of the 
buckling load. For a nontrivial solution, the determinant of the coefficients (Wmn, Xmn) must equal 
zero 

0
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The obtained equation may be solved for the buckling load. This gives the following relation 
for buckling load 
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4.1 Mechanical buckling 
 
In this part, a simply supported rectangular plate resting on elastic foundation with length a and 

width b is considered by applying axial loading in two directions ,1
0
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.00 xyN  By employing the Eq. (25), the following expression for mechanical buckling load is 

determined 
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The critical buckling load is the minimum value of the determinant for values of m and n. 
 
4.2 Thermal buckling 
 
In this case, a rectangular plate subjected to thermal loads is considered. To obtain the critical 

buckling temperature, the pre-buckling thermal loads should be determined. Hence, solving the 
membrane form of the equilibrium equations and by employing the technique proposed by Meyers 
and Hyer (1991), the pre-buckling load resultants of FG plate exposed to the temperature variation 
within the thickness are found to be (Yaghoobi and Torabi 2013) 
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In this article, to examine the effect of the considered type of temperature variation within the 

thickness on stability buckling response of FG plate resting on elastic foundation, three types of 
thermal loading within the plate thickness are taken. 

 
4.2.1 Uniform temperature rise (UTR) 
It is supposed that the initial uniform temperature of the FG plate is Ti, and the temperature is 

uniformly elevated to a final value Tf such that the plate buckles. Thus, the temperature change is 
(Yaghoobi and Torabi 2013) 
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By employing the Eqs. (25), (27), and (28) the following equation for thermal buckling load is 

deduced 
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4.2.2 Linear temperature distribution through the thickness (LTD) 
The following linear temperature distribution within the thickness of the FG plate is considered 

(Yaghoobi and Torabi 2013) 
 

MCM TTTT
h

z
h

T
zT 






 


           ,

2
)(  (30)

 
Identically to the UTR procedure, the following expression for thermal buckling load is 

deduced 
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4.2.3 Non-linear temperature distribution through the thickness (NTD) 
The temperature field considered to be uniform over the plate surface but varying across the 

thickness direction due to heat conduction. In this a case, the temperature variation across the 
thickness can be determined by solving the steady-state heat transfer equation as (Yaghoobi and 
Torabi 2013) 
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The differential Eq. (32) can be easily solved by employing the polynomial series. Thus, the 

temperature variation within the plate thickness is determined as 
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Following the same procedure as indicated in Section 4.2.1, we can determine the ΔT. Needless 

to say that the lowest value among all of these ΔT for each m and n is known as the critical 
buckling temperature difference ΔTcr. 
 
 
5. Results and discussion 
 

In this section, numerical examples are examined and discussed for checking the accuracy of 
the proposed theory in computing the mechanical and thermal buckling forces. Analytical 
solutions are determined by employing the Navier method for simply supported FG plates resting 
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on Winkler-Pasternak elastic foundations. Critical buckling loads are determined and the 
comparison is carried out with the existing results. For numerical results, an Al/Al2O3 plate made 
of aluminum (as metal) and alumina (as ceramic) is assumed. The Young’s modulus, thermal 
conductivity and coefficient of thermal expansion are EM = 70 GPa, αM = 23×10-6/°C, KM = 204 
W/mK and those of alumina are EC = 380 GPa, αC = 7.4×10-6/°C, KC = 10.4 W/mK, respectively. 
The Poisson’s ratio of the plate is considered to be constant within the thickness and equal to 0.3 
(Duc and Tung 2011, Yaghoobi and Torabi 2013). For convenience, the following nondimensional 
quantities are employed in presenting the numerical results in tabular form 
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5.1 Comparisons for mechanical stability 
 
Example 1: The dimensionless critical buckling forces N

~
of simply supported thin 

homogeneous square plate without or resting on elastic foundations are given in Table 1. The 
obtained results are compared with those given by Lam et al. (2000) based on CPT, Akhavan et al. 
(2009) and Sobhy (2013) based on FSDT and Yaghoobi and Fereidoon (2014) based on RPT. It is 
mentioned that the solutions of Lam et al. (2000) are deduced via the Green’s function. Good 
agreement is observed between the proposed theory and the published ones. Also, Table 2 
demonstrates the dimensionless buckling loads N̂ of simply supported homogeneous plate under 
in-plane compression (χ1 = ‒1, χ2 = 0). The computed results based on the proposed model are 
compared with those of Akhavan et al. (2009) and Sobhy (2013) based on FSDT, and Yaghoobi 
and Fereidoon (2014) based on RPT. Excellent agreement can be seen for different values of 
foundation coefficients, wK  and ,sK aspect ratio a/b, and thickness ratio h/a. 

