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Abstract.   This work presents a static flexure analysis of laminated composite plates by utilizing a higher order 
shear deformation theory in which the stretching effect is incorporated. The axial displacement field utilizes 
sinusoidal function in terms of thickness coordinate to consider the transverse shear deformation influence. The 
cosine function in thickness coordinate is employed in transverse displacement to introduce the influence of 
transverse normal strain. The highlight of the present method is that, in addition to incorporating the thickness 
stretching effect (εz ≠ 0), the displacement field is constructed with only 5 unknowns, as against 6 or more in other 
higher order shear and normal deformation theory. Governing equations of the present theory are determined by 
employing the principle of virtual work. The closed-form solutions of simply supported cross-ply and angle-ply 
laminated composite plates have been obtained using Navier solution. The numerical results of present method are 
compared with those of the classical plate theory (CPT), first order shear deformation theory (FSDT), higher order 
shear deformation theory (HSDT) of Reddy, higher order shear and normal deformation theory (HSNDT) and exact 
three dimensional elasticity theory wherever applicable. The results predicted by present theory are in good 
agreement with those of higher order shear deformation theory and the elasticity theory. It can be concluded that the 
proposed method is accurate and simple in solving the static bending response of laminated composite plates. 
 

Keywords:    shear deformation; stretching effect; static flexure; laminated plate 
 
 
1. Introduction 
 

Fiber reinforced composite are widely employed in various engineering industries such as the 
aerospace, automotive, marine and other structural applications due to superior mechanical 
properties of these materials. In the past three decades, investigations on laminated composite 
plates have attracted considerable attention, and a variety of laminated theories has been developed. 
The classical plate theory (CPT), which ignores the transverse shear influences, gives reasonable 
results for thin plates. However, the errors in deflections and stresses are quite significant for 
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moderately thick plates when determined utilizing CPT. To overcome the deficiency of the CPT, 
many shear deformation plate theories which consider the transverse shear deformation influences 
have been introduced. Mindlin (1951) has developed the first order shear deformation theory 
(FSDT) which is based on a linear variation of in-plane displacements through the thickness. A 
shear correction coefficient is needed for FSDT to compensate the error induced the constant shear 
strain supposition within the thickness. Thus, FSDT is not convenient for employ because of the 
difficulty in computation of the correct value of the shear correction factor (Sadoune et al. 2014, 
Meksi et al. 2015, Bellifa et al. 2016). The higher-order shear deformation plate theories (HSDT) 
have been introduced to avoid the use of shear correction factor. These theories consider a Taylor 
series expansion of higher order terms to define the displacement vector, which was developed and 
discussed by different researchers (Hidebrand et al. 1949, Nelson and Lorch 1974, Librescu 1975, 
Lo et al. 1977a, b, Levinson 1980, Murthy 1981, Reddy 1984, Bhimaradi and Stevens 1984, Kant 
1982). A number of HSDTs are also proposed for investigating functionally graded material 
(Bachir Bouiadjra et al. 2012, Bourada et al. 2012, Bouderba et al. 2013, Bachir Bouiadjra et al. 
2013, Tounsi et al. 2013, Saidi et al. 2013, Ait Amar Meziane et al. 2014, Belabed et al. 2014, Zidi 
et al. 2014, Bakora and Tounsi 2015, Nguyen et al. 2015, Larbi Chaht et al. 2015, Ait Yahia et al. 
2015, Sallai et al. 2015, Tagrara et al. 2015, Tebboune et al. 2015, Belkorissat et al. 2015, Ait 
Atmane et al. 2015, Mahi et al. 2015, Al-Basyouni et al. 2015, Bennai et al. 2015, Attia et al. 2015, 
Mantari and Granados 2015, Bounouara et al. 2016, Bouderba et al. 2016, Boukhari et al. 2016). 
Various investigators have proposed a number of HSDTs to examine the mechanical response of 
laminated composite plates. Soldatos (1988) proposed hyperbolic shear deformation theory for the 
flexure analysis of laminated composite plates. An analytical solution is presented by Kant and 
Swaminathan (2002) for the bending analysis of laminated composite and sandwich plates using a 
higher order refined theory. Akavci (2007) developed a novel hyperbolic theory in terms of tangent 
and secant functions for the analysis of plates. Brischetto et al. (2009) studied the bending 
response of unsymmetrically laminated sandwich flat panels with a soft core. Zhen and Wanji 
(2010) proposed developed C°-type higher-order theory for static analysis of laminated composite 
and sandwich plates under thermo-mechanical loads. Pandit et al. (2010) and Chalak et al. (2012) 
developed finite element models based on an improved higher order zigzag plate theory for the 
bending and vibration analysis of soft core sandwich plates. Global–local theories are proposed by 
Kapuria and Nath (2013) for bending and vibration behaviors of laminated and sandwich plates. 
Grover et al. (2013), Sahoo and Singh (2013) developed a novel inverse hyperbolic shear 
deformation theory for the laminated composite and sandwich plates. Draiche et al. (2014) studied 
the free vibration response of rectangular composite plates with patch mass using a trigonometric 
four variable plate theory. Sayyad and Ghugal (2014a) proposed a trigonometric shear deformation 
theory taking into account transverse shear deformation effect as well as transverse normal strain 
effect or static flexure of cross-ply laminated composite and sandwich plates. Nedri et al. (2014) 
investigated the free vibration response of laminated composite plates resting on elastic 
foundations by using a refined hyperbolic shear deformation theory. Chattibi et al. (2015) studied 
the thermo-mechanical effects on the bending of antisymmetric cross-ply composite plates using a 
four variable sinusoidal theory. Since the HSDTs are based on supposition of quadratic, cubic or 
higher-order variations of axial displacements within the thickness, their governing equations are 
much more complicated than those of FSDT. Hence, there is a scope to propose an accurate theory 
which is simple to use. 

