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Abstract.  A novel higher order shear-deformable beam model, which provides linear variation of transversal 

normal strain and quadratic variation of shearing strain, is proposed to describe the beam resting on foundation. Then, 

the traditional two-parameter Pasternak foundation model is modified to capture the effects of the axial deformation 

of beam. The Masing‟s friction law is incorporated to deal with nonlinear interaction between the foundation and the 

beam bottom, and the nonlinear properties of the beam material are also considered. To solve the mathematical 

problem, a displacement-based finite element is formulated, and the reliability of the proposed model is verified. 

Finally, numerical examples are presented to study the effects of the interfacial friction between the beam and 

foundation, and the mechanical behavior due to the tensionless characteristics of the foundation is also examined. 

Numerical results indicate that the effects of tensionless characteristics of foundation and the interfacial friction have 

significant influences on the mechanical behavior of the beam-foundation system. 
 

Keywords:  nonlinear quasi-static analysis; Pasternak foundation; Masing‟s friction law; higher order beam 
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1. Introduction 
 

The beam-foundation system is commonly used in the civil engineering. Many types of 

structures, including the railway tracks resting on the half space soil, the piles embedded in the soil 

and the strip foundation beam supporting the building, can be catalogued to the beam-foundation 

system. There are several simplified interaction models for engineering design and mechanical 

analysis of beam-foundation system. Winkler‟s model (Winkler 1867), which simplifies the soil as 

a single layer of vertically placed independent springs, may be the simplest one. The springs are 

modeled by a constant elastic stiffness coefficient or nonlinear p-y curve (Georgiadis and 

Georgiadis 2012), where the interaction among the springs is neglected. To refine the fidelity to 

the physical essence, several more refined models (Feng and Cook 1983), such as the Pasternak‟s 

model (Chen et al. 2004), Generalized foundation model (Nogami and O‟Neill 1985) and the 

Vlasov foundation model (Jones and Xenophontos 1977), had been proposed to capture more 

elaborate mechanical behavior of the foundation. The common feature (Feng and Cook 1983) in 

these refined models is that they generally introduce another parameter to evaluate the effects of 
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the shear interaction between the foundation and the beam bottom. Usually, the additional 

parameter is a constant coefficient for the linear foundation and t-z curve (Dash et al. 2009) for the 

nonlinear one. Due to the simplicity, these types of modeling still prevail (Dutta and Roy 2002, 

Ayoub 2003, Dash et al. 2009, Mullapudi and Ayoub 2010, Comodromos and Papadopoulou 2013) 

in the engineering practice. However, to the best knowledge of the authors, the interaction between 

structure and foundation is a contact problem (Berger 2002) and the friction effects (Berger 2002) 

between them is inevitable. To deal with this problem, the Coulomb‟s friction law (Popp et al. 

2003) was initially proposed to formulate the interaction, and many other friction models were 

basically developed from his model, e.g., Masing model (Masing 1923) which incorporated an 

additional initial elastic deformable range to the Coulomb‟s model, and the generalized Maxwell 

slip model (Al-Bender et al. 2005) which took the viscidity into account. Comodromos and Bareka 

(2005) used the Coulomb‟s friction law for the interface modeling to study the negative skin 

friction effects using a 3D numerical model. Furthermore, Zhou et al. (2011) employed the 

Coulomb‟s friction law to describe the horizontal interfacial interaction between the beam and 

foundation, and studied the bending behavior of an elastic beam resting on the elastic Winkler 

foundation. 

Classical beam models, like the Euler-Bernoulli beam model (Han et al. 1999) and the 

Timoshenko beam model (Han et al. 1999), have received a wide range of applications and are 

usually applied to the beam-foundation system (Ayoub 2003, Mullapudi and Ayoub 2010, 

Sapountzakis and Kampitsis 2013). However, it is unable to perform the detailed stress analysis of 

the beam, due to the over-simplified kinematics of the classical beam theory. In light of the higher 

order beam theory (HBT), which is free of this drawback and follows more refined kinematics yet 

holds lower spatial dimension than the 2D model, the authors believe that it is worthy of 

application of the HBT to the beam-foundation system to capture a reasonable shearing stress on 

the beam-foundation interface, and consequently take well into account the interfacial friction. 