 
Example 2: Tables 3-5 list the dimensionless critical buckling forces N  of simply supported 

Al/Al2O3 square plate for different values of gradient index k and foundation coefficients wK  and 
 
 

Table 1 Comparison of non-dimensional critical buckling load N
~

 of a simply supported thin homogeneous 
square plate resting on elastic foundations (a / h = 1000, χ1 = ‒1, χ2 = 0) 

Theory 
),( sw KK  

(0,0) (0,100) (100,0) (100,100) 

CPT (Lam et al. 2000) 4.00000 18.92a 5.027 19.17a 

FSDT (Akhavan et al. 2009) 3.99998 18.9151a 5.02658 19.1717a 

FSDT (Sobhy 2013) 3.99998 18.91506a 5.02658 19.17171a 

(Yaghoobi and Fereidoon 2014) n = 3 3.99990 18.91400 a 5.02650 19.17200 

Present n = 3 3.99999 18.91513 a 5.02659 19.17178 a 

Present n = 5 3.99999 18.91514 a 5.02659 19.17179 a 

Present n = 6 3.99999 18.91514 a 5.02659 19.17179 a 

Present n = 7 3.99999 18.91514 a 5.02659 19.17179 a 
a Mode for plate is (m, n) = (2, 1) 
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Table 2 Comparison of non-dimensional critical buckling load N̂  of a simply supported homo-
geneous plate resting on elastic foundations (χ1 = ‒1, χ2 = 0) 

a / b ),( sw KK  Theory 
a / h 

5 10 100 1000 

0.5 

(0,0) 

FSDT (*) 54.3207 59.6629 61.6641 61.6848 

FSDT (**) 54.0859 59.5887 61.6633 61.6848 

RPT (***) n = 3 54.0737 59.5856 61.6633 61.6848 

Present n = 3 54.0737 59.5856 61.6633 61.6848 

Present n = 5 54.2031 59.6265 61.6637 61.6848 

Present n = 9 54.4901 59.7136 61.6647 61.6848 

(100,10) 

FSDT (*) 144.6952 150.1910 152.1930 152.2130 

FSDT (**) 144.6140 150.1170 152.1920 152.2130 

RPT (***) n = 3 144.6022 150.1141 152.1918 152.2133 

Present n = 3 144.6022 150.1141 152.1918 152.2133 

Present n = 5 144.7315 150.1549 152.1922 152.2133 

Present n = 9 145.0185 150.2421 152.1931 152.2133 

(1000,100)

FSDT (*) 643.5000b 686.1710a 704.3860a 704.5890a 

FSDT (**) 641.380b 685.567a 704.378a 704.589a 

RPT (***) n = 3 640.9782 b 685.5369 a 704.3775 a 704.5888 a 

Present n = 3 640.9782 b 685.5369 a 704.3775 a 704.5888 a 

Present n = 5 642.1623 b 685.8694 a 704.3819 a 704.5888 a 

Present n = 9 646.0620 b 686.6014 a 704.3910 a 704.5889 a 

1 

(0,0) 

FSDT (*) 32.4414 37.4477 39.457 39.4782 

FSDT (**) 32.2398 37.3753 39.4562 39.4782 

RPT (***) n = 3 32.2276 37.3721 39.4562 39.4782 

Present n = 3 32.2276 37.3721 39.4562 39.4782 

Present n = 5 32.3387 37.4120 39.4566 39.4782 

Present n = 9 32.5932 37.4977 39.4576 39.4782 

(100,10) 

FSDT (*) 55.0289a 67.5798 69.5891 69.6103 

FSDT (**) 54.6116a 67.5074 69.5883 69.6103 

RPT (***) n = 3 54.5692 a 67.5042 69.5883 69.6103 

Present n = 3 54.5692 a 67.5042 69.5883 69.6103 

Present n = 5 54.7998 a 67.5441 69.5887 69.6103 

Present n = 9 55.4045 a 67.6299 69.5897 69.6103 

(1000,100)

FSDT (*) 174.9760b 204.6510 a 211.9610 a 212.0140 a 

FSDT (**) 174.391b 204.416 a 211.928 a 212.014 a 

RPT (***) n = 3 174.2676 b 204.4040 a 211.9285 a 212.0145 a 

Present n = 3 174.2676 b 204.4040 a 211.9285 a 212.0145 a 

Present n = 5 174.5952 b 204.5334 a 211.9302 a 212.0145 a 

Present n = 9 175.7258 b 204.8204 a 211.9340 a 212.0145 a 
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Table 2 Continued 

a / b ),( sw KK  Theory 
a / h 

5 10 100 1000 

2 

(0,0) 