In the present article, an analytical solution of the static flexural analysis of laminated 
composite plates subjected to uniformly distributed, uniformly varying and concentrated loads is 
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proposed by using a simple quasi-3D HSDT. Just five independent unknowns are employed in the 
present theory against six independent unknowns or more independent unknowns employed in the 
corresponding shear and normal deformations theories. The performance of the present 
formulation is verified by comparing results with other quasi-3D HSDTs and 2D HSDTs available 
in literature and exact solution given by Pagano (1970) wherever applicable. 
 
 

2. Theoretical formulation 
 

Consider a rectangular plate of total thickness h made up of n orthotropic layers with the 
coordinate system as shown in Fig. 1. 

 
2.1 The displacement field 
 
The displacement field of the present work is built on the basis of the following assumptions: (1) 

The transverse displacement (w) is composed with three parts, namely: bending, shear and 
stretching components; (2) the inplane displacement u in x-direction and v in y-direction each 
consists of three components (extension, bending and shear); (3) the bending parts of the inplane 
displacements are analogous to those used in CPT; and (4) the shear parts of the inplane 
displacements are assumed to be trigonometric in nature with respect to thickness coordinate in 
such a way that the shear stresses vanish on the top and bottom surfaces of the plate. Based on 
these assumptions, the following displacement field relations can be obtained (Bousahla et al. 
2014, Fekrar et al. 2014, Hebali et al. 2014, Hamidi et al. 2015, Meradjah et al. 2015, Bourada et 
al. 2015, Bennoun et al. 2016) 
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where u0 and v0 denote the displacements along the x and y coordinate directions of a point on the 
mid-plane of the plate; wb and ws are the bending and shear components of the transverse 
displacement, respectively; and the additional displacement φ accounts for the effect of normal 
stress (stretching effect). The shape functions f(z) and g(z) are given as follows 
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The non-zero strains associated with the displacement field in Eq. (1) are 
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Fig. 1 Coordinate system and layer numbering used for a typical laminated plate 
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2.2 Constitutive relations 
 
Each lamina in the laminated plate is supposed to be in a three-dimensional stress state so that 

the constitutive relations in the kth layer can be expressed as 
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where θk is the angle of material axes with the reference coordinate axes of each layer and Qij are 
the plane stress-reduced stiffnesses, and are known in terms of the engineering constants in the 
material axes of the layer. 
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In which, E1, E2, E3 are the Young’s moduli in the x, y and z directions respectively, G23, G13, 

G12 are the shear moduli and vij are the Poisson’s ratios for transverse strain in j-direction when 
stressed in the i-direction. Poisson’s ratios and Young’s moduli are related as 
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2.3 Governing equations 
 
The principle of virtual work (PVW) is employed for the static flexure problem of any plate. 

Also it can be utilized to examine the considered laminated plates. The principle is written as 
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with δU is the virtual strain energy, δV is the external virtual works induced to an external load 
applied to the plate. They can be expressed as 
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where Ω is the top surface and q is the distributed transverse load. 

