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Abstract.    Laminated plates have many applications in different industrials. Buckling analysis of these structures 
with the nano-scale reinforcement has not investigated yet. However, buckling analysis of embedded laminated 
plates with nanocomposite layers is studied in this paper. Considering the single-walled carbon nanotubes (SWCNTs) 
as reinforcement of layers, SWCNTs agglomeration effects and nonlinear analysis using numerical method are the 
main contributions of this paper. Mori-Tanaka model is applied for obtaining the equivalent material properties of 
structure and considering agglomeration effects. The elastic medium is simulated by spring and shear constants. 
Based on first order shear deformation theory (FSDT), the governing equations are derived based on energy method 
and Hamilton’s principle. Differential quadrature method (DQM) is used for calculating the buckling load of system. 
The effects of different parameters such as the volume percent of SWCNTs, SWCNTs agglomeration, number of 
layers, orientation angle of layers, elastic medium, boundary conditions and axial mode number of plate on the 
buckling of the structure are shown. Results indicate that increasing volume percent of SWCNTs increases the 
buckling load of the plate. Furthermore, considering agglomeration effects decreases the buckling load of system. In 
addition, it is found that the present results have good agreement with other works. 
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1. Introduction 
 

Composite materials are widely used in many branches of industry such as aerospace, civil, 
naval and other high-performance engineering applications due to the high stiffness-to-weight ratio. 
The mechanical behaviors of laminated composite plates are strongly dependent on the degree of 
orthotropy of individual layers, the low ratio of transverse shear modulus to the in-plane modulus 
and the stacking sequence of laminates. A clear understanding on the mechanical analysis of 
laminated structures is required to achieve the full range of capabilities on the exemplary 
performance of laminated composite/sandwich structures. Hence, the buckling of laminated plates 
with nanocomposite layers in order to achieve the high stiffness is presented in this article. 

With respect to the mechanical analysis of plates, Heydari et al. (2014) studied an analytical 
approach for transverse bending analysis of an embedded symmetric laminated rectangular plate 
using Mindlin plate theory and the surrounding elastic medium simulated using Pasternak 
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foundation. A cell-based smoothed discrete shear gap method (CS-FEM-DSG3) based on the first-
order shear deformation theory (FSDT) was proposed by Phung-Van et al. (2014a) for static and 
dynamic analyses of Mindlin plates. Free vibration analysis of cracked Mindlin plates by 
integrating the original smoothed discrete shear gap method (CS-DSG3) with discontinuous and 
crack-tip singular enriched functions of the extended finite element method (XFEM) to give a so-
called extended cell-based smoothed discrete shear gap method (XCS-DSG3) was presented by 
Nguyen-Thoi et al. (2014a). The edge-based strain smoothing technique was combined by 
Nguyen-Thoi et al. (2014b) with the three-node Mindlin plate element (MIN3) to give a so-called 
the edge-based smoothed three-node Mindlin plate element (ES-MIN3) for static and free 
vibration analyses of plates. A novel and effective formulation that combines the eXtended 
IsoGeometric Approach (XIGA) and higher-order shear deformation theory (HSDT) was proposed 
by Tran et al. (2015a) to study the free vibration of cracked functionally graded material (FGM) 
plates. A simple hyperbolic shear deformation theory taking into account transverse shear 
deformation effects was proposed by Saidi et al. (2016) for the free flexural vibration analysis of 
thick functionally graded plates resting on elastic foundations. Equilibrium and stability equations 
of functionally graded material (FGM) plate under thermal environment were formulated by Tran 
et al. (2016) in this paper based on isogeometric analysis (IGA) in combination with HSDT. An 
exact analytical solution for thermal stability of solar functionally graded rectangular plates 
subjected to uniform, linear and non-linear temperature rises across the thickness direction was 
developed by El-Hassar et al. (2016). The nonlinear transient formulation for plates was formed by 
Phung-Van et al. (2016) in the total Lagrange approach based on the von Kármán strains, which 
includes thermo-piezoelectric effects, and solved by Newmark time integration scheme. Based on 
the modified couple stress theory with only one material length scale parameter, the size-
dependent behaviours of functionally graded microplates was studied by Nguyen et al. (2017). 