FSDT (*) 19.2255 b 32.4414 a 39.3930 a 39.4776 a 

FSDT (**) 19.0400 b 32.2398 a 39.3897 a 39.4775 a 

RPT (***) n = 3 18.9794 b 32.2276 a 39.3896 a 39.4775 a 

Present n = 3 18.9794 b 32.2276 a 39.3896 a 39.4775 a 

Present n = 5 19.0850 b 32.3387 a 39.3914 a 39.4775 a 

Present n = 9 19.5382 b 32.5932 a 39.3952 a 39.4776 a 

(100,10) 

FSDT (*) 22.7476c 37.5182b 45.0262 a 45.1108 a 

FSDT (**) 22.6778c 37.8581 b 45.0229 a 45.1108 a 

RPT (***) n = 3 22.5785 c 37.8358 b 45.0228 a 45.1108 a 

Present n = 3 22.5785 c 37.8358 b 45.0228 a 45.1108 a 

Present n = 5 22.6248 c 37.9967 b 45.0246 a 45.1108 a 

Present n = 9 23.1299 c 38.3858 b 45.0284 a 45.1108 a 

(1000,100)

FSDT (*) – 72.8290 c 85.0953b 85.2563b 

FSDT (**) 52.2276d 72.4117 c 85.0889b 85.2562b 

RPT (***) n = 3 50.0214 d 72.3694 c 85.0887 b 85.2562 b 

Present n = 3 50.0214 d 72.3694 c 85.0887 b 85.2562 b 

Present n = 5 49.9604 d 72.5999 c 85.0921 b 85.2562 b 

Present n = 9 50.4899 d 73.2046 c 85.0994 b 85.2563 b 
(*) (Akhavan et al. 2009); (**) (Sobhy 2013); (** *) (Yaghoobi and Fereidoon 2014) 
a Mode for plate is (m, n) = (2, 1); b Mode for plate is (m, n) = (3, 1); 
c Mode for plate is (m, n) = (4, 1); d Mode for plate is (m, n) = (5, 1) 

 
 
 

Table 3 Comparison of non-dimensional critical buckling load N  of a simply supported FG plate 
resting on elastic foundations (a / b = 1, a / h = 1, χ1 = ‒1, χ2 = 0) 

),( sw KK  Theory 
k 

0 0.5 1 2 5 10 

(0,0) 

TSDT (*) 18.5785 12.1229 9.3391 7.2631 6.0353 5.4528 

Present n = 3 18.5785 12.1229 9.3391 7.2631 6.0353 5.4528 

Present n = 5 18.5983 12.1337 9.3476 7.2744 6.0593 5.4700 

Present n = 7 18.6224 12.1468 9.3578 7.2855 6.0780 5.4869 

Present n = 9 18.6409 12.1569 9.3657 7.2938 6.0911 5.4999 

(100,10) 

TSDT (*) 21.3379 14.8823 12.0985 10.0224 8.7947 8.2122 

Present n = 3 21.3379 14.8823 12.0985 10.0224 8.7947 8.2122 

Present n = 5 21.3577 14.8930 12.1069 10.0337 8.8187 8.2294 

Present n = 7 21.3817 14.9062 12.1172 10.0448 8.8373 8.2463 

Present n = 9 21.4003 14.9163 12.1251 10.0532 8.8504 8.2592 
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Table 3 Continued 

),( sw KK  Theory 
k 

0 0.5 1 2 5 10 

(1000,100) 

TSDT (*) 40.6477a 31.4605a 27.4319a 24.3470a 22.3602a 21.4516a 

Present n = 3 40.6477 a 31.4605 a 27.4319 a 24.3470 a 22.3602 a 21.4516 a 

Present n = 5 40.7120 a 31.4960 a 27.4600 a 24.3845 a 22.4373 a 21.5053 a 

Present n = 7 40.7922 a 31.5405 a 27.4950 a 24.4222 a 22.4982 a 21.5593 a 

Present n = 9 40.8547 a 31.5750 a 27.5222 a 24.4506 a 22.5415 a 21.6010 a 
(*) (Thai and Kim 2013); a Mode for plate is (m, n) = (2, 1) 

 
 
.sK  The computed dimensionless critical buckling loads are compared with those given by Thai 

and Kim (2013). It should be noted that the results given by Thai and Kim (2013) were based on 
TSDT with five independent variables. In these tables, three different loading cases are assumed, 
and six arbitrary values of the gradient index k are considered. Three combinations of foundation 
coefficients, wK  and sK  are also considered. It can be observed that the results computed using 
the proposed model are in excellent agreement with those reported by Thai and Kim (2013) for all 
loading types, power law index, and foundation coefficients. It should be signaled that in this 
example the dimensionless foundation coefficients, wK  and sK  are Kwa4/DM and Ksa

4/DM 
respectively. 

