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Abstract.  The extent by which economy and safety concerns can be addressed in earth retaining structure design 

depends on the accuracy of the assumed failure surface. Accordingly, this study attempts to investigate and quantify 

mechanical backfill properties that control failure surface geometry of cohesionless backfills at the active state for 

translational mode of wall movements. For this purpose, a small scale 1 g physical model study was conducted. The 

experimental setup simulated the conditions of a backfill behind a laterally translating vertical retaining wall in plane 

strain conditions. To monitor the influence of dilative behavior on failure surface geometry, model tests were 

conducted on backfills with different densities corresponding to different dilation angles. Failure surface geometries 

were identified using particle image velocimetry (PIV) method. Friction and dilation angles of the backfill are 

calculated as functions of failure stress state and relative density of the backfill using a well-known empirical 

equation, making it possible to quantify the influence of dilation angle on failure surface geometry. As a result, an 

empirical equation is proposed to predict active failure surface geometry for cohesionless backfills based on peak 

dilatancy angle. It is shown that the failure surface geometries calculated using the proposed equation are in good 

agreement with the identified failure surfaces. 
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1. Introduction 
 

In practice, classical theories proposed by Coulomb (1776) and Rankine (1857) are 

conventionally used in the design of geotechnical structures that retain soil. However, the 

fundamental assumption of both theories is that the shear plane formed in the backfill at the 

ultimate state is a straight line, the slope of which is only a function of the internal friction angle of 

the backfill. But, experimental evidences (Terzaghi 1936, 1943, Tsagareli 1965, Fang and Ishibashi 

1986, Toyosawa et al. 2006) and results of numerical modelling studies (Goel and Patra 2008, 

Benmeddour et al. 2012, Shukla and Bathurst 2012, Ismeik and Shaqour 2015, Keshavarz and 

Pooresmaeil 2016) suggest that backfill failure plane is nonlinear. This difference between 
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classical theories and real behavior results in computed earth pressures that deviate from actual 

values (Song et al. 2015). Many researchers have made assumptions regarding the geometry of 

failure surfaces (Bang 1985, Hazarika and Matsuzawa 1996, Paik and Salgado 2003, Wang 2000). 

Terzaghi (1936, 1943), suggested a curvilinear failure surface for walls with rough surfaces by 

conducting scaled model tests. On the other hand, Caquot and Kerisel (1948) theoretically 

assumed log spiral shape for the failure slip. Later, Tsagareli (1965) experimentally investigated 

model walls that translate without rotation and proposed curvilinear failure surfaces that can be 

mathematically defined with a power function. Spangler and Handy (1982) agreeing with Tsagareli 

on the curvilinear nature of failure surfaces, proposed a parabolic function for their quantification. 

Toyosawa et al. (2006) conducted centrifuge model tests using a movable earth support apparatus, 

investigating the influence of mode of wall movement on the geometry of failure surfaces. The 

results of their study suggested that different modes of wall movements lead to different failure 

surface geometries. Benmeddour et al. (2012) numerically examined the influence of the presence 

of a slope on the backfill soil and concluded that the shape of the failure surface is influenced by 

the location of the slope toe. 

Even though there is no consensus over the general shape of the active failure plane, it is an 

established fact that its geometry is affected by the properties of the particles, density of the 

assembly, the imposed stress state and by the mode of wall movement (Yoshimoto et al. 2006). 

Ignoring mode of wall movement, the parameter that embodies both the mechanical properties of 

the backfill and the influence of the imposed stress state is dilatancy. Several researchers attempted 

to account for the dilatancy effect by considering the mechanism of arching (Spangler and Handy 

1982, Fang and Ishibashi 1986, Goel and Patra 2008, Nadukuru and Michalowski 2012, 

Sadrekarimi and Damavandinejad 2013), but arching is a complex mechanism which is practically 

difficult to quantify. Thus, the main purposes in this study are to investigate the effect of dilatancy 

on the geometry of failure plane in plane strain condition and also to link dilatancy angle to the 

failure surface geometry. To understand the influence of dilatancy on failure surface geometry, 

influence of the mode of wall movement is ignored in this study and only translation type of 

movement is considered. This is achieved by conducting small scale retaining wall model tests. 

The dilatancy angles of the backfill soils in these tests are calculated as functions of backfill 

density and failure stress state using the equation proposed by Bolton (1986).Stresses within the 

backfill at the instance of failure are measured via the soil pressure transducers mounted on the 

model wall. At the same time, geometries of the corresponding failure surfaces are obtained using 

particle image velocimetry (PIV) method. This way, it becomes possible to investigate the 

relationship between dilatancy angle and failure surface geometry. Finally, obtained results are 

used to propose a new method for calculating the shapes of active failure surfaces as functions of 

backfill properties. 

