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Abstract.    This study aimed to realize the creation of fuzzy stochastic damage to describe reliability more 
essentially with the analysis of harmony of damage conception, probability and fuzzy degree of membership in 
interval [0,1]. Two kinds of fuzzy behaviors of damage development were deduced. Fuzzy stochastic damage models 
were established based on the fuzzy memberships functional and equivalent normalization theory. Fuzzy stochastic 
damage finite element method was developed as the approach to reliability simulation. The three-dimensional fuzzy 
stochastic damage mechanical behaviors of Jianshan mine slope were analyzed and examined based on this approach. 
The comprehensive results, including the displacement, stress, damage and their stochastic characteristics, indicate 
consistently that the failure foci of Jianshan mine slope are the slope-cutting areas where, with the maximal failure 
probability 40%, the hazardous Domino effects will motivate the neighboring rock bodies’ sliding activities. 
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1. Introduction 
 

Damage, by the help of uncertain theoretical models (Zhang and Valliappan 1990a, b, 
Silberschmidt and Chabochej 1994, Silberschmidt 1998, Zhang and Valliappan 1998a, b), 
nowadays shows new genius in geo-engineering work; Ju and Tseng (1995), based on micro-
mechanics and mean-volume theory, investigated the mechanical characters of brittle material that 
was planted with plane grain cracks obeying correlative random distribution; Rinaldi et al. (2007) 
introduced one semi-empirical calculation model to simulate statistical damage. Some excellent 
work has also been done to study the uncertainty of damage. However, most of these work adopted 
the single uncertain math model (Dzenis 1993, 1996, Ihara and Tanaka 2000, Bulleit 2004). 
Stochastics was the most popular theory for damage study in the past (Zeitoun and Baker 1992). 
Fuzziness on damage was omitted. Actually, both the definition and the computation on damage 
have the logically fuzzy characteristics (Rigatos and Zhang 2009, Rezaei et al. 2011). Damage has 
also been applied in geo-engineering for a long time because the reliability of geo-subjects could 
be analyzed based on damage theory (Yang and Pan 2015). There is still little work to discuss the 
intrinsic fuzziness and stochastics of damage and reliability on geo-engineering. 

Thus, a fuzzy stochastic damage model was developed in this study and it was implemented in 
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reliability analyses for one mine slope in China. 
 
 
2. Stochastic distribution of damage variable 
 

It has been generally accepted that damage variable Ω has a stochastic nature. 
Stochastic damage variable shows  distribution in some work (Zhang and Valliappan 1990a, b, 

1998a, b). 
Thus, the stochastic damage variable can be established in random space Ψ as 
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where α′ is a stochastic subset of stochastic vector X = (x1, x2,…, xn)

T and xi represents the 
stochastic parameter of the target materials; n is the size of stochastic parameters; the superscript 
“T” denotes the transposed operator; Λα′ is a probabilistic set derived from α′, consisting of 
probabilistic nodal displacement vector Uα′, stochastic strain tensor eα′, stochastic stress tensor σα′ 
and probabilistic body force vector fα′. 

The crucial propositions are provided below: 
Proposition 1: Ψ1 is defined as a probabilistic space of independent  distribution, and [0, 1] is 

defined as the domain of stochastic vector x from Ψ1. The relation is expressed as x → β (p, q): 
Ψ1|x = [0, 1], where β (p, q) is the  distribution function, and p and q are the parameters for  
function. Therefore, Ψ1 is a Banach space under the ∞ norm, or a complete normed linear space. 

Meanwhile, the  probabilistic cumulative distribution function vector can be defined as y1. Ψ2 
is defined as a probabilistic space of damage variable Ω, which shows independent B distribution 
over [0, 1], i.e., Ω → B: Ψ2|Ω = [0, 1]. Following the same rule, it can be proven under the ∞ norm 
definition that this is a Banach space, which can be expressed as Ω → B: Ψ2|Ω = [0, 1]. Meanwhile, 
the B probabilistic cumulative distribution function vector can be defined as y2. 

Proposition 2: The necessary and sufficient condition for coincidence of the probabilistic 
spaces Ψ1 and Ψ2 is that vector y2 converges to vector y1 with the same definition domain [0,1] 
under the ∞ norm. The propositions have been proved by Wang (2012). 

Based on proposition 1 & 2,  distribution can be used to simulate B distribution of damage 
variable , and this procedure can be applied to engineering through the law of averages over 
[0,1]. 
 