 
 

Table 4 Comparison of non-dimensional critical buckling load N  of a simply supported FG plate 
resting on elastic foundations (a / b = 1, a / h = 1, χ1 = 0, χ2 = ‒1) 

),( sw KK  Theory 
k 

0 0.5 1 2 5 10 

(0,0) 

TSDT (*) 18.5785 12.1229 9.3391 7.2631 6.0353 5.4528 

Present n = 3 18.5785 12.1229 9.3391 7.2631 6.0353 5.4528 

Present n = 5 18.5983 12.1337 9.3476 7.2744 6.0593 5.4700 

Present n = 7 18.6224 12.1468 9.3578 7.2855 6.0780 5.4869 

Present n = 9 18.6409 12.1569 9.3657 7.2938 6.0911 5.4999 

(100,10) 

TSDT (*) 21.3379 14.8823 12.0985 10.0224 8.7947 8.2122 

Present n = 3 21.3379 14.8823 12.0985 10.0224 8.7947 8.2122 

Present n = 5 21.3577 14.8930 12.1069 10.0337 8.8187 8.2294 

Present n = 7 21.3817 14.9062 12.1172 10.0448 8.8373 8.2463 

Present n = 9 21.4003 14.9163 12.1251 10.0532 8.8504 8.2592 

(1000,100) 

TSDT (*) 40.6477e 31.4605e 27.4319e 24.3470e 22.3602e 21.4516e 

Present n = 3 40.6477 e 31.4605 e 27.4319 e 24.3470 e 22.3602 e 21.4516 e 

Present n = 5 40.7120 e 31.4960 e 27.4600 e 24.3845 e 22.4373 e 21.5053 e 

Present n = 7 40.7922 e 31.5405 e 27.4950 e 24.4222 e 22.4982 e 21.5593 e 

Present n = 9 40.8547 e 31.5750 e 27.5222 e 24.4506 e 22.5415 e 21.6010 e 
(*) (Thai and Kim 2013); a Mode for plate is (m, n) = (1, 2) 
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Table 5 Comparison of non-dimensional critical buckling load N  of a simply supported FG plate 
resting on elastic foundations (a / b = 1, a / h = 1, χ1 = 1, χ2 = ‒1) 

),( sw KK  Method 
k 

0 0.5 1 2 5 10 

(0,0) 

TSDT (*) 9.2893 6.0615 4.6695 3.6315 3.0177 2.7264 

Present n = 3 9.2893 6.0615 4.6696 3.6315 3.0177 2.7264 

Present n = 5 9.2992 6.0668 4.6738 3.6372 3.0297 2.7350 

Present n = 7 9.3112 6.0734 4.6789 3.6427 3.0390 2.7435 

Present n = 9 9.3205 6.0785 4.6829 3.6469 3.0455 2.7499 

(100,10) 

TSDT (*) 10.6689 7.4411 6.0492 5.0112 4.3973 4.1061 

Present n = 3 10.6689 7.4411 6.0492 5.0112 4.3973 4.1061 

Present n = 5 10.6788 7.4465 6.0535 5.0169 4.4093 4.1147 

Present n = 7 10.6909 7.4531 6.0586 5.0224 4.4187 4.1231 

Present n = 9 10.7001 7.4581 6.0625 5.0266 4.4252 4.1296 

(1000,100) 

TSDT (*) 23.0860 19.8582 18.4663 17.4283 16.8144 16.5232 

Present n = 3 23.0860 19.8582 18.4663 17.4283 16.8144 16.5232 

Present n = 5 23.0959 19.8636 18.4705 17.4339 16.8264 16.5318 

Present n = 7 23.1079 19.8702 18.4757 17.4395 16.8357 16.5402 

Present n = 9 23.1172 19.8752 18.4796 17.4437 16.8423 16.5467 

 
 