In the field of composite plates, the CS-FEM-DSG3 was incorporated by Nguyen-Thoi et al. 
(2013) with spring systems for dynamic analyses of composite plates on the Pasternak foundation 
subjected to a moving mass. The CS-FEM-DSG3 was extended by Phung-Van et al. (2014b) to the 
layerwise deformation theory for dynamic response of sandwich and laminated composite plates 
resting on viscoelastic foundation subjected to a moving mass. The smoothed finite element 
method using three-node Mindlin plate element (CS-FEM-MIN3) was extended and incorporated 
by Luong-Van et al. (2014) with damping-spring systems for dynamic responses of sandwich and 
laminated composite plates resting on viscoelastic foundation subjected to a moving mass. Static 
and free vibration analyses of composite and sandwich plates were investigated by Phung-Van et 
al. (2014c) using the smoothed stabilized discrete shear gap method (ES-DSG3). An effectively 
numerical approach based on IGA and HSDT was presented by Tran et al. (2015b) for 
geometrically nonlinear analysis of laminated composite plates. Static and dynamic behaviors of 
functionally graded carbon nano-reinforced composite plates were studied by Phung-Van et al. 
(2015a) based on IGA and HSDT. In another work by Phung-Van et al. (2015b), dynamic control 
of smart piezoelectric composite plates was analyzed based on a generalized unconstrained 
approach in conjunction with IGA. Considering continuity of the displacement and transverse 
shear stresses at the layer interfaces, Tran et al. (2016) presented a generalized layerwise higher-
order shear deformation theory for laminated composite and sandwich plates. In another work by 
Tran et al. (2016), a new simple four-unknown shear and normal deformations theory (sSNDT) for 
static, dynamic and buckling analyses of FGM isotropic and sandwich plates was presented. 

However, buckling analysis of nanocomposite laminated plates has not been studied by the 
researchers. In the present study, the orthotropic Mindlin plate theory is used for nonlinear 
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buckling behavior of embedded laminated plates with nanocomposite layers. The layers are 
reinforced with the agglomerated SWCNTs where the Mori-Tanaka model is applied for 
nanocomposite layers. After deriving the governing equations by energy method and Hamilton’s 
principal, DQM is applied for obtaining the buckling load of structure. The effects of the volume 
percent of SWCNTs, SWCNTs agglomeration, number of layers, orientation angle of layers, 
boundary conditions, elastic medium and axial mode number of plate on the buckling of the 
structure are disused in detail. 
 
 
2. Mori-Tanaka Model and agglomeration effects 
 

In this section, the effective modulus of the laminated plate reinforced by SWCNTs is 
developed based on Mori-Tanaka method. The matrix is assumed to be isotropic and elastic, with 
the Young’s modulus Em and the Poisson’s ratio υm. The experimental results show that the 
assumption of uniform dispersion for nanoparticles in the matrix is not correct and the most of 
nanoparticles are bent and centralized in one area of the matrix. These regions with concentrated 
nanoparticles are assumed to have spherical shapes, and are considered as “inclusions” with 
different elastic properties from the surrounding material. The total volume Vr of nanoparticles can 
be divided into the following two parts (Shi and Feng 2004). 

 
inclusion m

r r rV V V   (1)
 

where 
inclusion

rV  and 
m

rV  are the volumes of nanoparticles dispersed in the spherical inclusions and 
in the matrix, respectively. Introduce two parameters ξ and ζ describe the agglomeration of 
nanoparticles 

,inclusionV

V
   (2)

 

.
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r

r

V

V
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However, the average volume fraction Cr of nanoparticles in the composite is 
 

.r
r

V
C

V
  (4)

 
Assume that all the orientations of the nanoparticles are completely random. Finally, the elastic 

modulus (E) and poison’s ratio (υ) can be calculated as 
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where the effective bulk modulus (K) and effective shear modulus (G) are expressed in Appendix 

329



 
 
 
 
 
 

Maryam Shokravi 

A. However, using Eqs. (5) and (6), the elastic constants of the structure can be calculated which 
are introduced in the next section. 
 