 

 

2. The small scale retaining wall model 
 

In the present study, in order to investigate the dependency of failure surface geometry on 

dilatant properties of granular assemblies, 1 g small scale retaining wall model tests were 

conducted. The backfill soils in these tests were prepared with different relative densities (ID) to 

achieve different dilatancy angles. Physical model set-up used for this purpose consists of a testing 

box, a model retaining wall that is capable of translating laterally, a sand pluviation system, a 

storage tank, a crane, and a data acquisition system, as shown in Fig. 1(a). The distance between 
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the model wall and the rear wall is equal to 140 cm. Moreover, the testing box is 60 cm in depth, 

and 50 cm in width, as presented in Figs. 1(b) and (c). Sides of the testing box are made of 20 mm 

thick Plexiglas allowing the observation and monitoring of soil deformations, as shown in Fig. 1(a). 

As a result, photographic images of the backfill at different stages of wall deformation can be 

captured for later analysis. Captured images are analyzed using particle image velocimetry (PIV) 

method for identifying the geometry of failure surfaces. The model retaining wall is an 

aluminumplate which is rectangular in cross-section. The height and width of the model wall are 

35 cm and 50 cm, respectively. In order to minimize the adverse effects of the rigid boundary at 

the bottom, the moving plate that simulates the vertical retaining wall is located 15 cm above the 

bottom of the test box. The model wall is capable of translating laterally either towards or away 

from the retained backfill. These tests correspond to passive and active failure conditions at the 

ultimate states, respectively. 

The horizontal translation of the wall is provided by an electrical motor-actuator system. The 

displacements of the model wall are measured by an electronic ruler. Motor displacement steps 

also provide the means for validating electronic ruler measurements. Five sensitive miniature 

pressure transducers are mounted along the vertical axis of the retaining wall model for monitoring 

the variations of lateral earth pressures along the face of the wall, see Fig. 1(d). Furthermore, two 

miniature pressure transducers were buried in the backfill during the model preparation stage of 

each test to verify the vertical effective stress calculations based on measured soil densities, see 

Figs. 1(b) and (c). Data were collected via a multi-channel data logger system which is capable of 

handling an aggregate data collection rate of 400 kHz, with a maximum per channel sample rate of 

up to 500 Hz. 

 

 

  

(a) Photograph (b) Schematic verticalcross-section 

 

 

 

 

(c) Schematic plan view (d) Location of sensors on the wall 

Fig. 1 Retaining wall model set-up 
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3. Calculation of backfill dilatancy in model tests 
 

This paper attempts to investigate the influence of dilatancy on the geometry of active slip 

surfaces. Theoretically, the influence of dilatant behavior on shear planes is acknowledged 

(Salençon 1977, Chen and Liu 1990, Atkinson 1981); however, there are no experimental studies 

that attempt to monitor it for soil bodies except during element tests, such as plane strain and 

triaxial tests. The underlying reason for this absence is the difficulty associated with the 

calculation of dilatancy angle from soil properties. Dilatancy angle, which is also referred to as 

rate of dilation, varies throughout shearing tests with shear strain up to the critical state. Similar to 

the case of mobilized friction angle, maximum value of dilatancy is measured at the instance of 

shear failure in granular bodies. Maximum value of dilatancy, referred to as peak dilatancy, 

correlates well with friction angle and deformation. That is why in this study the focus is on peak 

dilatancy angle (p). For this purposethe well-known equation proposed by Bolton (1986), which 

allows the computation of peak dilatancy angle from backfill density and stress state at failure, is 

usedin the present investigation. Bolton (1986) equation yields peak dilatancy angle (p) in 

degrees as a function of relative density (ID) and mean effective stress at failure (pf) 
 

100 ' f

p R D

a

A A p
I I Q ln R

r r p

 
  

     
  

 (1) 

 

Here, Q, R and r are empirical line-fitting parameters that depend on inherent soil charac-

teristics; and pa is the atmospheric pressure. The value of the constant Aψ is 3 under axisymmetric 

conditions and 5 under plane strain conditions (Bolton 1986). Relative density (ID) varies between 

0 and 1. The values of the line-fitting parameters Q and R that are suitable for the testing sand are 

obtained through triaxial testing. The results obtained in the triaxial tests confirmed the findings of 

Chakraborty and Salgado (2010) regarding the influence of initial confining stress (𝑝𝑖
′ ) of the soil 

on the value of 𝑄. Chakraborty and Salgado (2010) examined the results of numerous triaxial and 

plane strain tests and reported that the value of the parameter Q depends on the magnitude of 

initial confining stress (𝑝𝑖
′ ) of the soil. Accordingly, they proposed that the magnitude of Q can be 

calculated with an equation of the form given in Eq. (2) 
 

'

iQ lnp    (2) 

 

Here, 𝛽  and 𝜂  are soil-specific line-fitting parameters that are obtained experimentally. 