 
3. Fuzzy membership of damage variable 
 

The damage of materials or structures, under various factors (internal or external ones), is a 
physical-mechanical process from the development and evolution of micro-defects to macro-
behaviors whose performances are the engineers’ interests (including materials’ deformation and 
structures’ failure etc). Therefore, the definition of damage should incorporate the macro-effects 
produced by the development and evolution of micro-defects. A quantitative index ϖ that can 
quantify the material’s micro-defects is called a damage measuring index (DMI). Γ is a fuzzy 
analytical domain for ϖ, i.e., ϖ  Γ. Γ must be defined in a fuzzy space ),
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boundary conditions, respectively. Then, the key technology for damage simulation is which scale 
of ϖ means the material’s damage or how ϖ rates damage. This essential mechanism describes the 
fuzziness of ϖ evolution. Ω, as a fuzzy functional on ϖ, represents the magnitude of the 
membership value of ϖ for domain Γ, and can analyze damage variable development as 

 
)()]([     (2)

 
where ςϖΓ is a fuzzy membership functional, namely, ];1 ,0[)
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 and P  ω is 
the generalized probabilistic integral variable on ϖ; and ωΓ is the function on the generalized 
probabilistic integral variable. 

Modulus degradation computation was often used as the approach of ‘damage’ definition 
(Hearndon et al. 2008, Vili et al. 2014). However, this approach has an inconvenience in 
incorporating the development of mechanical fields, such as stress, strain and displacement etc. 
Therefore, the study point of our work is that the damage measuring index should incorporate as 
much and direct information on the development of mechanical fields of engineering cases as 
possible. We defined the evolution of volumetric deformation and torsional deformation as the 
main resource of damage development. The evolution of volumetric stress and deviatoric stress 
can represent their development directly (Bolton et al. 2008). We used the strength expression to 
explain the volumetric stress evolution of geo-material. The invariable of the deviatoric stress 
tensor was computed here to explain the evolution of torsional deformation of geo-material. Thus, 
our study defined DMI as 
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where φ and c are the internal friction angle and cohesive strength, respectively; σm and J2 are the 
hydrostatic pressure and the second invariable of the deviatoric stress tensor, respectively. 

The linear fuzzy memberships functional are the preferences of engineering cases (Mahdavifar 
2000). Therefore, two linear cases are considered in the fuzzification for ϖ and the fuzzy 
memberships functional are explained as: (1) torsional deformation is superior to volumetric 
deformation in magnitude when material damage is developing (Eq. (4); Fig. 1, line a); (2) 
volumetric deformation is superior to torsional deformation in magnitude when material damage is 
developing (Eq. (5); Fig. 1, line b). 
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where a, a’ , b and b’ are tests’ parameters. 
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Fig. 1 Fuzzy memberships functional 
 
 
Thus, there is linear relation between ϖ and Ω from Ω = 0 to Ω = 1. Here, lines a and b in Fig. 

1 have two characteristic points (i.e., p1, p2, p3 and p4), respectively. By the help of line Ω = 1 and 
axis ϖ, these characteristic points can be fixed according to the tests’ data. Hence, these tests’ 
parameters can be ascertained. Fuzzy memberships functional Eqs. (4) and (5) have somewhat 
overlap zone (triangular area p2p4p5). Hence, they have super fuzzy robustness (Farkas et al. 2010). 

The damage development of engineering cases is such a complicated problem that both 
volumetric deformation and torsional deformation may activate it and cause the eventual failure of 
material or structure (Pine et al. 2007). Therefore, Eqs. (4)-(5) will be used together during the 
computation of damage and the de-fuzzification for them will be implemented for reliability 
analysis. 

 
 

4. Fuzzy stochastic damage variable 
 

When fuzziness and stochastics exist simultaneously in the damage evolution process, 
according to the expansion criterion, the single fuzzy space Ξ and single random space Ψ need to 
be expanded to a generalized uncertain space O: ξ (s, f), Us,f, es,f, σs,f, fs,f  O: ξ (s, f), where s and f 
are the stochastic coverage and fuzzy coverage, respectively; ξ (s, f) is the subset of generalized 
uncertain space; Us,f is the fuzzy stochastic nodal displacement vector; es,f is the fuzzy stochastic 
strain tensor; σs,f is the fuzzy stochastic stress tensor; fs,f is the fuzzy stochastic body force vector. 

The generalized cumulative distribution function (GCDF) 
fF  and generalized probabilistic 

density function (GPDF) 
ff obtained by the expansion criterion and fuzzy probabilistic 

integration are the functions of fuzzy memberships functional on Ω. According to Eqs. (4)-(5), the 
GCDF and GPDF can be established based on the definition of DMI as 
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The GCDF and GPDF are the key tools for the numerical computation in standard normal 

space only where the reliability of engineering cases can be analyzed precisely. 
 