In this study, a modification to the Pasternak model is further made in two aspects. First, a 

novel higher order shear deformable beam model, which provides linear variation of transversal 

normal strain and quadratic variation of shearing strain, is proposed. Being different from the 

classical beam model, the new model is composed of seven basic unknown functions, instead of 

three the Timoshenko model holds. Due to the refined kinematics, the more detailed stress can be 

obtained and a more reliable interfacial friction can therefore be captured. Second, the 

aforementioned Masing‟s friction model (Masing 1923) is applied to the system. As the friction 

occurs only when the friction pair is in pressure, the present study follows the assumption that the 

foundation is tensionless, which is also a key issue attracting a considerable amount of 

investigators (Mullapudi and Ayoub 2010, Sapountzakis and Kampitsis 2011a, b, 2013, Nobili 

2013, Zhang and Murphy 2013) to be devoted to, fairly recently. Furthermore, the nonlinear 

material properties of the beam and the p-y curves are considered. To carry out the analyses of the 

proposed new model, a new type of beam-foundation finite element is formulated, and the 

corresponding finite element program is verified by comparing the results with those based on the 

plane stress model and Refs. (Shirima and Giger 1992, Mullapudi and Ayoub 2010) in the linear 

range. The performance of the finite element program on nonlinear problem is also verified by the 

comparison with the results of Sapountzakis and Kampitsis (2013). Finally, extensive numerical 

examples of quasi-static analyses are performed, using the displacement incremental technique 

(Batoz and Dhatt 1979) and modified Newton-Raphson correction method (Zienkiewicz and 

Taylor 2000) to illustrate the influences of tensionless characteristics and friction on the 

mechanical behavior of beam-foundation system. 
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Fig. 1 A rectangular beam resting on a foundation 

 

 

2. Statement of the problem 
 

2.1 Higher order beam model 
 

2.1.1 Kinematics 
As is shown in Fig. 1, a beam with rectangular cross-section B×2h is resting on a foundation, 

and an ox coordinate axis is set from the centroid of the cross-section at the left end of the beam. 

To obtain more refined displacements and stress results, we assume that the axial displacement u(x, 

z) and transversal displacement w(x, z) of the beam can be approximated, respectively, as 
 

2 3

0 1 2 3( , ) ( ) ( ) ( ) ( )u x z u x u x z u x z u x z   
 (1) 

 
2

0 1 2( , ) ( ) ( ) ( )w x z w x w x z w x z  
 (2) 

 

where ui and wj (i = 0, 1, 2, 3; j = 0, 1, 2), are the basic unknown functions to be solved. Compared 

with Timoshenko beam model, u0 (x) and u1 (x) herein can be interpreted as the axial displacement 

and the cross-sectional rotation at the centroid of the cross-section, respectively; w0 (x) serves as 

the deflection of the cross-sectional centroid, while the rest terms in Eqs. (1)-(2) are neglected by 

classical beam models like Timoshenko and Euler-Bernoulli. 
 

2.1.2 Geometric equations 
The beam-foundation system is supposed to have small displacements when subjected to the 

external loads, thus, the geometric equations based on the linear elasticity still hold. From Eqs. (1)-

(2), the strain fields of the higher order beam can be derived as 
 

2 3

0 1 2 3( ) ( ) ( ) ( )x

u
u x u x z u x z u x z

x


        
  

(3) 

 

2 2

1 2 3 0 1 2( ) 2 ( ) 3 ( ) ( ) ( ) ( )xz

u w
u x zu x z u x w x w x z w x z

z x


           
   

(4) 

 

herein the prime ′ denotes the derivative with respect to x, i.e., ()′ = d()/dx; εx and γxz indicate 

normal strain and shearing strain of the higher order beam, respectively. 
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(a) Coulomb‟s friction law (b) Masing‟s friction law 