Substituting Eqs. (1), (4) and (7) into Eq. (11) and integrating through the thickness of the plate, 
Eq (11) can be rewritten as 
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where the stress resultants (N, Mb, Ms, Ss and Nz) are as follows 
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The governing equations of equilibrium can be obtained from Eq. (14) by integrating the 

displacement gradients by parts and setting the coefficients δu0, δv0, δwb, δws and δφ to zero 
separately. Thus one can obtain the equilibrium equations associated with the present simple 
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By substituting Eq. (4) into Eq. (7) and the subsequent results into Eq. (15), the stress resultants 

are readily obtained as 
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Here the stiffness coefficients are defined as 
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3. Illustrative examples 
 

In order to demonstrate the accuracy of the present formulation, the following numerical 
examples on laminated composites plates subjected to different loading types are presented and 
discussed. 

 
Example 1: A laminated composite square plate with simply supported boundary conditions 

and subjected to sinusoidal loading q = q0 sin(πx/a)sin(πy/b) on the top surface of the plate is 
proposed where, q0, is the magnitude of the sinusoidal loading at the centre. The laminate 
configuration considered in this example is presented in Fig. 2. 

 
 

Fig. 2 Simply supported laminated plates under sinusoidal loading 
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Fig. 3 Simply supported laminated plates under uniformly distributed loading 
 
 

Fig. 4 Simply supported laminated plates under linearly varying load 
 
 
Example 2: A laminated composite plate with simply supported boundary conditions and 

subjected to uniformly distributed transverse load is considered (Fig. 3). The loading is represented 

by 









1 1

)/ sin()/ sin(),(
m n

mn bynaxmqyxq   on the top surface of the plate where m and n are 

positive integers and qmn is the coefficient of Fourier expansion of load as expressed below 
 

2
016

mn

q
qmn   (20)

 
Example 3: A laminated composite plate with simply supported boundary conditions and 

subjected to linearly varying load on the top surface of the plate is proposed (Fig. 4). The load is 

given by 









1 1

)/ sin()/ sin(),(
m n

mn bynaxmqyxq   with the coefficient of Fourier expansion 

qmn of the load as follows 

)cos(
8

2
0 


m
mn

q
qmn   (21)

 
 

4. Numerical results and discussion 
 

In this section, various numerical examples are presented and discussed for checking the 
efficacy of the present formulation in predicting the vibration response of simply supported 
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antisymmetric cross-ply and angle-ply laminates. 
The following lamina properties are employed: 

 

Material 1: (Pagano 1970) 
 

223213122321 2.0  ,5.0  ,  ,25 EGEGGEEEE   and  25.0231312    (22)
 
Material 2: (Ren 1990) 

 

223213122321 6.0  ,5.0  ,  ,40 EGEGGEEEE   and  25.0231312    (23)
 
In addition, the following dimensionless displacements and stresses have been employed 

throughout the tables and figures 
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(24)

 
The results determined for displacement and stresses are illustrated in Tables 1 to 6 and 

graphically in Figs. 5 to 7. The results determined by the proposed theory for displacements and 
stresses are compared with those of classical plate theory (CPT), first order shear deformation 
theory (FSDT) of Mindlin (1951), higher order shear deformation theory (HSDT) of Reddy (1984), 
trigonometric shear and normal shear deformation theory (TSNDT) of Sayyad and Ghugal (2014a, 
b) and exact theory by Pagano (1970). 

 
 

Table 1 Comparison of transverse displacement and stresses for simply supported two-layer (0/90) square 
laminated plate subjected to single sine load 

a/h Theory Model w  
(z = 0) 

x  
(z = ‒h/2) 

y  
(z = ‒h/2)

xy  
(z = ‒h/2)

xz  
(z = 0) 

yz  
(z = 0) 