 
5. Damage reliability with fuzziness & stochastics 
 

Fuzzy stochastic damage reliability simulation here was realised based on fuzzy stochastic 
damage finite element method. Drucker-Prager (D-P) constitutive model was assimilated into 
fuzzy stochastic damage finite element method. The key constitutive component for the 
methodology is the ultimate status function gradient gα*, which can be expressed as 
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where  TnyyyY **

2
*
1

* ,,,   is the independent standard normal stochastic vector; gα* represents 
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the ultimate status function;  is gradient operator. 
Fuzzy stochastic damage finite element method will be implemented by iterative technique. 

The fastest iterative direction is the negative gradient direction defined by α that can be computed 
by 

)(/)( *
*

*
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where ||*|| is a Euclidean norm operator. ||gα*(Y
*)|| can be calculated by 
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αi (i = 1,…, n) (component of α) is the direction cosine of the reliability index along axis .*

iy
Thus, α is perpendicular to the ultimate status surface against the coordinate system origin (the 
shortest iterative path here). The computed variables of reliability analyses including gα*(Y

*) will 
converge the fastest to their stable values when the fuzzy stochastic damage finite element method 
is carried out iteratively along the negative gradient direction. 

Then, the iterative step size of the numerical approach, d, can be determined by 
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In order to ensure the line connecting the origin of the kth iterative step on (Y*)k and the new 

iterative coordinate (Y*)k+1 along the very negative gradient direction of the spatial curve, the 
updating for (Y*)k is the crucial technique for the numerical approach and can be expressed as 
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where (Y*)k′ is the updated expression on (Y*)k. 

Therefore, the controlling iterative function can be deduced as 
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Thus, the fuzzy stochastic damage reliability index β* and failure probability 

*
fP  can be 

computed by 
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6. Numerical algorithm with fuzziness & stochastics 
 
It is very important that the stochastic vector X = (x1, x2, …, xi,…, xn)

T can’t be used as direct 
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input because the stochastic parameter of the target materials xi doesn’t always obey standard 
normal distribution. However, reliability analyses on fuzzy stochastic damage field must be carried 
out in standard normal space. Hence, the key parts of the numerical algorithm of fuzzy stochastic 
damage finite element method include the equivalent normalization transformation, independence 
orthogonalization and standardization. 

According to Rackwitz-Fiessler (R-F) theory, the normalized stochastic characteristics, i.e., the 
expectation μx′i and mean square deviation δx′i can be computed from equivalent normalization 
transformation as 
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where Φ and ϕ are the standard normal cumulative distribution function (CDF) and standard 
normal probabilistic density function (PDF), respectively; Φ‒1 is the inverse function of Φ. 

Therefore, the normalized stochastic vector can be established as X′ = (x′1, x′2, …, x′i,…, x′n)
T 

where x′i = μx′i (namely, the normalized stochastic vector is represented by its expectation and this 
is the generally adopted way in reliability study) and it is still non-independent and non-standard 
normal one. The independence procedure must be done. The covariance matrix C is helpful for the 
independence procedure and it can be expressed as 
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where ji xx  is the correlation coefficient on stochastic parameters xi and xj. The value of 

ji xx  
won’t be changed after equivalent normalization transformation, namely, .

jiji xxxx    Here is the 
key hypothesis that damage variable Ω is independent one. 

C is real symmetric matrix and its eigenvectors can be got based on Jacobi transformation. All 
of its eigenvectors are independent and can be assembled as one matrix H. 
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where the column vector hi = (h1i, h2i,…, hni)

T is one eigenvector of C and the scalar product of any 
two eigenvectors hi and hj is 1 (i = j) or 0 (i ≠ j). Therefore, H is named in some studies as 
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orthogonalization transformation matrix. 
Hence, the independent non-standard stochastic vector Z = (z1, z2, …, zi,…, zn)

T, its expectation 
vector E and its ‘covariance matrix’ D can be computed with matrixes C and H 
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nz  is the 
mean square deviation of zn) and they are positive real; other elements are zeroes. Therefore, the 
so-called ‘covariance matrix’ D is the diagonal one actually and all the nonzero elements are the 
very variances of Z. The procedure can be named as independence orthogonalization. 