Fig. 2 Friction hysteresis loop 

 

 

2.2 Material and friction models 
 
2.2.1 Friction models 
Coulomb‟s friction law (see Fig. 2(a)) is one of the earliest friction models, which assumes that 

the sliding friction force is proportional to the pressure ζn between the friction pair, and the 

direction of the friction force is opposite to the relative slide δ. Specifically, the symbol μ, as is 

shown in Figs. 2(a) and (b), denotes the friction coefficient. Despite the simplicity, this model has 

received a wide range of applications to the civil engineering. 

Aiming to capture the sticking state of the friction pair, we assume that there is a linear elastic 

stage as given by Masing‟s friction law, and it is illustrated in Fig. 2(b) as F = kδ. In this stage, as 

the deformation is very small, the beam bottom and the soil in contact are both assumend to be 

elastic and will deform, although the deformation range is very small. This stage is in accordance 

with Pasternak‟s foundation model, because the elastic stiffness coefficient k shown in Fig. 2(b) is 

just corresponding to the Pasternak‟s second foundation parameter. The Masing‟s friction law is 

thus chosen to formulate the interfacial friction in this study. 

 

2.2.2 Beam materials 
Both the linear-elastic plane stress and nonlinear-elastic models are considered in this study. 

The constitutive relation for the former one can be written as 
 

   
T T

x z xz x z xzs s    D
 

(5) 

where 

2 2

2 2

0
1 1

0
1 1

0 0
2(1 )

E E

E E

E



 



 



 
 
 

 
 

   
 
 
  

D

 

(6) 

 

herein E and v indicate the Young‟s modulus and Poisson‟s ratio, respectively. 

For nonlinear beam materials, the constitutive relation can be written as 
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Nonlinear FEA of higher order beam resting on a tensionless foundation with friction 

1( )x xfs  , 1( )z zfs  , 2 ( )xz xzf 
 (7) 

 

in which, the normal stresses ζx and ζz are governed by the same nonlinear function f1, and the 

nonlinear function f2 describes the behavior of shear deformation. 

 

 

3. Finite element formulations 
 

3.1 Principle of virtual work 
 

Generally, the principle of virtual work of the beam-foundation system may be formulated as 
 

          

        

x x z z xz xz 1 2 b

b

t 0 0 0 0

t

d , , d

, ( ) , ( ) d , ,

u x h F w x h F

w x h q x u x h T x w x h P u x h T

d s d s d  d d

d d d d

 



                 

                   

 


 

(8) 

 

where Γb and Γt indicate the bottom and top surfaces of the beam, respectively; Ω is the domain 

the foundation beam occupies; q(x) and T(x) (see Fig. 3) are the external distributed pressure and 

traction, and P0 and T0 are the point load acting on the top surface with distance x0 from the left 

end of the beam; F1 and F2 (see Fig. 3) are the friction force and pressure acting on the bottom 

surface of the beam. 
 

3.2 Shape functions 
 

A displacement-based finite element (see Fig. 4) with three nodes marked with 1, 2, and 3 is 

constructed for higher order foundation beam, where each node possesses seven DOFs: ,)(
0
nu  

,)(
1

nu  ,)(
2
nu  ,)(

3
nu  ,)(

0
nw  )(

1
nw  and ,)(

2
nw  n = 1, 2, 3. The nodal DOF vector for this element is 

defined as 
T

(1) (2) (3)

e
   δ Ψ Ψ Ψ

 
(9) 

 

in which Ψ (n) = ],                  [ )(
2

)(
1

)(
0

)(
3

)(
2

)(
1

)(
0

nnnnnnn wwwuuuu n = 1, 2, 3. 