 

3. FSDT 
 

Based on FSDT, the displacement field can be written as (Heydari et al. 2014) 
 

),,,(),,(),,,( tyxztyxutzyxu xx 
 

),,,(),,(),,,( tyxztyxvtzyxu yy 
 

),,,(),,,( tyxwtzyxuz   

(7)

 

where (ux, uy, uz) denote the displacement components at an arbitrary point (x, y, z) in the plate, and 
(u, x, w) are the displacement of a material point at (x, y) on the mid-plane (i.e. z = 0) of the plate 
along the x-, y-, and z-directions, respectively; ψx (x, y) and ψy (x, y) are the rotations of the normal 
to the mid-plane about x- and y- directions, respectively. The von Kármán strains associated with 
the above displacement field can be expressed in the following form 
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where (εxx, εyy) are the normal strain components and (γyz, γxz, γxy) are the shear strain components. 
However, the constitutive equation for stresses  and strains ε matrix of the kth layer can be 
expressed as follows (Reddy 1984) 
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where Qij (i, j = 1, 2,..., 6) are defined in Appendix B. 
 
 

4. Governing equations 
 

An embedded laminated plate with the nanocomposite layers which are reinforced with 
agglomerated SWCNTs is shown in Fig. 1. The geometrical parameters of laminated plate are 
length a, width b and total thickness h. The elastic medium is simulated by transverse shear loads 
(kg) and normal loads (kw). 

The strain energy, U of the structure can be written as 
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Combining of Eqs. (8)-(10) yields 
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where the stress resultant-displacement relations can be defined as 
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Fig. 1 The embedded laminated plate with agglomerated SWCNTs-reinforced layers 
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in which K is shear correction coefficient. 

The external work due to surrounding elastic medium can be written as (Heydari et al. 2014) 
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where NM

xx and NM
yy are the mechanical forces. Substituting Eqs. (8) and (9) into Eqs. (12) and (13), 

the stress resultant-displacement relations can be obtained as follow 
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Substituting Eqs. (19)-(21) into Eqs. (14)-(18) yields the governing equations as 
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5. DQM 
 

In this method, the differential equations are changed into a first order algebraic equation by 
employing appropriate weighting coefficients. In other words, the partial derivatives of a function 
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(say f here) are approximated with respect to specific variables (say x and y), at a discontinuous 
point in a defined domain (0 < x < a and 0 < y < b) as a set of linear weighting coefficients and the 
amount represented by the function itself at that point and other points throughout the domain. The 
approximation of the nth and mth derivatives function with respect to x and y, respectively may be 
expressed as (Kolahchi et al. 2016a, b) 
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where Nx and Ny, denotes the number of points in x and y directions, f(x, y) is the function and Aik,, 
Bjl are the weighting coefficients defined as 
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where M and P are Lagrangian operators defined as 
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The weighting coefficients for the second, third and fourth derivatives are determined via 
matrix multiplication 
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Using the following rule, the distribution of grid points in domain is calculated as 
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Using Eq. (30), and assuming NM
xx = ‒P and NM

yy = ‒kP, the governing equations can be 
expressed in matrix form as 

 

     0L NL gK K P K d      (35)
 

where [KG] is the coefficient force matrix, [KL] is the linear stiffness matrix and [KNL] is the 
nonlinear stiffness matrix and {d} = {u, v, w, ψx, ψy} is the displacement vector. This nonlinear 
equation can now be solved using a direct iterative process as follows: 
 
 First, nonlinearity is ignored by taking KNL = 0 to solve the eigenvalue problem expressed in 

Eq. (35). This yields the linear eigenvalue (PL) and associated eigenvector (d). The 
eigenvector is then scaled up so that the maximum transverse displacement of the structure 
is equal to the maximum eigenvector, i.e., the given vibration amplitude dmax. 

 Using linear d, [KNL] can be evaluated. Eigenvalue problem is then solved by substituting 
[KNL] into Eq. (35). This would give the nonlinear eigenvalue (PNL) and the new eigenvector. 

 The new nonlinear eigenvector is scaled up again and the above procedure is repeated 
iteratively until the buckling load values from the two subsequent iterations ‘ r ‘ and ‘ 1r

‘ satisfy the prescribed convergence criteria as 0

1






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where ε0 is a small value number and in the present analysis it is taken to be 0.01%. 