Furthermore, the independent non-standard stochastic vector Z = (z1, z2,…, zi,…, zn)
T needs to 

be standardized. The standardization procedure can be expressed as 
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and the transformation vector B is computed by 
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where Y* is the independent standard normal stochastic vector. Then, the reliability analyses on 
fuzzy stochastic damage field can be implemented in the n-dimension standard normal space that 
can be formed by   .,,,,, ***
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Fig. 2 Flowchart of iterative procedure for fuzzy stochastic damage finite element method 

277



 
 
 
 
 
 

Yajun Wang 












N

i

i

N

i

i

1

1

)(








 (28)

 

where ςϖΓ is the fuzzy membership functional on ϖ; N is the size of fuzzy memberships 
functional. The gravity model approach has super robustness and is the most acceptable way for 
de-fuzzification. 

The fuzzy stochastic damage reliability index β* and failure probability 
*
fP  can be computed 

iteratively based on Eq. (15) until the converging condition   
*

1
*

ii  is met. Here, *
1i  and 

*
i  are the values of β* at iterative step i ‒ 1 and i, respectively. ε is the accuracy of the numerical 

analyses which is defined by the volume ratio of the minimal element over the total volume of the 
mesh. 

The iterative procedure for the numerical approach is shown graphically in the flowchart of Fig. 
2. 

 
 

7. Examination and application 
 
The fuzzy stochastic damage model will be examined and applied for the reliability analyses on 

the rock slope of Jianshan mine. Gravity is the main load for the reliability analyses. 
Jianshan mine, standing in Shanxi province of Northern-Western China, is one of the greatest 

strip iron mines in China. Some colossal rock slopes have been formed during the long-term 
excavation from 1994. The maximal height of these slopes is 532 m. 

Fig. 3(a) shows the finite element grid model for one typical rock slope of Jianshan mine and 
the rock slope height here is 400 m. The thickness of this typical rock slope section is 200 m. The 
slope-cutting areas are circled and labeled. The boundary conditions include: BC1 whose 
translation alongside principal axis x is constrained; BC2 whose translation alongside principal 
axis z is constrained; BC3 whose translation and rotation on three principal axes (i.e., x, y and z) 
are constrained absolutely (Fig. 3(b)-(c)). 

The rock slope consists of 6 high-angle strata, i.e., chlorite (AH), quartz (AQ), ferrous schist 
(AT), iron ore (FE), plagioclase schist (MDAT) and syenite stratum (SIGM) (in Fig. 4). 

 
 

 

(a) (b) (c) 

Fig. 3 Finite-element mesh of typical rock slope in Jianshan mine 
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Fig. 4 Strata of typical rock slope in Jianshan mine 
 
 

Table 1 Expectation values of strata materials parameters 

Material 
number 

Lithological
series 

Material 
code 

Decay 
status 

Young’s 
modulus 
E: kPa 

Poisson
ratio v

c: 
kPa 

φ: 
degrees 

Unit weight
γ: kN/m3 

1 Chlorite AH 
Weathered 1.20×106 0.37 3500 13 26.6 

Fresh 5.42×107 0.27 3600 11 29.7 

2 Quartz AQ 
Weathered 6.70×106 0.26 3200 19 26.4 

Fresh 5.41×107 0.22 3280 18 27.5 

3 Ferrous schist AT 
Weathered 2.96×107 0.37 3410 15 27.6 

Fresh 4.69×107 0.26 3500 14 31 

4 Iron ore Fe 
Moderately 
weathered 

5.59×107 0.27 2650 26 32 

Fresh 6.21×107 0.2 2760 24 33 

5 
Plagioclase 

schist 
MDAT 

Moderately 
weathered 

2.18×107 0.29 2900 22 29 

Fresh 6.01×107 0.24 3000 21 29.6 

6 Syenite SIGM 
Weathered 2.10×107 0.28 2780 23 29.7 

Fresh 6.10×107 0.21 3010 20 29.8 

 
 

Table 2 Variation values of strata materials parameters 

Material number E v c  
1 0.09 0.06 0.23 0.09 0.04 

2 0.07 0.08 0.24 0.05 0.08 

3 0.09 0.06 0.23 0.04 0.11 

4 0.09 0.07 0.31 0.03 0.08 

5 0.09 0.07 0.26 0.05 0.07 

6 0.09 0.06 0.28 0.03 0.10 
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Table 3 Correlation coefficients of strata material parameters 

ji xx  E v c 

E 1 0.3 0.13 0.5 0.29 

v 0.3 1 0.41 0.72 0.11 

c 0.13 0.41 1 0.64 0.53 

φ 0.5 0.72 0.64 1 0.105 

γ 0.29 0.11 0.53 0.105 1 
 
 
The values in Tables 1-2 are the expectation and variation values of these rock strata materials 

parameters, respectively. The correlation coefficients of them are shown in Table 3. 
For the clarification, the mechanical fields are expressed by the slicing images from the three-

dimensional simulation results. The slicing position is at the middle point of the thickness of this 
typical rock slope section, namely, z = 100. The displacement fields are shown in Figs. 5-7. They 
can express the distribution characters of displacement without damage development under the 
gravity loading condition (Zhao et al. 2015). 