5.2 Comparisons for thermal stability 
 
Example 3: In order to check the thermal stability solutions determined in this work, the 

critical buckling temperature difference, ΔTcr, for FG plates resting on Winkler-Pasternak elastic 
foundations for the UTR, LTD and NTD are presented in Tables 6-8, respectively. It can be 
deduced from Tables 6–8 that there is a very good agreement between the present theory (with four 
variables) and other higher-order plate theories (with five variables). The significant differences 

 
 

Table 6 Comparison of critical buckling temperature difference ΔTcr × 10-3 of square FG plate resting on 
elastic foundation under UTR 

k Theory 
),( sw KK  = (0,0) ),( sw KK  = (10,0) ),( sw KK  = (10,10) 

a/h = 5 a/h = 10 a/h = 20 a/h = 5 a/h = 10 a/h = 20 a/h = 5 a/h = 10 a/h = 20

0 

CPT (a) 6.83964 1.70991 0.42748 7.01519 1.7538 0.43845 10.48019 2.62005 0.65501

FSDT (b) 5.58069 1.61862 0.42153 5.75623 1.66251 0.43251 9.22123 2.52876 0.64907

HSDT (a) 5.58344 1.61868 0.42154 5.75899 1.66257 0.43251 9.22398 2.52882 0.64907

TPT (a) 5.58556 1.61882 0.42154 5.76109 1.6627 0.43252 9.2261 2.52896 0.64908

RPT (c) n = 3 5.58344 1.61868 0.42154 5.75898 1.66257 0.43251 9.22398 2.52882 0.64907

Present n = 3 5.58344 1.61868 0.42154 5.75898 1.66257 0.43251 9.22398 2.52882 0.64907

Present n = 5 5.60269 1.62041 0.42165 5.77823 1.66429 0.43263 9.24323 2.53055 0.64919

Present n = 9 5.64677 1.62412 0.42191 5.82231 1.66801 0.43288 9.28731 2.53426 0.64944
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Table 6 Continued 

k Theory 
),( sw KK  = (0,0) ),( sw KK  = (10,0) ),( sw KK  = (10,10) 

a/h = 5 a/h = 10 a/h = 20 a/h = 5 a/h = 10 a/h = 20 a/h = 5 a/h = 10 a/h = 20

1 

CPT (a) 3.17751 0.79438 0.19859 3.34112 0.83528 0.20882 6.57068 1.64267 0.41067

FSDT (b) 2.67039 0.75837 0.19626 2.834 0.79928 0.20649 6.06356 1.60667 0.40834

HSDT (a) 2.67153 0.7584 0.19627 2.83515 0.7993 0.20649 6.0647 1.60669 0.40835

TPT (a) 2.67241 0.75845 0.19627 2.83603 0.79935 0.20649 6.06558 1.60674 0.40834

RPT (c) n = 3 2.67153 0.75840 0.19627 2.83514 0.79930 0.20649 6.06470 1.60669 0.40834

Present n = 3 2.67153 0.75840 0.19627 2.83514 0.79930 0.20649 6.06470 1.60669 0.40834

Present n = 5 2.67951 0.75908 0.19631 2.84312 0.79999 0.20654 6.07268 1.60738 0.40839

Present n = 9 2.69776 0.76056 0.19641 2.86137 0.80146 0.20664 6.09094 1.60885 0.40848

5 

CPT (a) 2.90629 0.72657 0.18164 3.13305 0.78326 0.19582 7.60938 1.90234 0.47559

FSDT (b) 2.35948 0.68678 0.17905 2.58625 0.74347 0.19322 7.06257 1.86255 0.47299

HSDT (a) 2.27501 0.67931 0.17854 2.50179 0.736 0.19271 6.9781 1.85508 0.47248

TPT (a) 2.27131 0.67895 0.17851 2.49808 0.73564 0.19268 6.9744 1.85472 0.47245

RPT (c) n = 3 2.27501 0.67931 0.17854 2.50178 0.73600 0.19271 6.97810 1.85508 0.47248

Present n = 3 2.27501 0.67931 0.17854 2.50178 0.73600 0.19271 6.97810 1.85508 0.47248

Present n = 5 2.30466 0.68201 0.17872 2.53144 0.73871 0.19290 7.00775 1.85779 0.47267

Present n = 9 2.34556 0.68559 0.17897 2.57233 0.74228 0.19314 7.04865 1.86136 0.47291