 

 
(e)z

(e)x

x0

q(x)

0P

0T

T(x)

h

h

F1(x)

F2(x)

 

L/2

1 2 3
(1)

jw

(1)

iu

L/2

Total DOF = 21

(2)

jw

(2)

iu

(3)

jw

(3)
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=0,1,2,3; =0,1,2.i j

(e)z
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Fig. 3 Beam subjected to the external load Fig. 4 Nodal DOF of the higher order beam element 

99



 

 

 

 

 

 

Guanghui He, Xiaowei Li and Rong Lou 

The shape functions for the basic unknowns can be conventionally derived by using Lagrange 

interpolation bases. And the finite element approximation of the unknown functions may be 

obtained as 
3

h ( )

1

i

j i j

i

u N u



,  

3
h ( )

1

i

k i k

i

w N w



,  

0, 1, 2, 3. 0, 1, 2.j k 
 

(10) 

 

where shape functions N1 = (2x ‒ L)(x ‒ L) / L2 and N3 = x(2x ‒ L) / L2; hereafter the apex „h‟ 

denotes the finite element approximation. 

Combining Eqs. (9)-(10) leads to 
 

h

ei uiu N δ ,  
h

ej w jw N δ ,  i = 0, 1, 2, 3. j = 0, 1, 2. 
(11) 

 

where 2
2103210 ]                  [ T

w
T
w

T
w

T
u

T
u

T
u

T
u NNNNNNN = [N1I7  N2I7  N3I7], and I7 is a seventh order 

identity matrix. 

Subsequently, finite element approximations for the displacement fields u and w can be derived 

using Eq. (11) as 
h

euu N δ , 
h

eww N δ
 (12) 

 

in which, 3
3

2
2

10 uuuuu zzz NNNNN   and .2
2

10 wwww zz NNNN   

Consequently, finite element approximation for strain fields can be obtained as 

 
h

ex x N δ , 
h

ez z N δ , 
h

exz xz N δ
 (13) 

 

with 
u

x
x








N
N

, 
w

z
z








N
N

, 
u w

xz
z x



 
 

 

N N
N

 
 

3.3 Discrete finite element equations 
 

Substituting Eqs. (12)-(13) into Eq. (8) yields 
 

    

        

T T T T T T T

e x z xz e 1 2 b

b

T T T T T T T

e t e 0 0 e 0 0

t

d , , d

, ( ) , ( ) d , ,

x z xz u w

w u w u

x h F x h F

x h q x x h T x x h P x h T

  s s 
 



                

                   

 



δ N N N δ N N

δ N N δ N δ N

 

(14) 

 

Due to the arbitrariness of ,T
eδ  Eq. (14) can be turned into an equivalent residual equation 

 

int ext  res F R 0
 (15) 

where 
 

    T T T T T

int x z xz 1 2 b

b

d , , dx z xz u wx h F x h F  s s 
 

                  F N N N N N

 
(16) 

 

        T T T T

ext t 0 0 0 0

t

, ( ) , ( ) d , ,w u w ux h q x x h T x x h P x h T


                   R N N N N

 
(17) 
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When the beam materials are nonlinear and/or the nonlinear interaction of the system is 

considered, the residual Eq. (15) can‟t be solved directly, and an iteration technique is required. 

Herein, the Newton-Raphson (N-R) type iteration method is applied. Conventionally, the Jacobi 

matrix of residual vector Eq. (15), i.e., the tangential stiffness matrix, can be derived as 
 

       

T T T1 1 2
t

e

T T1 2
b

b

d d d
d

d d d

d d
, , , , d

d d

x x z z xz xz

x z xz

u u w w

f f f

F F
x h x h x h x h

w

     
  

d





 
     
  

 
             
 





res
K N N N N N N

δ

N N N N

 

(18) 

 

Then, the N-R correction procedure can be summarized as 
 

1

t ext int

1 1
, 0,1, 2, ...

m m m m

m m m
m



 

   


   

K δ R F

δ δ δ
 

(19) 

 

Hereafter the superscript „‒‟ denotes that the quantity is global, i.e., assembled from the 

element quantity. The indicator m indicates the mth converged solution. The initial value 
0

δ  

tends to be a zero vector or the last converged solution of the previously applied load case. 