The displacement values in the slope-cutting areas are very high and the contour distribution 
here is concentrative, too. 

The main causes for this phenomenon are: there has been large relaxation during earlier 
excavation in the slope-cutting areas; the slope-cutting areas neighbors with the syenite stratum 
whose bulk specific gravity has great variation value; the high level of bulk specific gravity 
variation activates the unreliability of the slope-cutting areas (Schuster et al. 2008). 

 
 

Fig. 5 Contour of x-displacement at cross-section without damage development 
 
 

Fig. 6 Contour of y-displacement at cross-section without damage development 

 
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Fig. 7 Contour of z-displacement at cross-section without damage development 
 
 

Fig. 8 Contour of expectation of damage variable at cross-section before equivalent normalization 
 
 

Fig. 9 Contour of expectation of damage variable at cross-section after equivalent normalization 
 
 
According Figs. 8-9, the expectation values of the damage variable diminish evidently after the 

parameters are equivalently normalized. 
The levels of expectation values of the damage variable in the slope-cutting areas, whatever 

before or after equivalent normalization, are higher than that in other areas of the rock slope (Figs. 
8-9). The results consist with that in Figs. 5-7. According to Figs. 8-9, the fuzzy stochastic damage 
numerical approach based on  distribution model is the conservative simulation on reliability 
analyses. Thus, the fuzzy stochastic damage reliability is applicable for geo-engineering because 
the simulation results have high degree of security. 

Fig. 10 shows that the level of the mean square deviation of the damage variable is high in th 
slope-cutting areas (Chowdhury et al. 1987). These facts demonstrate that materials of these areas 
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Fig. 10 Contour of mean square deviation of damage variable at cross-section after 
equivalent normalization 

 
 

Fig. 11 Contour of β* at cross-section after equivalent normalization 
 
 

Fig. 12 Contour of 
*
fP at cross-section after equivalent normalization 

 
 

are vulnerable to be fractured due to the development of damage. 
According to Fig. 11, there are different levels of reliability in every stratum of the rock slope 

because the strength and mechanical state of these strata are absolutely different. 
Especially, the rock slope has very low level of reliability generally in those areas where the 

damage discreteness has great magnitude (including the slope-cutting areas). The results consist 
with that in Figs. 8-10. Namely, the high level of damage discreteness will cause the unreliability 
of materials and structures. This objective phenomenon can be shown and explained by the fuzzy 
stochastic damage reliability approaches. 

Failure probability 
*
fP  is helpful for engineers to assess efficiently the macro-safety state of 
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Fig. 13 Contour of expectation of xx at cross-section after equivalent normalization 
 
 

Fig. 14 Contour of variance of xx at cross-section after equivalent normalization 
 
 

engineering cases. Fig. 12 shows the macro-safety state of Jianshan mine slope. The slope-cutting 
areas have higher failure probability than other areas. The maximal failure probability here attains 
40%. 

The expectation and variance of fuzzy stochastic damage stress field (e.g., the results on 
principal axis x) are shown by Figs. 13-14, respectively. 

The maximal tensile stress (i.e., the maximal negative stress) lives in the slope-cutting areas 
(Fig. 13). Due to the facts, the rock slope here has lower reliability values. The results also consist 
with that in Figs. 11-12. 

According to the distribution in this figure, there is a generally high level of discreteness of 
fuzzy stochastic damage stress in the slope-cutting areas where the fuzzy stochastic damage stress 
also accumulates heavily (Fig. 13). The heavy accumulation of fuzzy stochastic damage stress 
causes the Domino effects in the neighboring areas. There is concentrative discreteness of fuzzy 
stochastic damage stress in the neighboring rock areas (Fig. 14), too. Therefore, these rock areas 
are of high danger of destabilization (Terzaghi 1962a). 

The simulating results for the rock slope’s working behaviors, including the fields of 
displacement, stress, damage and reliability, conform to each other based on fuzzy stochastic 
damage reliability approach. Hence, the fuzzy stochastic damage reliability approach can be 
applied in geo-engineering studies. 

 
 

8. Discussions on fuzziness, stochastics, damage and reliability 
 
With the fuzzification for ϖ, ‘damage’ has been gifted softer definition domain than 
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conventional way, such as modulus degradation. It means the engineers have more information to 
make rational policy for engineering application. ϖ has incorporated directly the development of 
mechanical fields of engineering cases. Thus, engineers can understand and apply it easily. After 
de-fuzzification, ‘damage’ becomes the distinct mechanical index that can express the damaged 
degree of structures or materials. It can be used for engineers to assess their safety state, too. The 
key models for this process are the fuzzy memberships functional. 