 
 

6. Numerical results 
 
In this section, a laminated plate with the material properties listed in Table 1 is considered. 
At the first, the convergence and accuracy of proposed method are studied. Then, the results are 

validated with other published works and finally, the effects of different parameters such as 
number of lamina, orientation angle of lamina, volume percent of SWCNTs, SWCNTs 
agglomeration, boundary conditions, elastic medium and axial mode number of plate are shown on 
the dimensionless buckling load (DBL = P/(E11a)). Three kinds of boundary conditions: all edges 
simply supported (SSSS) or clamped (CCCC), and two opposite edges simply supported and the 
other two clamped (SCSC) (Kolahchi et al. 2016a) 

 
 
 

Table 1 Material properties of Graphite/Epoxy (Phung-Van et al. 2015c) 

Properties Value 

E11 132.38 GPa 

E22 = E33 10.76 GPa 

G12 3.61 GPa 

G13 = G23 5.65 GPa 

v11 = v23 0.24 

v13 0.49 
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6.1 DQM convergence 
 
Fig. 2 shows the accuracy and convergence of DQM. In this figure, the dimensionless buckling 

load is plotted versus axial mode numbers for different grid points number in x and y directions. It 
can be seen that with increasing the number of grid points, the dimensionless buckling load is 
decreased until in Nx = Ny = 15, the results are converged. However, in the present work, the 
numbers of grid points are selected to be 15. 

 
6.2 Validation 
 
In order to validate the present results, we neglected from the agglomerated SWCNTs as 

reinforcement (Cr = ξ = ζ = 0), elastic medium constants (kw = kg = 0) and nonlinear term in 
governing equations. However, the buckling of simply supported a laminated plate is studied based 
on FSDT and DQM. Considering the material properties the same as Matsunaga (2000). The 
results of comparison are shown in Table 2. As can be seen, the present results are in good 
agreement with Noor (1975) based on 3D elasticity solution, Putcha and Reddy (1986) based on 
FSDT and Matsunaga (2000) based on HSDT. Noted that the little difference between the results 
of this work and other works is due to the difference in the theory and solution method. 

 
6.3 The effect of different parameters 
 
In all of the following figures, the dimensionless buckling load is plotted against axial mode 

number. It can be observed that the buckling load decreases at first until reaches to the lowest 
amount and after that increasing process begins. The critical buckling load appears in the point 
where the buckling load is minimal. Noted that this phenomenon is reported by other researchers 
(Kadoli and Ganesan 2003, Han 2009, Sheng and Wang 2010, Chan et al. 2011, Zhu and Li 2016), 
indicating validation of presented figures. 

The effect of the SWCNTs volume percent on the dimensionless buckling load versus the axial 
 
 

Table 2 Comparison of present work with the published papers 

No. of 
layers 

Solution 
E1 / E2 

3 10 20 30 40 

3 

A 5.3044 9.7621 15.0191 19.3040 22.8807 

B 5.3991 9.9652 15.3510 19.7560 23.4530 

C 5.3208 9.7172 14.7290 18.6834 21.8977 

D 5.3918 9.8452 14.9167 18.8769 22.1531 

5 

A 5.3255 9.9603 15.6527 20.4663 24.5929 

B 5.4093 10.1360 15.9560 20.9080 25.1850 

C 5.3348 9.9414 15.5142 20.1656 24.1158 

D 3.4011 9.9087 15.2451 20.3483 24.9098 

A: 3D elasticity solution, Noor (1975) 
B: FSDT, Putcha and Reddy (1986) 
C: HSDT, Matsunaga (2000) 
D: Present work 
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Fig. 2 The effect of SWCNTs volume percent on the dimensionless buckling load versus 
axial mode number 

 
 

mode number is shown in Fig. 3. It can be found that with increasing the SWCNTs volume percent, 
the dimensionless buckling load increases and the critical buckling load is increased. It is due to 
the fact that with increasing SWCNTs volume percent, the stiffness of the structure increases. In 
addition, the effect of SWCNTs volume percent on the dimensionless buckling load becomes more 
prominent at higher axial mode numbers. 

In order to show the effects of SWCNTs agglomeration on the dimensionless buckling load, Fig. 
4 is plotted. As can be seen, considering agglomeration effects leads to decrease in the 
dimensionless buckling load of the structure. It is because that the SWCNTs agglomeration is an 
harmful parameters for system due to reduction in the stability and rigidity of the structure. 
However, since the dispersion of SWCNTs in the matrix cannot be uniform in real, the results of 
this figure can be useful for the researchers and design of laminated plates with nanocomposite 
layers. 