For a load controlled algorithm (Zienkiewicz and Taylor 2000), algorithm Eq. (19) is capable to 

implement and solve, if the external load is assigned to increase step by step. For the displacement 

controlled algorithm (Batoz and Dhatt 1979), there is an extra factor to multiply with the 

representative load vector, and this factor serves as an unknown. Accordingly, the value of the 

specified DOF of the system is incrementally prescribed. Therefore, the total sum of unknowns 

remains unchanged. In this study, both load and displacement controlled program are developed to 

carry out the coming numerical analysis. 

The finite element equation will become a linear algebraic problem, when the beam materials 

are governed by Eq. (5) and the Pasternak‟s foundation model is applied, that is 
 

1 pF k d , 2 wF k w
 

(20) 

 

where kp and kw indicate the stiffness coefficients of the longitudinal and transverse spring, 

respectively; δ and w are the relative longitudinal and transverse displacement of the friction pair, 

respectively; F1 and F2 are the elastic resistance. 

By using these linear models, the linear discrete finite element equation can be determined as 
 

e eeK δ R
 (21) 

 

where the element stiffness matrix Ke and element load vector Re are evaluated from 
 

        

T T T

e xz2 2 2 2

T T

p b

b

d
1 1 1 1

, , , , d

x x z z z x xz

u u w w w

E E E E
G

x h k x h x h k x h

       

 

   




    
         

       

            





K N N N N N N N N

N N N N

 

(22) 

 

101



 

 

 

 

 

 

Guanghui He, Xiaowei Li and Rong Lou 

        T T T T

e t 0 0 0 0

t

, ( ) , ( ) d , ,w u w ux h q x x h T x x h P x h T


                   R N N N N

 
(23) 

 

By the process of assembly (Zienkiewicz and Taylor 2000) and introduction of essential 

boundary conditions, the global discrete finite element equations for static analysis can be obtained 

as ,RδK   where K  and R  are the global elastic stiffness matrix and global load vector, 

respectively; δ  is the global displacement vector to be solved. 
 

 

4. Numerical verification and analysis 
 

4.1 Convergence test and shear effects 
 

4.1.1 Convergence test 
In this section, the convergence performance of the present finite element is examined through 

a linear analysis of a beam with free-free boundary conditions resting on a Pasternak foundation 

(see Table 1). The detailed geometric and physical parameters for this test are also tabulated in 

Table 1. The analytical solutions (see Appendix A for details) based on Timoshenko beam theory 

(TBT) and Euler-Bernoulli beam theory (EBT) are also presented as a comparison counterpart. 

There are two optional load cases tabulated in Table 1, and only the load case 1 is used in the 

convergence test. To take well into account the need of mesh refinement in the vicinity where the 

point load is applied, a meshing density formula is proposed as 
 

 
1

Gaussian , ,
i

i

L
l

x S m s


 ,   1

1

Gaussian , ,

en

i i

S
x m s





 

(24) 

 

where, Gaussian ) , ,( smix  is the normal distribution probability density function, with m  the 

mean of the distribution, and s  the standard deviation. Herein L, as is given in Table 1, is the 

length of the foundation beam; ne is the element number; for the ith element xi = iL / (ne ‒ 1) from 

the left end of the beam to the right, the element length is li. 
 

 

Table 1 Structural parameters for the linear example 1 (Shirima and Giger 1992) 

H

kw,  kp

H

B

L/2 L/2

Load case 1: P0 

Load case 2: M0 

 

Beam 

Length L [m] 5.0 

Young‟s modulus E [GPa] 10.5 

Poisson‟s ratio v 0.25 

Width B [m] 0.4 

Height H [m] 1.0 

Foundation 
Winkler‟s Parameter kw [MPa] 3.081 

Pasternak Parameter kp [MPa] 49.796 

Load case 1 
Concentrated force P0 [kN] 50.0 

Distance from the left end x0 [m] 2.5 

Load case 2 
Concentrated moment M0 [kN.m] 50.0 

Distance from the left end x0 [m] 2.5 
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In the present test, parameters β, m  and s  are respectively set as 0.1, L/2 and 0.2. Thus, the 

element number is the sole parameter controlling the meshing. 