After equivalent normalization, the damage variable will diminish evidently. Therefore, it can 
be deduced that  distribution definition on damage is conservative one. The corresponding 
numerical approach has somewhat confidence for geo-engineering application (Gao et al. 2016). 

Reliability, based on the computation of fuzzy stochastic damage, expresses the safety state of 
engineering cases. Especially, the damage model here incorporates both the micro- and macro 
effects. This kind of assessment with uncertain definition permits engineers to make more 
comprehensive policy for engineering application. By the help of equivalent normalization, 
independence orthogonalization and standardization, many relevant factors are included in the 
simulation and analyses. These computation results offer for engineers more insights into the 
working behavior of engineering cases. 

 
 

9. Conclusions 
 
 With some primary concepts of fuzzy stochastic damage, two distributions of the fuzzy 

stochastic damage variable were developed based on fuzzy memberships functional. They, 
with linearity, have super fuzzy robustness. Their parameters have distinct mathematical 
definition and can be determined easily by micro- and macro-tests. 

 The fuzzy stochastic damage numerical approach was developed and applied to Jianshan 
mine rock slope. The primary output fields, i.e., displacement, stress, damage variable 
characteristics, reliability and failure probability, were examined by their spatial distribution 
of and the results conformed to each other. 

 Crucial characteristics of fuzzy stochastic damage such as statistical correlation, non-normal 
distribution, and fuzzy extensionality were assimilated into fuzzy stochastic damage 
numerical approach. The uncertainty of damage variable was improved. Two primary 
uncertain characteristics, namely fuzziness and stochastics of damage, were incorporated into 
the fuzzy stochastic damage model. Thus the model and the numerical approach established 
could be used with some confidence in the analyses of reliability and damage of geo-
engineering. 

 The theoretical model and the numerical algorithm developed in this paper are applicable 
ones for geo-engineering because the simulation results are the conservative ones that 
guarantee the high degree of security for the designed structures. 

 Although the conventional mechanical fields could also indicate partly the performance 
statuses of the goal structures when compared with the results derived from the fuzzy 
stochastic damage numerical approach, the comprehensive fields of β* and 

*
fP  are more 

helpful for engineers to assess efficiently the macro-safety state of the structures. Therefore, 
the comprehensive fields incorporating the stochastics and the fuzziness show super 
competitivity for the engineers’ design, assessment and decision-making. 
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Appendix: Art of fuzzification on damage 
 

DMI verification based on triaxial CT tests 
 
To verify the validation of DMI definition, the triaxial CT tests were implemented and the rock 

samples from stratum AQ of Jianshan mine was studied with the triaxial CT scanner system 
(Jaeger 1971). Fig. 15 shows the 7 tested rock samples. The tests standards meet ISRM suggested 
methods and ASTM requirements. ASTM standards are the main references in this paper for the 
rock samples’ drilling, laboratory treating, scanning and tri-axial loading (ASTM E1570-11 2011, 
ASTM D7070-08 2008, ASTM D7012 2014) because they can offer more specific indications for 
engineers and researchers. 

The rock samples were drilled by XY-44B diamond cutter that was produced by China and 
Germany with the maximal drilled depth 2 200 mm and the maximal drilled diameter 1 000 mm. 
The coarse rock samples were treated in laboratory by hydraulic cutter BS355 that was produced 
by China and can produce normal samples with the accuracy 1.5 mm. The cylinder dimension of 
the 7 tested rock samples includes diameter 5 cm and height 10cm. During both CT scanning and 
triaxial loading processes, the temperature in the triaxial cabinet was kept at 19 2°C that was the 
measured temperature in situ got by XY-44B diamond cutter. 

CT scanner system used here belongs to Key Laboratory of Geotechnical Mechanics and 
Engineering of the Ministry of Water in China (serial number: 2007S). 

The strain-controlled triaxial system can offer the strain-stress curves during both CT scanning 
and triaxial loading processes. Table 4 shows the main parameters of triaxial CT scanner system. 

Fig. 16 shows the typical strain-stress curves of these rock samples under different loading 
velocities. 