4 

Present TSDT 1.9424 0.9063 0.0964 0.0562 0.3189 0.3189 

Ref(a) TSDT 1.9424 0.9063 0.0964 0.0562 0.3189 0.3189 

Reddy HSDT 1.9985 0.9060 0.0891 0.0577 0.3128 0.3128 

Mindlin FSDT 1.9682 0.7157 0.0843 0.0525 0.2274 0.2274 

Kirchhoff CPT 1.0636 0.7157 0.0843 0.0525 --- --- 

Pagano Elasticity 2.0670 0.8410 0.1090 0.0591 0.3210 0.3130 

10 

Present TSDT 1.2089 0.7471 0.0876 0.0530 0.3261 0.3261 

Ref(a) TSDT 1.2089 0.7471 0.0876 0.0530 0.3261 0.3261 

Reddy HSDT 1.2161 0.7468 0.0851 0.0533 0.3190 0.3190 

Mindlin FSDT 1.2083 0.7157 0.0843 0.0525 0.2274 0.2274 

Kirchhoff CPT 1.0636 0.7157 0.0843 0.0525 --- --- 

Pagano Elasticity 1.2250 0.7302 0.0886 0.0535 0.3310 0.3310 

(a) Results taken from reference Sayyad and Ghugal (2014a) 
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Example 1: A simply supported two-layer antisymmetric cross ply (0/90) square laminate 
under sinusoidal transverse load is examined. Material set 1 is employed. The comparison of 
results of transverse displacement and stresses for slenderness ratios 4 and 10 is demonstrated in 
Table 1. The maximum deflections predicted by present model are in good agreement with those of 
exact solution (Pagano 1970) and other solutions of Reddy and Sayyad and Ghugal (2014a) for 
(0/90) cross-ply laminated plate whereas CPT underestimates the results for all slenderness ratios. 
The axial normal stress x  determined by the present formulation is in excellent agreement with 
that of Sayyad and Ghugal (2014a) and in tune with exact solution whereas FSDT and CPT 
underestimate this stress for all slenderness ratios when compared with the values of other refined 
theories. Both the present theory and the theory proposed by Sayyad and Ghugal (2014a), give the 
same values of the axial normal stress y  and shear stress .xy  These results are also in good 
agreement with those of exact solution (Pagano 1970). Table 1 also shows the comparison of 
transverse shear stresses xz(  and )yz  for the two layered (0°/90°) anti-symmetric cross-ply 
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Fig. 5 Through thickness distribution of the axial normal stress x  of (0/90) cross-ply laminated 
plate under sinusoidal loading for h/a = 0.25 
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Fig. 6 Through thickness distribution of the axial normal stress y  of (0/90) cross-ply laminated 
plate under sinusoidal loading for h/a = 0.25 

681



 
 
 
 
 
 

Kada Draiche, Abdelouahed Tounsi and S.R. Mahmoud 

 

-0,5

-0,4

-0,3

-0,2

-0,1

0,0

0,1

0,2

0,3

0,4

0,5

-0,06 -0,03 0,00 0,03 0,06

z/h  Present
 Sayyad and Ghugal (2014a)
 Reddy (HSDT)
 Mindlin (FSDT)
 Kirchhoff (CPT)

Fig. 7 Through thickness distribution of the shear stress xy  of (0/90) cross-ply laminated plate 
under sinusoidal loading for h/a = 0.25 
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Fig. 8 Through thickness distribution of the transverse shear stress zx  of (0/90) cross-ply laminated 
plate under sinusoidal loading for h/a = 0.25 

 
 

laminated plates under a sinusoidal loading. The proposed theory predicts more accurate transverse 
shear stresses than those provided by other refined theories as compared to exact values. The 
variation of stresses ( ,x ,y xy  and )xz  of (0/90) cross-ply laminated plates through thickness 
is shown in Figs. 5 to 8 using different models. 

 
Example 2: A simply supported two-layer antisymmetric cross ply (0°/90°) square laminate 

under uniformly distributed load is considered in this example. Layers are of equal thickness and 
made up of Material 1. Table 2 shows the numerical results of deflection and stresses for the 
(0°/90°) laminated plate. From Table 2 it is seen that the deflection and stresses predicted by 
present formulation and the methods of Reddy, Sayyad and Ghugal (2014a) as well as the exact 
solution of Pagano (1970) are in excellent agreement with each other whereas CPT underestimates 
the results of deflection and stresses compared to those of present theory and HSDT. In addition, it 
can be seen, that FSDT underestimates also the axial stresses for all slenderness ratios as compared 
to the results of other theories. 
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Table 2 Comparison of transverse displacement and stresses for simply supported two-layer (0/90) square 
laminated plate subjected to uniformly distributed load 

a/h Theory Model w  
(z = 0) 

x  
(z = ‒h/2)

y  
(z = ‒h/2)

xy  
(z = ‒h/2)

xz  
(z = 0) 

yz  
(z = 0) 