10 

CPT (a) 2.9877 0.74693 0.18673 3.24365 0.81091 0.20273 8.29575 2.07394 0.51848

FSDT (b) 2.36822 0.70108 0.18373 2.62416 0.76507 0.19972 7.67626 2.02809 0.51548

HSDT (a) 2.27678 0.69269 0.18314 2.53273 0.75668 0.19914 7.58483 2.0197 0.5149

TPT (a) 2.27551 0.69254 0.18313 2.53146 0.75653 0.19913 7.58356 2.01955 0.51489

RPT (c) n = 3 2.27679 0.69269 0.18314 2.53273 0.75668 0.19914 7.58483 2.01970 0.51490

Present n = 3 2.27679 0.69269 0.18314 2.53273 0.75668 0.19914 7.58483 2.01970 0.51490

Present n = 5 2.29950 0.69488 0.18330 2.55544 0.75886 0.19929 7.60754 2.02189 0.51505

Present n = 9 2.34110 0.69867 0.18356 2.59704 0.76266 0.19956 7.64914 2.02568 0.51531
(a) (Zenkour and Sobhy 2011); (b) (Yaghoobi and Torabi 2013a); (c) (Yaghoobi and Fereidoon 2014) 

 
 
 

Table 7 Comparison of critical buckling temperature difference ΔTcr × 10-3 of square FG plate resting on 
elastic foundation under LTD 

k Theory 
),( sw KK  = (0,0) ),( sw KK  = (10,0) ),( sw KK  = (10,10) 

a/h = 5 a/h = 10 a/h = 20 a/h = 5 a/h = 10 a/h = 20 a/h = 5 a/h = 10 a/h = 20

0 

CPT (a) 13.66929 3.40982 0.84496 14.02036 3.49759 0.8669 20.95037 5.23009 1.30002

FSDT (b) 11.15138 3.22725 0.83307 11.50246 3.31502 0.85501 18.43246 5.04752 1.28814

HSDT (a) 11.15688 3.22736 0.83307 11.50796 3.31513 0.85501 18.43797 5.04764 1.28814

TPT (a) 11.16112 3.22764 0.83309 11.5122 3.31541 0.85503 18.4422 5.04791 1.28816

RPT (c) n = 3 11.15688 3.22736 0.83307 11.50796 3.31513 0.85501 18.43797 5.04764 1.28814
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Table 7 Continued 

k Theory 
),( sw KK  = (0,0) ),( sw KK  = (10,0) ),( sw KK  = (10,10) 

a/h = 5 a/h = 10 a/h = 20 a/h = 5 a/h = 10 a/h = 20 a/h = 5 a/h = 10 a/h = 20

0 

Present n = 3 11.15688 3.22736 0.83307 11.50796 3.31513 0.85501 18.43797 5.04764 1.28814

Present n = 5 11.19537 3.23082 0.83331 11.54645 3.31859 0.85525 18.47646 5.05109 1.28838

Present n = 9 11.28354 3.23824 0.83381 11.63462 3.32601 0.85575 18.56463 5.05852 1.28888

1 

CPT (a) 5.94993 1.48045 0.36308 6.25678 1.55716 0.38226 12.31372 3.0714 0.76082

FSDT (b) 4.99885 1.41292 0.35871 5.3057 1.48964 0.37789 11.36263 3.00387 0.75645

HSDT (a) 5.00099 1.41297 0.35871 5.30784 1.48968 0.37789 11.36477 3.00391 0.75645

TPT (a) 5.00264 1.41307 0.35872 5.30948 1.48978 0.37789 11.36642 3.00402 0.75645

RPT (c) n = 3 5.00099 1.41297 0.35871 5.30784 1.48968 0.37789 11.36477 3.00391 0.75645

Present n = 3 5.00099 1.41297 0.35871 5.30784 1.48968 0.37789 11.36477 3.00391 0.75645

Present n = 5 5.01595 1.41426 0.35880 5.32280 1.49097 0.37798 11.37974 3.00520 0.75654

Present n = 9 5.05019 1.41702 0.35898 5.35703 1.49374 0.37816 11.41397 3.00797 0.75672

5 

CPT (a) 4.99396 1.24204 0.30405 5.3843 1.33962 0.32845 13.08936 3.26588 0.81002

FSDT (b) 4.05274 1.17354 0.29959 4.44308 1.27113 0.32399 12.14814 3.19739 0.80555

HSDT (a) 3.90735 1.16069 0.29871 4.2977 1.25827 0.3231 12.00275 3.18453 0.80467

TPT (a) 3.90098 1.16006 0.29866 4.29132 1.25765 0.32306 11.99637 3.18391 0.80462

RPT (c) n = 3 3.90735 1.16069 0.29871 4.29770 1.25827 0.32310 12.00275 3.18453 0.80467