Chakraborty and Salgado (2010) showed that Eq. (2) is suitable for stresses that range from very 

low to intermediate (stress levels prior to the commencement of grain crushing). In this study 

numerous triaxial tests were conducted with 𝑝𝑖
′  values that range from 25 kPa to 500 kPa. As a 

result, soil specific values of the parameters 𝛽 , 𝜂 , and 𝑅 are obtained. The values of the 

parameters 𝛽, 𝜂, and 𝑅 for the testing sand in this study (Akpinar Sand) are 0.4, 7.2, and 1, 

respectively. Reported experimental studiesin the literature support the fact that, same peak 

dilatancy angle is measured in plane strain and triaxial tests (Bolton 1986). Additionally, Schanz 

and Vermeer (1996) stated that by using concepts of superposition it is possible to show that the 

data from plane strain and triaxial tests yield the same angle of dilatancy at least near and beyond 

peak. Consequently, it became possible to calculate the peak dilatancy angle of the model backfill, 

which rendered the investigation of the influence of dilatancy angle on active failure surface 
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geometry feasible. 

Additionally, the value of the line-fitting parameter r can be calculated using Eq. (3) proposed 

by Bolton (1986) 

' 'p c

p

r
 




  (3) 

 

Here, c is the critical state friction angle. A similar relationship was also suggested by Bishop 

(1971). Eq. (3) can be rearranged to calculate the value of p relevant for axisymmetric conditions 

using experimentally obtained 𝑟 and 𝜙′𝑐 . Experimental results reported in the literature shows 

that measured p values in triaxial and plane strain tests slightly differ from each other (Stroud 

1971, Lade 1984, Schanz and Vermeer 1996, Hanna 2001). According to Schanz and Vermeer 

(1996), this discrepancy stems from the fact that p is dependent on density and stress path. Since 

the stress path under axisymmetric and plane strain conditions differ, measured p values also 

differ. To account for this fact, p values computed using Eq. (3) is converted into p values that 

are relevant for plane strain conditions. For this purpose, the method proposed by Hanna (2001) 

was used. The steps for this conversion method are given in detail in Hanna (2001). Hanna, testing 

the conversion method on six different sands, reported that a good agreement was obtained 

between the predicted results using the proposed method and the experimental results. Therefore, 

in the present study, p values relevant for the model backfill soils are calculated by computing the 

axisymmetric p using the rearranged version of Eq. (3), and then converting the obtained value to 

plane strain p using the method proposed by Hanna (2001). As a result, 𝑟 value, which was 

experimentally obtained as 0.39 for axisymmetric conditions, is found as 0.66 for plane strain 

conditions using Hanna (2001) method.Accordingly, plane strain p values can be calculated using 

p calculated from Eq. (1), c of the soil and r value specific to plane strain conditions. 

Calculations of the magnitudes of 𝜙′𝑝  and 𝜓𝑝  for the backfill soils requires the knowledge of 

𝑝′𝑓 . The magnitudes of 𝑝′𝑓  in model tests are calculated based on the measurements of the 

pressure transducers at the instance of failure. Since the available transducers measure normal 

stresses in the vertical direction and the horizontal direction normal to the model wall, normal 

stresses parallel to the direction of the plexiglas sidewall’s normal has to be based on assumption. 

Since plane strain conditions prevail in the horizontal direction normal to the sidewalls, it is 

assumed that the normal stresses in this direction correspond to the steady state condition. 

Therefore, normal stresses in the direction of the sidewall normal are assumed to be equal to the 

measured lateral earth pressures before any deformation. 
 

 

4. Identification of failure surface geometry 
 

Physical model studies require measurements of deformations and strains during testing. This is 

a difficult task considering the problems associated with instrumenting soil models. To overcome 

this difficulty, researchers developed different visualization tools that allow the deformations and 

strains to be computed through the test, such as X-rays (Roscoe et al. 1963, Tejchman and Wu 

1995), coloured layers and markers (Yoshida et al. 1994), X-ray-tomography (Desrues et al. 1996, 

Alshibli and Sture 2000), electrical capacitance tomography (Jaworski and Dyakowski 2001, 

Niedostatkiewicz et al. 2009), photogrammetry and stereo-photogrammetry (Butterfield et al. 