 
 

 

Fig. 15 Rock samples of Jianshan mine 
 
 

Table 4 Main parameters of SOMATOM Sensation 40 triaxial CT system 

CT scanner Triaxial system 

Minimal 
pixel size 

Spatial 
resolution 

Outline dimensions 
Triaxial 
cabinet 

diameter

Extreme loading conditions Vertical
extension
distance

Vertical 
force 

Confining 
pressure 

0.29 mm 
0.29×0.29 
×0.29 mm3

Height: 62 cm 
Maximal diameter: 29.5 cm
Minimal diameter: 21.5 cm

10cm 0-200 kN 0-60MPa 0-14 cm

 




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(a) Vertical loading velocity: 1.5×10-4 (strain)/min; 
confining loading velocity: 7.5×10-5 (strain)/min

(b) Vertical loading velocity: 1.5×10-4 (strain)/min; 
confining loading velocity: 1.5×10-4 (strain)/min

Fig. 16 Strain-stress curves of rock samples of Jianshan mine 
 
 
Fig. 17 shows the typical CT slices of these rock samples. Their Hounsfield units (i.e., Hu), 

including the Hounsfield units of initial state (i.e., Hu0), were measured and computed. The 
representative micro-cracks of these rock samples were measured, too. 

5 positions (from scanning stage 1 to stage 5) on the strain-stress curves were chosen to verify 
the relation between the rock samples’ DMI and the corresponding Hu. Table 5 shows the 
comprehensive data on the triaxial CT tests. 

 
 

 
(a1) Initial state (a2) Stage 1 (a3) Stage 2 

 

 

  

(a4) Stage 3 (a5) Stage 4 (a6) Stage 5 

(a) Vertical loading velocity: 1.5×10-4 (strain)/min; confining loading velocity: 7.5×10-5 (strain)/min 

Fig. 17 CT slices of rock samples of Jianshan mine 

288



 
 
 
 
 
 

A novel story on rock slope reliability, by an initiative model that incorporated... 

 
(b1) Initial state (b2) Stage 1 (b3) Stage 2 

 

 

  

(b4) Stage 3 (b5) Stage 4 (b6) Stage 5 

(b) Vertical loading velocity: 1.5×10-4 (strain)/min; confining loading velocity: 1.5×10-4 (strain)/min 

Fig. 17 Continued 
 
 

Table 5 Triaxial CT tests data 

Tests data 

Loading 
velocities : 
(strain)/min 

Vertical: 1.5×10-4; confining: 7.5×10-5 Vertical: 1.5×10-4; confining: 1.5×10-4 

Scanning 
stage 

Initial 
state 

Stage1 Stage2 Stage3 Stage4 Stage5
Initial 
state

Stage1 Stage2 Stage3 Stage4 Stage5

Stress state: 
MPa; σ11, 
σ22 = σ33 

/ 
7.5, 
2.55 

19.7, 
10.12 

32.5,
17.52

51.7,
23.15

67.5,
27.16

/ 
5.5,
0.31

15.5,
8.61

26.5, 
17.43 

43.5, 
31.06 

62.5,
46.51

DMI values / 1.61 1.36 1.21 0.83 0.7 / 1.31 1.69 1.87 2 2.15

Hu 

Expectation values Expectation values 

Hu0 = 
1830.55 

1803.711780.421735.941699.311668.57
Hu0 =

1984.99
1949.431916.791890.11836.791806.99

Mean square deviation values Mean square deviation values 

109.61 123.94 131.66 132.87 140.29 145.07 357.86 381.94 401.25 419.97 446.81 472.03

0

0

u

uu

H

HH 
 / 0.0147 0.0274 0.0517 0.0717 0.0885 / 0.0179 0.0344 0.0502 0.0747 0.0897

Ω / 0.05 0.25 0.45 0.65 0.85 / 0.05 0.25 0.45 0.65 0.85
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The computation results of DMI, according to the triaxial CT tests, have close relation with the 
micro-defects’ evolution that can be qualified by Hu. DMI defined here can reveal the geo-
material’s damage development characteristics (Terzaghi 1962). Especially, as macro-mechanical 
index that can be implanted easily into the numerical approaches, DMI   can incorporate 
directly both the mechanical fields’ development and the micro-defects’ evolution. Thus, it is 
applicable for the reliability analyses of geo-engineering cases with uncertainty (including 
fuzziness and stochastics). 

 
 
Fuzzy logical and topology 
 
The primary fuzzification criteria on Ω include: the values of the fuzzy memberships functional 

(namely, the values of Ω) at the certain analytical domain keep the maximal ones or the minimal 
ones; input and output of fuzzy logics must be certain values; the fuzzy memberships functional 
should be simple ones for engineers. 