Present n = 3 3.90735 1.16069 0.29871 4.29770 1.25827 0.32310 12.00275 3.18453 0.80467

Present n = 5 3.95839 1.16534 0.29903 4.34873 1.26293 0.32342 12.05379 3.18919 0.80499

Present n = 9 4.02878 1.17149 0.29945 4.41913 1.26907 0.32385 12.12418 3.19534 0.80541

10 

CPT (a) 5.28555 1.31474 0.32204 5.7391 1.42813 0.35039 14.69174 3.66629 0.90993

FSDT (b) 4.18778 1.2335 0.31672 4.64132 1.34688 0.34506 13.59396 3.58504 0.9046

HSDT (a) 4.02576 1.21864 0.31568 4.4793 1.33203 0.34403 13.43194 3.57019 0.90357

TPT (a) 4.0235 1.21837 0.31566 4.47705 1.33176 0.34401 13.42969 3.56992 0.90355

RPT (c) n = 3 4.02576 1.21864 0.31568 4.47930 1.33203 0.34403 13.43194 3.57019 0.90357

Present n = 3 4.02576 1.21864 0.31568 4.47930 1.33203 0.34403 13.43194 3.57019 0.90357

Present n = 5 4.06600 1.22251 0.31596 4.51954 1.33589 0.34430 13.47218 3.57405 0.90384

Present n = 9 4.13972 1.22923 0.31642 4.59326 1.34261 0.34477 13.54590 3.58077 0.90431
(a) (Zenkour and Sobhy 2011); (b) (Yaghoobi and Torabi 2013a); (c) (Yaghoobi and Fereidoon 2014) 

 
 

deformation effect which is neglected by CPT. In addition, an excellent agreement is demonstrated 
between the present model and RPT for all values of k and a / h. 

In Fig. 1, the influence of the power law index (k) on the dimensionless critical buckling forces 
N  of a square FG plate resting on elastic foundations is examined. It can be deduced from this 
figure that the dimensionless critical buckling load initially diminishes, and then the variation of 
curves are not significant by increasing in the value of the power law index. Fig. 2 shows the 
variation of the ΔTcr versus the variation of the a / h for all three types of thermal loads. From this 
figure, it can be observed that ΔTcr is highest for NTD compare with two other thermal loads. 
Moreover, with increasing the plate side-to-thickness ratio, the ΔTcr diminishes. 
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Table 8 Comparison of critical buckling temperature difference ΔTcr × 10-3 of square FG plate resting on 
elastic foundation under NTD 

k Theory 
),( sw KK  = (0,0) ),( sw KK  = (10,0) ),( sw KK  = (10,10) 

a/h = 5 a/h = 10 a/h = 20 a/h = 5 a/h = 10 a/h = 20 a/h = 5 a/h = 10 a/h = 20

0 

CPT (a) 13.66929 3.40982 0.84496 14.02036 3.49759 0.8669 20.95037 5.23009 1.30002

FSDT (b) 11.15138 3.22725 0.83307 11.50246 3.31502 0.85501 18.43246 5.04752 1.28814

HSDT (a) 11.15688 3.22736 0.83307 11.50796 3.31513 0.85501 18.43797 5.04764 1.28814

TPT (a) 11.16112 3.22764 0.83309 11.5122 3.31541 0.85503 18.4422 5.04791 1.28816

RPT (c) n = 3 11.15688 3.22736 0.83307 11.50796 3.31513 0.85501 18.43797 5.04764 1.28814

Present n = 3 11.15688 3.22736 0.83307 11.50796 3.31513 0.85501 18.43797 5.04764 1.28814

Present n = 5 11.19537 3.23082 0.83331 11.54645 3.31859 0.85525 18.47646 5.05109 1.28838

Present n = 9 11.28354 3.23824 0.83381 11.63462 3.32601 0.85575 18.56463 5.05852 1.28888

1 

CPT (a) 8.25905 2.055 0.50399 8.68499 2.16148 0.53061 17.09257 4.26338 1.05608

FSDT (b) 6.93886 1.96127 0.49792 7.36479 2.06775 0.52454 15.77238 4.16965 1.05002

HSDT (a) 6.94183 1.96133 0.49792 7.36777 2.06781 0.52455 15.77535 4.16971 1.05002

TPT (a) 6.94412 1.96147 0.49793 7.37005 2.06796 0.52455 15.77763 4.16985 1.05003

RPT (c) n = 3 6.94183 1.96133 0.49792 7.36777 2.06781 0.52455 15.77535 4.16971 1.05002