1970, Desrues 1996), particle image velocimetry (PIV) (White et al. 2003, Niedostatkiewicz et al.  
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(a) Defining square patches over images (b) Displacement vector calculation 

Fig. 2 Determination of displacement vector field 
 

 

2011, Lesniewska and Wood 2011, Lesniewska et al. 2012, Zhuang et al. 2013) and X-ray micro-

tomography (Lenoir et al. 2007). 

In this study Particle Image Velocimetry (PIV), also known as Digital Image Correlation (DIC), 

was used for measuring deformations and strains. PIV, a digital image-based surface displacement 

measurement technique, provides highly accurate measurements of evolving deformation fields. 

PIV tracks particle flow by examining the difference between a reference image and a sequence of 

deformed images. PIV analyses in this study were conducted with GeoPIV-RG, a Matlab based 

PIV software specifically utilized for geotechnical applications (Stanier et al. 2015). Use of 

GeoPIV-RG requires the selection of the area of interest within the digital image. After several 

preliminary model tests, the optimum area of interest is selected to include all the possible 

deformations during an active test. This area is shown as rectangle ABCD in Fig. 1(b). In the 

vertical direction, the ABCD rectangle always starts 10cm from below the toe of the wall, to 

capture possible deformations in the bed section, and elongates up to the top of the wall. Whereas, 

in the horizontal direction, points A and C always have couple of millimeters of overlap with the 

wall to record the wall displacement (in other words, the area of 450×250 mm is captured with 

4400×2450 pixels, of which corresponds to 10pixels per 1mm). The area ABCD is wide enough to 

cover any possible deformations and extends up to the brace, as seen in Fig. 1. The camera is 

located at fix distance from the wall, which ensures the highest precision for the captured images. 

The selected camera is capturing approximately 4 images per second which is enough for 

monitoring the quasi-static deformations in the backfill. Defined area is then divided into a grid of 

square patches as shown in Fig. 2(a). These patches are distinguished by their unique pixel 

intensity variation signatures. Afterwards, GeoPIV-RG algorithm searches the specified zone 

within the deformed image to find a patch that has maximum similarity to the initial patch 

signature. The difference between the target patch, measured in pixels, and the reference patch is 

visualized by the displacement vector as shown in Fig. 2(b). The most important advantage of 

using PIV in geotechnical problems is that, unlike hydraulics applications, target markers are not 

required since soil grains have natural textures (White et al. 2003). During the tests, images were 

captured by a digital camera having resolution of 6000 × 4000 pixels. To prevent vibration of the 

camera during the shooting, a remote controller was used. 
 

 

5. Backfill properties and sample preparation 
 

The soil used in the present investigation is Akpinar sand which is uniformly graded according 

to USCS as shown in Fig. 3. A summary of the physical characteristics of the sand is given in 
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Fig. 3 Gradation curve of Akpinar sand 
 

 

Table 1 Mechanical properties of Akpinar Sand 

Property Value 

Classification Poorly Graded (SP) 

Max. void ratio, (emax) 0.87 (ASTM D-4253) 

Min. void ratio, (emin) 0.58 (ASTM D-4254) 

D10 0.22 

D30 0.24 

D50 0.27 

D60 0.28 

Uniformity coefficient, (Cu) 1.23 

Coefficient of gradation, (Cc) 0.97 

Specific gravity, (Gs) 2.63 

Average sphericity, (Save) 0.7 

Average roundness, (Rave) 0.5 

Dilatancy effect on friction for axisymmetric conditions, (rtx) 0.39 

Dilatancy effect on friction for plane strain conditions (rps) 0.66 

Critical state friction angle, (ϕ'c (°)) 33 

 

 

Table 1. Average sphericity and roundness values for Akpinar Sand were obtained based on the 

grain shape charts proposed by Cho et al. (2006). Direct shear tests were conducted to measure the 

interface friction angle between the model wall and the backfill. In this study, two types of model 

wall surfaces have been used. For most of the tests, smooth steel surface has been used, and 

several additional model tests were conducted with sandpaper glued to the wall surface to 

investigate the influence of wall roughness on the geometry of failure planes. Accordingly, for 

backfill densities ranging from loosest to densest, wall-backfill interface friction angle was 

measured to vary between 19 and 23 for smooth surface, and between 35 and 45 for rough 

surface, respectively. In order to maintain plane strain conditions, low friction transparent high 
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density polyethylene sheets were used on the plexiglass side walls to minimize friction. Plexiglass 

used for the side walls of the model tank are 20 mm thick and is reinforced with steel braces to 

prevent deflection Fig. 1(b). 