4 

Present TSDT 3.0006 1.2687 0.1401 0.1073 0.5893 0.5893 

Ref(a) TSDT 2.9983 1.2603 0.1394 0.1104 0.5966 0.5966 

Reddy HSDT 3.0706 1.2691 0.1314 0.1070 0.6034 0.6034 

Mindlin FSDT 3.0082 1.0636 0.1258 0.0992 0.4775 0.4775 

Kirchhoff CPT 1.6955 1.0763 0.1269 0.0934 --- --- 

Pagano Elasticity 3.1580 1.1840 0.1590 --- 0.647 0.591 

10 

Present TSDT 1.9079 1.1089 0.1310 0.0962 0.6488 0.6488 

Ref(a) TSDT 1.9070 1.1057 0.1307 0.0978 0.6669 0.6669 

Reddy HSDT 1.9173 0.1049 0.1274 0.0977 0.6591 0.6591 

Mindlin FSDT 1.9050 0.0533 0.1265 0.0961 0.4849 0.4849 

Kirchhoff CPT 1.6955 0.0763 0.1269 0.0934 --- --- 

Pagano Elasticity 1.9320 0.0860 0.1300 --- 0.702 0.744 

(a) Results taken from reference Sayyad and Ghugal (2014a) 
 
 

Table 3 Comparison of transverse displacement and stresses for simply supported two-layer (0/90) square 
laminated plate subjected to linearly varying load 

a/h Theory Model w  
(z = 0) 

x  
(z = ‒h/2)

y  
(z = ‒h/2)

xy  
(z = ‒h/2)

xz  
(z = 0) 

yz  
(z = 0) 

4 

Present TSDT 1.5003 0.6343 0.0700 0.0536 0.2947 0.2947 

Ref(a) TSDT 1.4992 0.6301 0.0697 0.0552 0.2983 0.2983 

Reddy HSDT 1.5353 0.6345 0.0657 0.0535 0.3017 0.3017 

Mindlin FSDT 1.5041 0.5318 0.0629 0.0496 0.2387 0.2387 

Kirchhoff CPT 0.8478 0.5381 0.0635 0.0467 --- --- 

Pagano Elasticity 1.5790 0.5920 0.0795 --- 0.3235 0.3235 

10 

Present TSDT 0.9540 0.5545 0.0655 0.0481 0.3244 0.3244 

Ref(a) TSDT 0.9535 0.5524 0.0653 0.0489 0.3334 0.3334 

Reddy HSDT 0.9587 0.5524 0.0637 0.0488 0.3295 0.3295 

Mindlin FSDT 0.9525 0.5267 0.0632 0.0480 0.2424 0.2424 

Kirchhoff CPT 0.8478 0.5381 0.0635 0.0467 --- --- 

Pagano Elasticity 0.9660 0.35430 0.0650 --- 0.3510 0.3510 

(a) Results taken from reference Sayyad and Ghugal (2014a) 
 
 
Example 3: A simply supported two-layer antisymmetric cross ply (0°/90°) square laminate 

under linearly varying load is studied in this example. Comparison of deflection and stresses for 
the (0°/90°) laminated plate is demonstrated in Table 3. Material set 1 is utilized. The deflection 
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Table 4 Comparison of transverse displacement and stresses for simply supported four-layer (0/90/0/90) 
square laminated plate subjected to single sine load 

a/h Theory Model w  
(z = 0) 

x  
(z = ‒h/2)

y  
(z = ‒h/2)

xy  
(z = ‒h/2) 

xz  
(z = 0) 

4 

Present TSDT 1.5827 0.4057 0.0351 0.1398 0.1398 

Ref(*) SSNDT 1.5827 0.4057 0.0351 0.1398 0.1398 

Zenkour (2007) Exact 1.9581 0.6146 0.0457 0.2325 0.2410 

10 

Present TSDT 0.6847 0.4531 0.0266 0.1433 0.1433 

Ref(*) SSNDT 0.6847 0.4531 0.0266 0.1433 0.1433 

Zenkour (2007) Exact 0.7624 0.4942 0.0292 0.2713 0.2714 

20 

Present TSDT 0.5512 0.4598 0.0254 0.1439 0.1439 

Ref(*) SSNDT 0.5512 0.4598 0.0254 0.1439 0.1439 

Zenkour (2007) Exact 0.5717 0.4706 0.0260 0.2781 0.2781 

50 

Present TSDT 0.5136 0.4617 0.0251 0.1440 0.1440 

Ref(*) SSNDT 0.5136 0.4617 0.0251 0.1440 0.1440 

Zenkour (2007) Exact 0.5169 0.4636 0.0251 0.2800 0.2800 

100 

Present TSDT 0.5083 0.4620 0.0250 0.1440 0.1440 

Ref(*) SSNDT 0.5083 0.4636 0.0552 0.1440 0.1440 

Zenkour (2007) Exact 0.5091 0.4626 0.0250 0.2803 0.2803 

(a) Results taken from reference Sayyad and Ghugal (2014a) 
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Fig. 9 Through thickness distribution of the axial normal stress x  of (0/90/0/90) cross-ply laminated 
plate under sinusoidal loading for h/a = 0.25 

 
 
and stresses predicted by present method are in close agreement with Reddy’s theory and the 
solution of Sayyad and Ghugal (2014a) whereas FSDT and CPT underestimate the same for all 
slenderness ratios. 