Present n = 3 6.94183 1.96133 0.49792 7.36777 2.06781 0.52455 15.77535 4.16971 1.05002

Present n = 5 6.96261 1.96312 0.49805 7.38854 2.06960 0.52467 15.79612 4.17150 1.05014

Present n = 9 7.01012 1.96696 0.49830 7.43606 2.07344 0.52492 15.84364 4.17534 1.05040

5 

CPT (a) 6.24563 1.55334 0.38026 6.73381 1.67538 0.41077 16.37004 4.08444 1.01304

FSDT (b) 5.06851 1.46768 0.37468 5.55669 1.58972 0.40519 15.19291 3.99878 1.00745

HSDT (a) 4.88668 1.4516 0.37357 5.37486 1.57364 0.40408 15.01109 3.9827 1.00635

TPT (a) 4.87871 1.45082 0.37352 5.36688 1.57286 0.40403 15.00311 3.98192 1.00629

RPT (c) n = 3 4.88668 1.45160 0.37357 5.37486 1.57364 0.40408 15.01109 3.98270 1.00635

Present n = 3 4.88668 1.45160 0.37357 5.37486 1.57364 0.40408 15.01109 3.98270 1.00635

Present n = 5 4.95051 1.45742 0.37398 5.43869 1.57946 0.40449 15.07492 3.98852 1.00675

Present n = 9 5.03855 1.46511 0.37450 5.52672 1.58715 0.40501 15.16295 3.99621 1.00728

10 

CPT (a) 6.10899 1.51957 0.37221 6.6332 1.65062 0.40497 16.98057 4.23746 1.05169

FSDT (b) 4.8402 1.42567 0.36606 5.3644 1.55672 0.39882 15.71178 4.14356 1.04553

HSDT (a) 4.65293 1.40849 0.36486 5.17714 1.53954 0.39763 15.52451 4.12639 1.04434

TPT (a) 4.65033 1.40818 0.36484 5.17453 1.53923 0.3976 15.52191 4.12608 1.04432

RPT (c) n = 3 4.65293 1.40849 0.36486 5.17714 1.53954 0.39763 15.52451 4.12639 1.04434

Present n = 3 4.65293 1.40849 0.36486 5.17714 1.53954 0.39763 15.52451 4.12639 1.04434

Present n = 5 4.69944 1.41296 0.36518 5.22365 1.54401 0.39794 15.57102 4.13086 1.04465

Present n = 9 4.78465 1.42073 0.36572 5.30885 1.55178 0.39848 15.65623 4.13862 1.04519
(a) (Zenkour and Sobhy 2011); (b) (Yaghoobi and Torabi 2013a); (c) (Yaghoobi and Fereidoon 2014) 
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Fig. 1 Effect of the gradient index on the non-dimensional critical buckling load N  of a square FG plate 
resting on elastic foundations (a / h = 10, ,100wK )10sK  

 
 

Fig. 2 Effect of the side-to-thickness ratio on the ΔTcr of a square FG plate resting on elastic foundations 
(a / h = 20, ,10wK , ,10sK  k = 1) 

 
 

6. Conclusions 
 
An efficient and simple nth-order shear deformation theory is proposed and applied in the 

present paper for the stability investigation of FG plates resting on Winkler-Pasternak elastic 
foundations. By proposing further simplifying assumptions to the conventional HSDTs, with 
considering undetermined integral term, the number of unknowns and governing equations of the 
present theory are reduced by one, and thus, make this theory simple and efficient to use. By using 
the principle of minimum total potential energy, the governing differential equations are obtained 
and the analytical solutions based upon Navier solution procedure are also determined. Various 
numerical examples are examined to demonstrate the accuracy and efficacy of the developed 
model. Results prove that the proposed theory can be comparable with the conventional HSDTs 
with a larger number of variables. In the general case, the results calculated by n = 3 are in good 
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agreement with the conventional HSDTs with a larger number of variables. An improvement of 
present approach will be considered in the future study to account for the thickness stretching 
effect by using quasi-3D shear deformation models (Bessaim et al. 2013, Saidi et al. 2013, 
Bousahla et al. 2014, Bourada et al. 2015, Belabed et al. 2014, Fekrar et al. 2014, Hebali et al. 
2014, Larbi Chaht et al. 2014, Bennai et al. 2015, Meradjah et al. 2015, Hamidi et al. 2015, 
Draiche et al. 2016, Bennoun et al. 2016). 
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