For investigating the variation of active failure surface geometries, backfill soils were prepared 

with different dilatant properties. This was achieved by varying the relative densities between tests, 

since it was not possible to significantly alter the stress states in a 1g test. Accordingly, backfill 

relative densities (ID) varied within the range 0.20 to 0.90. 

During model preparation, Akpinar sand was placed behind the model retaining wall by dry-

pluviation through a hopper. The falling height of sand during pluviation can be adjusted to 

achieve the desired relative density in the backfill material. Backfill was compacted with a hand-

held electrical compactor as necessary, whenever dry-pluviation was not sufficient to achieve 

target densities. As it was shown in Cinicioglu and Abadkon (2014), overconsolidation ratio (OCR) 

does not influence dilatant properties. Therefore, compaction induced OCR does not affect the p 

values computed using Eq. (1). Density cans (54 mm in diameter, 34 mm in depth) were used to 

measure the unit weight and to calculate relative density of the backfill during model tests. These 

cans were placed in a staggered scheme in the vertical direction. At the end of the each experiment, 

density control cans were extracted carefully and weighed immediately for relative density 

calculations. The results allowed the confirmation of the homogeneity of the model backfill. Since 

the variations in the mean effective stress along the depth of the model are insignificant owing to 

the small size of the model, it is correct to assume that the dilatancy angle is not changing with 

depth within the backfill. After backfill preparation, model tests were conducted by moving the 

model wall away from the backfill in a translational mode at a constant speed of 0.5 mm/s. Since 

there is no rate effect for dry cohesionless sand, selection of the wall translation speed is based on 

the image-capturing rate of the camera at the defined image quality level. Tests were continued 

until after active failure state is reached. During the tests, images were captured through the 

transparent side-walls for every 0.1 mm of wall translation. 

 

 

6. Failure surface geometry by PIV 
 

GeoPIV-RG provides detailed cumulative shear (εs) and volumetric strain (εv) maps for every 

stage of the tests. Through the analyses of these strain maps, shear strain localization can be 

detected and the evolution of failure surface with wall displacement can be observed. Strain maps 

are color-coded for visualization of strain magnitude distribution within the model. Following soil 

mechanics notation, contraction (volume decrease) is considered as positive and dilation (volume 

increase) as negative. Color-scales of each image were adjusted to achieve highest visual contrast, 

so that failure surface would be easily distinguishable. A coordinate system with its origin located 

at the bottom of the model wall is established in order to be able to quantify failure surface 

geometry. Furthermore, established coordinate system is made non-dimensional by normalizing 

the axes with model wall height (Hw). Then, unit-independent quantification of the failure surface 

becomes possible. X and Y coordinates of the points along the failure surface that corresponds to 

main shear band, are measured as shown in Fig. 4. In this respect, outer edges of failure surfaces 

are digitized with respect to established coordinate system and quantified for both B (away from 

the model wall) and H (along the height of the model wall) directions as shown in Figs. 4(a) and 

(b). Coordinates of all points along the failure plane, horizontal (B1,2,..,n) and vertical (H1,2,..,n), are 

measured with respect to the position of the wall prior to any displacement. 
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(a) As plotted on the cumulative shear strain map (b) Schematics of proposed coordinate system 

Fig. 4 Determination of the failure surface geometry 

 

 

Using the shear and volumetric strain maps, failure surface can be identified by following the 

locus of maximum strain points. Evaluating defined failure surfaces, it is observed that greater 

backfill densities correspond to steeper and more intense shear bands during active wall failures 

Fig. 5. This is an outcome of higher internal friction (p) and dilatancy (p) angles associated with 

greater relative densities. This fact is also supported by Loukidis and Salgado (2011) in their study 

based on Finite Element Method simulations. Analyzing the consecutive stages of the test from 

start to finish for models with high dilatancy angles, it has been observed that deformations 

concentrate to a continuous region even during the initial stages of the test. This region, within 

which the deformations accumulate gradually during the stages leading up to failure, evolves into 

failure surface. As soon as failure surface forms, deformations become restricted to the region 

between the failure surface and the wall as shown in Fig. 6. This area is referred as the failure 

wedge. 
 

 

   

(a) Distribution of shear strains (εs) 

 

(b) Distribution of volumetric 

strains (εv) 

(c) Vector field display 

 

Fig. 5 Localization of cumulative strains in initially dense sand 
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As observed in Figs. 5 and 7, both dilative and contractive deformations can be identified on 

volumetric strain maps obtained from PIV analyses. Accordingly along the failure band, 

volumetric deformation is dominantly dilative for dense backfills (Fig. 5(b)) and dominantly 

contractive for loose backfills (Fig. 7(b)). Evidently, in Fig. 7(b), failure surface is less 

distinguishable for loose backfills unlike for dense backfills in which failure surfaces are clearly 

visible. This shows the influence of dilatancy on localization of shear strains in granular materials. 