 

Example 4: A simply supported four-layer antisymmetric cross ply (0°/90°/0°/90°) square 
laminate under sinusoidal transverse load is investigated in this example for various slenderness 
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Fig. 10 Through thickness distribution of the shear stress xy  of (0/90/0/90) cross-ply laminated plate 
under sinusoidal loading for h/a = 0.25 
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Fig. 11 Through thickness distribution of the transverse shear stress zx  of (0/90/0/90) cross-ply 
laminated plate under sinusoidal loading for h/a = 0.25 

 
 
ratios. Comparison of deflection and stresses for the (0°/90°/0°/90°) laminated plate is shown in 
Table 4. Material set 1 is utilized. From Table 4 it is observed that the deflection and stresses 
predicted by present theory and the method proposed by Sayyad and Ghugal (2014b) are in 
excellent agreement with each other. The results are also compared with those of the exact result 
obtained by Zenkour (2007). The variation of stresses ,( x xy  and )xz  of (0°/90°/0°/90°) cross-
ply laminated plates through thickness is shown in Figs. 9 to 11 using both the present theory and 
the model proposed by Sayyad and Ghugal (2014b). 

 
Example 5: A simply supported two-layer antisymmetric angle-ply (45°/-45°) laminated plate 

under sinusoidal transverse load is examined in this example. Material set 2 is employed. The 
numerical results of non-dimensional transverse displacement for the square and rectangular plates 
are given in Table 5. In the case of thick plates, there is a significant difference between the results 
predicted by utilizing the various models and the values indicated by Ren (1990). The small 
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Table 5 Comparison of transverse displacement for simply supported two-layer (45°/-45°) square and 
rectangular laminated plate subjected to single sine load 

a/h Source 
w  

Square plate (a = b) Rectangular plate (b = 3a) 

4 

Present 0.9766 3.0278 

Ren (1990) 1.4471 3.9653 

HSDT 1.0203 3.1560 

FSDT 1.1576 3.3814 

10 

Present 0.5508 2.2173 

Ren (1990) 0.6427 2.3953 

HSDT 0.5581 2.2439 

FSDT 0.5773 2.2784 

100 

Present 0.4643 2.0593 

Ren (1990) 0.4685 2.0686 

HSDT 0.4676 2.0671 

FSDT 0.4678 2.0674 

CPT 0.4667 2.0653 
 
 

Table 6 Effect of thickness stretching on non-dimensional transverse displacements for simply supported 
two-layer (30°/-30°) square and rectangular laminated plate subjected to single sine load 

a/h Source 

w

Square plate (a/h) Rectangular plate (b = 3a) 

εz ≠ 0 εz = 0 εz ≠ 0 εz = 0 

4 Present 1.0172 1.0432 2.3085 2.3386 

10 Present 0.5807 0.5864 1.4754 1.4818 

100 Present 0.4924 0.4966 1.3112 1.3153 
 
 

difference observed between the results predicted by the present theory and HSDT is due to the 
effect of thickness stretching which is omitted this latter (HSDT). 

 
Example 6: The effect of thickness stretching on non-dimensional transverse displacements of 

a simply supported two-layer antisymmetric angle-ply (30°/-30°) laminated plate under sinusoidal 
transverse load is performed in this example. Material set 2 is employed. The numerical results for 
the square and rectangular plates are listed in Table 6. It can be seen again that the results with the 
thickness stretching effect (εz ≠ 0) are lower than those without it (εz = 0) and especially for thick 
plates. It confirms again that this influence is considerable and should be considered in 
investigation of thick plates. 
 
 

5. Conclusions 
 

This work presents a bending analysis for antisymmetric laminated composite plates by 
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employing a simple quasi-3D trigonometric theory subjected to various loading conditions. The 
governing equations are obtained by utilizing the principle of virtual works. Results demonstrate 
that the present theory is able to produce more accurate results than the FSDT and other HSDTs 
with higher number of unknowns. 
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