 
 

Fig. 3 The effect of SWCNTs agglomeration on the dimensionless buckling load versus 
axial mode number 
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Fig. 4 The effect of lamina numbers on the dimensionless buckling load versus axial mode number 
 
 

Fig. 5 The effect of orientation angle of layers on the dimensionless buckling load versus axial mode number
 
 
Fig. 5 illustrates the effect of the layers number on the dimensionless buckling load versus axial 

mode numbers. It can be concluded that the symmetric structure with 3 layers number predicted 
the higher dimensionless buckling load for all axial mode numbers with respect to the anti-
symmetric one with 2 layers number. It is due to the fact that stability and balance of structure with 
symmetric laminas are higher than those of anti-symmetric one. 

The effect of the orientation angle of the SWCNTs in the laminas is presented in Fig 6 on the 
dimensionless buckling load versus axial mode number. Here, three cases of (0°, 0°, 0°), cross-ply 
lamina (0°, 90°, 0°) and angle-ply lamina (45°, ‒45°, 45°) are assumed. As can be seen, the 
dimensionless buckling load for the angle-ply lamina is higher than cross-ply and zero laminas. In 
other words, the zero lamina predicts the lowest dimensionless buckling load with respect to other 
cases. 

Fig. 7 demonstrates the effect of boundary conditions on the dimensionless buckling load 
versus axial mode number. Three boundary conditions of SSSS, SCSC and CCCC are considered. 
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It is obvious that the dimensionless buckling load has the following order for the proposed 
boundary conditions: CCCC > SCSC > SSSS 

Hence, the laminated plate with CCCC has the higher dimensionless buckling load with respect 
to other considered cases. It is due to the fact that the stiffness of structure increases for the CCCC 
boundary condition. 

The effect of the elastic medium is shown in Fig. 8 on the dimensionless buckling load versus 
axial mode number. Generally the existence of the elastic medium increases the stiffness of the 
structure and thereby the dimensionless buckling load increases. The Pasternak medium considers 
the vertical and shear loads however the Winkler medium considers only the vertical ones, 
therefore the effect of Pasternak medium is more than Winkler medium. According to Fig. 5, the 
effect of the elastic medium on the buckling load is significant and it can be a useful parameter to 
take away the system from buckling condition. 

 
 

Fig. 6 The effect of boundary conditions on the dimensionless buckling load versus axial mode number 
 
 

Fig. 7 The effect of elastic medium on the dimensionless buckling load versus axial mode number 
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7. Conclusions 
 
Buckling analysis of embedded laminated plates with nanocomposite layers was investigated in 

this article. The lamina layers were reinforced with SWCNTs considering agglomeration effects. 
Based on the FSDT, the governing equations were derived using energy method and Hamilton’s 
principal. In order to obtain the buckling load, DQM was performed for three boundary conditions. 
The effects of elastic medium, volume percent of SWCNTs, SWCNTs agglomeration, boundary 
conditions, number of layers and orientation angle of layers on the buckling of the structure were 
considered. Results indicate that considering SWCNTs agglomeration decreases the buckling load 
of the structure. Increasing the volume percent of SWCNTs increases the buckling load of the 
laminated plate. In addition, the CCCC boundary condition leads to higher buckling load with 
respect to the SCSC and SSSS boundary conditions. Furthermore, the angle-ply lamina with the 
symmetric layer numbers increases the bucking load of system. Present results were in a good 
agreement with other published works. Finally, it is hoped that the results presented in this paper 
would be helpful for study and design of rectangular laminated plates with nanocomposite layers. 
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Appendix A 
 

Hence, the effective bulk modulus (K) and effective shear modulus (G) may be written as 
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where χr, βr, δr, ηr may be calculated as 
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where kr, lr, nr, pr, mr are the Hills elastic modulus for the nanoparticles; Km and Gm are the bulk 
and shear moduli of the matrix which can be written as 
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Furthermore, β, α can be obtained from 
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Appendix B 
 
Qij (i, j = 1, 2,..., 6) are defined as 
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where Cij (i, j = 1, 2,..., 6) denotes elastic coefficients and θ is orientation angle. 
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