Based on this observation, it is possible to propose that the geometry of shear planes can be 

quantified as functions of dilatancy angle. This proposition has its roots in plasticity theory for 

geomaterials (Atkinson 1981). A recent study by Niedostatkiewicz et al. (2011) also supports the 

idea that deformation in shear zones is always related to dilatancy. 

Based on the results of PIV analyses, general shapes of the failure surfaces were evaluated and 

plotted as shown in Fig. 8. A new dimensionless coordinate system is established by normalizing 

the horizontal and vertical dimensions with wall height. The origin of the coordinate system is 

located at the initial position of the top backfill side corner of the model wall and positive 

directions are defined as shown in Fig. 8. Results suggest nonlinear active failure surface geometry 

that links the toe of the rigid retaining wall to the surface of the backfill. Fig. 8 shows the 
 

 

 

Fig. 6 Shear strain concentration and failure surface evolution with respect to rigid retaining wall movement 
 

 

   

(a) Distribution of shear strains (εs) 

 

(b) Distribution of volumetric 

strains (εv) 

(c) Vector field display 

 

Fig. 7 Localization of cumulative strains in initially loose sand 
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Fig. 8 Geometries of several active failure surfaces obtained from PIV analyses and the corresponding 

peak dilatancy angles (ψp) of the model backfill soils 

 

 

geometries of the failure surfaces identified from model tests with different backfill properties. 

Failure surfaces obtained from all model tests are not shown in Fig. 8 for the sake of clarity. 

Dilatancy angles of the backfills are also reported in Fig. 8. From the analyses of failure surfaces, 

it is possible to propose that the magnitudes of dilatancy angles influence the shapes of failure 

surfaces even though the model tests were conducted under 1 g conditions without surcharge and 

model dilatancy angles were basically controlled by varying the backfill density. Additionally, it 

should be noted that some tests with close but different 𝜓𝑝  values have coincident failure surfaces. 

This conditions stems from the fact that it is very difficult to control small variations in relative 

densities during model tests. Moreover, identification of the position of the failure surface is more 

difficult for looser samples since there is greater dispersion of the shear band as shown in Figs. 5 

and 7. But the overall trend, higher 𝜓𝑝  results in more vertical shear bands, is clear from all tests. 

 

 

7. Determination of failure surface geometry 
 

PIV analyses of the images of model tests at failure revealed that active failure surface is not 

planar. When the general forms of the failure planes shown in Fig. 8 are examined, parabolic 

function is identified as the most suitable mathematical function for numerical identification. In 

literature, the boundary conditions for a parabolic failure surface are defined by Spangler and 

Handy (1982) and Goel and Patra (2008). According to Spangler and Handy (1982), parabolic 

equation suitable for defining failure surfaces is shown below 

 
2z aB bB c    (4) 

 

where, z defines the vertical coordinate and B defines the horizontal distance from the retaining 

wall to the failure surface at a particular depth z as depicted in Fig. 4. Using the boundary 

conditions, constants of the parabolic failure surface can be obtained as follows 

 

, 0wz H B  , (5) 
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 tanw

dz
z H

dB
    , (6) 

 

 0 ( ) cotb wz B a H    , (7) 

 

where, ab is defined as the ratio of Bf to X and 𝛼 is the inclination of the initial section of the 

shear band at the toe level. Distance Xis measured horizontally between the wall and the point at 

which the tangent to the initial portion of the failure surface emerges at the backfill surface, as 

illustrated in Fig. 9. On the other hand, Bf is the horizontal distance from the wall to the actual 

point of failure surface emergence at the ground surface Fig. 9. As expected, magnitudes of Bf and 

X are dependent on the peak dilation angle (ψp) of the backfill (Figs. 10(a) and (b)). Moreover, it 

can be seen that the values of ab are approximately constant and thus independent of ψp, thus an 

average value is assigned to ab equal to 0.67 (see Fig. 10(c)).Using the above three boundary 

conditions, the constants a, b, and c are obtained as follows 
 

   2 21 / ( ) tanb b wa a a H     , (8a) 

 

tan( )b   , (8b) 
 

wc H
 

(8c) 

 

Inserting the constants given in Eq. (8) into Eq. (4), parabolic equation for the active failure 

surface is obtained as 
 

 
 

   2 2

2

1
tan tanb

w

b w

a
z B B H

a H
 

  
    
    

 (9) 

 

The value of  and its correlation with backfill properties is investigated for all the model test 

results. It is noted that the magnitude of  correlates very well with Eq. (10) as proposed by 

Vardoulakis (1980) 
 

'

4

p p  


 
  (10) 

 

Variation of 𝛼 with 𝜙′𝑝  and its comparison with Eq. (10) are shown in Fig. 11. Clearly, 

experimental data are compatible with Eq. (10). 