According to the triaxial CT tests, 5-class development of material damage was established for 
the fuzzy membership. The linguistic variables for the corresponding fuzzy topology are (Table 5): 

 

If ,1.008.0
0

0 



u

uu

H

HH
 then the fuzzy membership is 0.85 that means the material is 

damaged thoroughly; 

If ,08.006.0
0

0 



u

uu

H

HH
 then the fuzzy membership is 0.65 that means the material is 

damaged seriously;  

If ,06.004.0
0

0 



u

uu

H

HH
 then the fuzzy membership is 0.45 that means the material is 

damaged obviously; 

If ,04.002.0
0

0 



u

uu

H

HH

 

then the fuzzy membership is 0.25 that means the material is 

damaged moderately; 

If ,02.0
0

0 


u

uu

H

HH
 then the fuzzy membership is 0.05 that means the material is damaged 

slightly. 

Especially, when ,1.0
0

0 


u

uu

H

HH
 the fuzzy memberships keep the maximal one, namely, 1. 

Here, Ω is at the certain analytical domain. 
According to the linguistic variables and triaxial CT tests data on ϖ, the tests’ parameters a, a’, 

b and can be b’ determined (Figs. 1 and 18). Especially, b and b’ define the support of the fuzzy-
set; a and a’ describe not only the fuzzy-set core, but also the shape of the fuzzy membership 
functional. Thus, the whole fuzzy topology on damage variable has been established. 

The robustness of fuzzy memberships functional can be computed as 




)(2

))(2( 495.1

bb

bb  
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Fig. 18 Topological structure on fuzzy memberships functional 
 
 

152.0
)35.165.1(2

)35.165.1(152.02





 and the optimal values of robustness are 0.1‒0.7 (Mahdavifar 

2000). 
As the input of fuzzy logics, DMI ϖ was determined according to the certain micro- and macro-

mechanical tests. DMI has the certain mathematical expression and can be computed by the 
numerical approach developed in the work. The output of fuzzy logics was realized by de-
fuzzification based on the gravity model approach. The outputted values of Ω also have certain 
characteristics. Meanwhile, the fuzzy memberships functional established here are the simple and 
applicable ones for engineers’ implementation. 
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Notation 
 

   fuzzy subset 

a, a’  test parameters 

B  transformation vector 

b, b’  test parameters 

C  covariance matrix 

C   fuzzy set of physical parameters 

c  cohesive strength 

D  stochastic characteristics matrix 

d  iterative step size 

E  stochastic characteristics matrix 

E  Young’s modulus 

es,f  fuzzy stochastic strain tensor 

 e   stochastic strain tensor 
fF   generalized cumulative distribution function (GCDF) 

f  fuzzy coverage 

,s ff   fuzzy stochastic body force vector 

 f   probabilistic body force vector 
ff   generalized probabilistic density function (GPDF) 

*g   ultimate status function 

H  transformation matrix 

Hu  Hounsfield unit 

Hu0  initial Hounsfield unit 

h  orthogonal vector 

J2  second invariable of deviatoric stress tensor 

L   fuzzy set of loading conditions 

N  size of fuzzy memberships functional 

n  size of stochastic parameters 

P   fuzzy set of boundary conditions 
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*
fP   failure probability 

p, q  parameters for   function 

s  stochastic coverage 

T  transformation matrix 

,s fU
  fuzzy stochastic nodal displacement vector 

 U   probabilistic nodal displacement vector 

v  Poisson ratio 

x, X, X′,Y*,Z  stochastic vector 

xi, x′i, y*
i, zi  stochastic parameters 

y1, y2  probabilistic cumulative distribution function vector 

   negative gradient direction vector 

   stochastic subset 

i   direction cosine component 
*   fuzzy stochastic damage reliability index 

 ,p q
   distribution function 

Γ  fuzzy analytical domain 

  unit weight 

ii zx  ,   mean square deviation 

ε  accuracy 

ii zx  ,   expectation 

Ξ  single fuzzy space 

 ,s f
  generalized uncertain subset 

O   generalized uncertain space 

i jx x
 

 correlation coefficient 

,s f
  fuzzy stochastic stress tensor 

    stochastic stress tensor 

m   hydrostatic pressure 

xx   normal stress components 

Φ  standard normal cumulative distribution function (CDF) 


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  internal friction angle 

   standard normal probabilistic density function (PDF) 

Ψ  single random space 

Ψ1, Ψ2  probabilistic space of independent  distribution 

Ω  damage variable 

ω  generalized probabilistic integral variable 

ωΓ  generalized probabilistic integral function 

Λα′  probabilistic set 

  gradient operator 

gα*  ultimate status function gradient 

   damage measuring index (DMI) 

ςϖΓ  fuzzy membership functional 

 


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