Then, as ab is constant as shown in Fig. 10, geometry of the active failure surface can be 

calculated as a function of soil properties (p and p) and problem geometry (Hw). Resulting 

parabolic function is given Eq. (11) 
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2

2

2
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a H

                
             



  

 (11) 

 

Accuracy of Eq. (11) in predicting active failure planes is examined by comparing their results 
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Fig. 9 Shape of the assumed parabolic failure surface and the depiction of the geometrical ratio ab 

 

 

   

(a) (b) (c) 

Fig. 10 Influence of dilatancy angle of the backfill on experimentally measured values for (a) Bf; (b) X; (c) ab 

 

 

 

Fig. 11 Variation of 𝛼 with 𝜙𝑝  as obtained from model test results 
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with the actual failure surfaces obtained by PIV analyses of the physical model tests. It should be 

noted that 𝜓𝑝  used in Eq. 11 is calculated using the magnitudes of 𝐼𝐷  and 𝑝𝑓
′

 corresponding to 

the midheight level of the retaining wall. The value of 𝑎𝑏  is kept constant at 0.67 for all the 

calculations.For purposes of comparison, classical planar slip surfaces are also plotted in Fig. 12 as 

extensions of the initial linear portions of identified failure planes. Additionally, failure surface 

geometries, as defined by Tsagareli (1965), are included in Fig. 12 for comparison. Results in Fig. 

12 show that shapes of the measured failure surfaces and shapes of the predicted failure surfaces 

using Eq. (11) approximately overlap from toe to the top of backfill. Also, it is observed that the 
 

 

 

Fig. 12 Comparison between plots of estimated and experimentally visualized failure surfaces with 

data obtained from literature on normalized coordination system 
 

 

 

Fig. 13 Influence of wall roughness on failure surface geometry for backfills with different densities 
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differences are significant between classical method and predicted results, especially for models 

with denser backfills. 
 

 

8. Influence of wall-backfill interface friction angle 
on the geometry of failure surfaces 
 

In order to observe the influence of interface friction angle between the wall and backfill (δ), 

some of the model tests were repeated with a different wall roughness. To create a rougher wall 

surface, sandpaper was glued to the face of the wall. The angles of friction between the sandpaper 

and the backfill were determined by conducting direct shear box tests. According to the results, 

sandpaper-backfill friction angles varied between 35° and 45° depending on backfill density. 

The results of the tests are shown in Fig. 13. Based on the results, it is clearly seen that the 

changes in the geometries of the slip planes as a result of the variations in wall-backfill interface 

friction angles (δ) are practically insignificant for active mode of failure states. Therefore, it is 

stated that effect of wall friction on the shape of the slip surface is small and can be ignored at 

active failure state as suggested by Craig (2004). 
 

 

9. Discussion 
 

Dependency of the shape of failure surface on p and p, as in the case of Eq. (11), is expected 

since the influences of p and p have been considered theoretically in soil plasticity (Atkinson 

1981, Bolton 1986, Chen and Liu 1990, Salençon 1997). Since dilatant behavior results in a 

deformation component that is directed out of the plane of shearing, and the initial direction of the 

shear plane is dependent on p of the soil in soil plasticity theory, geometries of failure planes for 

frictional soils are controlled by strength and dilatant properties. However, this phenomenon has 

been dealt with only in theory since it is difficult to measure or calculate dilatancy angles of 

granular materials that constitute large masses; only dilatancy angles of soil samples can be 

measured. As a result, geotechnical modelling studies that quantitatively consider dilatancy effects 

are almost non-existent. 

The problems associated with the measurement of 𝜓𝑝  are overcome in this study by using the 

equation proposed by Bolton (1986). Using the measured values of 𝐼𝐷  and 𝑝𝑓
′

 in Eq. (1), 

magnitudes of 𝜓𝑝  are calculated for model backfills. Combining dilatancy calculations with the 

image processing techniques, it is now possible to examine the influence of dilatant behavior on 

deforming granular bodies. Consequently, this study investigates and quantifies the effect of 

dilatancy on active failure surfaces. 

On the other hand, usability of Eq. (11) depends on the possibility of knowing the magnitude of 

the possible value of 𝜓𝑝  for the backfill soil under consideration. This requires either testing the 

soil or using the available equations in literature. If the backfill soil can be tested, it is imperative 

that the possible stress path that the backfill soil will follow to failure should be simulated. This is 

necessary as the magnitude of 𝜓𝑝  is the dependent on stress path. However, if the soil cannot be 

tested in the laboratory, equations proposed for estimating 𝜓𝑝  might be used. In this case, there 

are two options. The first option is to use Eq. (1) used in this study. The advantage of this equation 

is that it can be used to calculate 𝜓𝑝  for any stress path using the same soil-specific constants as 

Eq. (1) is a function of 𝑝𝑓
′ . Yet the line-fitting parameter 𝑄 used in Eq. (1) is a function of the 𝑝𝑖

′ . 

Therefore, necessary number of line-fitting parameters to be defined and the necessary number of 

997



 

 

 

 

 

 

Adlen Altunbas, Behzad Soltanbeigi and Ozer Cinicioglu 

strength tests to conduct increases. Additionally, unlike the model tests conducted in this study 

where failure stresses are measured, in practice it is necessary to be able to estimate the possible 

magnitude of 𝑝𝑓
′

 beforehand. The alternative to Eq. (1) is the equation proposed by Cinicioglu and 

Abadkon (2014) (Eq. (12)). Eq. (12) allows the computation of 𝜓𝑝  as a function of pre-shear soil 

properties 𝐼𝐷  and 𝑝𝑖
′ . 

'

tan i
p D

a

p
m I

p
  
 

  
 

 (12) 

 

Here,  and m are unit-independent empirical soil constants. The main advantage of this 

equation is that it is based on soil parameters (ID and pi) obtained prior to any deformation, and 

not on parameters that correspond to failure states. As a result, Eq. (12) can be used to calculate 

dilatancy angle directly from the information collected during the preparation of cohesionless 

backfill. Additionally, the influences of pi and IDon p are uncoupled (Cinicioglu and Abadkon 

2014). Thus, theoretically two strength tests at different pi-ID combinations are sufficient to 

calculate soil-specific constants  and m. But it should be emphasized that strength tests that are 

conducted to obtain  and m should simulate the stress path expected in the field. Accordingly, 

extensional triaxial or plane strain tests should be conducted to obtain  and m constants suitable 

for active failure states. Calculated p values are valid both under axisymmetric and plane-strain 

conditions. However, to calculate the p value appropriate for plane-strain conditions using Eq. (3) 

as in the case of this study, it is necessary to use Hanna (2001) method to obtain r value specific 

for plane-strain conditions if it is not possible to conduct plane-strain tests. Consequently, it is also 

possible to use the proposed equations in practical applications. Since ab is a constant independent 

of wall height and roughness, the results are generally applicable to active state during wall 

translation for small size granular materials. However, possible influences of different modes of 

wall movements on active failure surface geometries and ab-tanp relationships should be 

investigated. 
 

 

10. Conclusions 
 

This study attempts to quantify active failure surface geometry using the results obtained from 

small scale physical model tests. For this purpose, a small scale retaining wall model has been 

constructed. Several model tests were conducted at 1 g until active failure. Images from the tests 

were analyzed using PIV method and the resulting failure surfaces were identified. Following the 

proposition of soil plasticity theory that the shapes of failure surfaces in frictional materials are 

dependent on the dilatant properties, influence of peak dilatancy angle on active shear planes is 

investigated. Analyzing the results, it is noticed that there is a clear and direct correlation between 

the calculated dilatancy angles and general characteristics of the active failure surfaces. 

Additionally, model test results suggest that the geometries of active failure surfaces can be 

quantified using a parabolic function, as previously proposed by Spangler and Handy (1982). 

Accordingly, a parabolic function that uses p, p, and wall height as inputs is defined for 

calculating the shapes of the active failure surfaces for problems in which the backfill is horizontal 

and the wall moves in horizontal translation mode. A number of the model tests were repeated only 

by changing wall roughness and it was shown that wall roughness does not influence the geometry 

of active failure surfaces. The results also showed that the initial inclination of active failure 
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surfaces can best be estimated as  𝜋 + 𝜙𝑝 + 𝜓𝑝 4  as proposed by Vardoulakis (1980). 

Additionally, normalized horizontal distance of the point of emergence of the failure plane on 

ground surface (𝑎𝑏 ) to the wall is practically constant. Finally, calculated failure surfaces using the 

proposed equation are compared with both the experimentally visualized and planar slip surfaces 

and the results are discussed. 
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