Tables 2-3 have recorded the deflections of beam at the mid-span bottom with the refinement of 

meshing and increase of longitudinal slip stiffness kp, where the Winkler‟s spring stiffness kw is 

assigned as a constant 3.081 MPa. In the case of thick foundation beam, Table 2 indicates that the 

mid-span deflection converges so fast to certain stable value that a very decent accuracy can be 

achieved even when very few of elements are used. Table 2, as a counterpart, deals with the case 

of slender beam, and it confirms that the solutions of slender foundation beam converge stably 

with the refinement of meshing, though slower than the case of thick beam. The results of classical 

beam-foundation system, whose beam is described by TBT or EBT, are also provided in Tables 2-3, 

aiming to study the relationship between the proposed model and classical ones. It is shown that 

the results based on EBT underestimate the deflection, while those based on TBT overestimate the 

deflection, if wHBT is assumed to come closer to the exact solutions. 

Slip locking (Dall‟Asta and Zona 2004) is a well-known numerical problem, which tends to 

arise in the partial interaction problem with relative stiff shear interaction, usually in the composite 

or laminated structures. In fact, the beam-foundation system can also be categorized to composite 

structure. Thus, the slip locking test has also been carried out in Tables 2-3. From the tables, it is 

observed that the mid-span deflection of the beam always converges to the case when the second 

parameter of Pasternak foundation is rigid, which manifests the locking free characteristics of the 

proposed finite element. 

 

 
Table 2 Convergence of the proposed higher order foundation beam element, L = 3H 

kp/kw 

Mid-span downward deflection [mm] 

Element number ne Analytical solutions 

1 3 7 15 31 63 TBT EBT 

10-5 5.418 5.427 5.428 5.429 5.429 5.429 5.4304 5.4215 

102 5.417 5.426 5.427 5.427 5.427 5.427 5.4288 5.4198 

105 5.413 5.419 5.419 5.419 5.419 5.420 5.4215 5.4126 

1010 5.413 5.419 5.419 5.419 5.419 5.419 5.4214 5.4125 

no slip 5.413 5.419 5.419 5.419 5.419 5.419 — — 

 

 
Table 3 Convergence of the proposed higher order foundation beam element, L=10H 

kp/kw 

Mid-span downward deflection [mm] 

Element number ne Analytical solutions 

1 3 7 15 31 63 TBT EBT 

10-5 1.850 1.952 2.026 2.028 2.029 2.030 2.0316 2.0061 

102 1.739 1.813 1.849 1.850 1.851 1.852 1.8545 1.8270 

105 1.690 1.743 1.755 1.755 1.756 1.756 1.7587 1.7303 

1010 1.690 1.743 1.755 1.755 1.756 1.756 1.7584 1.7300 

no slip 1.690 1.743 1.755 1.755 1.756 1.756 — — 
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Fig. 5 Prediction of midspan deflection using HBT, TBT and EBT 

 
 
4.1.2 Shear effects 
It is essential to take into account the shear deformation, when predicting the mechanical 

behaviors of the deep beam structures. As a result, the Timoshenko beam model, as one of the 

most popular models, was proposed to consider the first order of shear deformation. To have a 

better understanding of the distribution of shear stress more than the first order, the HBT was 

proposed. Compared with the Timoshenko model, the Euler-Bernoulli model, however, neglected 

the shear deformation of the beam. 

In this section, the shear effects on the prediction of beam defllection are investigated, using 

three beam theories: EBT, TBT and HBT. The meshing Eq. (24) are still adopted in this 

investigation, and the same geometric and physical parameters used in Ssection 4.1.1 are reused, 

except for the boundary conditions. Herein, both ends of the beam are clamped and the subgrade 

reaction is neglected. Fig. 5 presents the mid-span deflections of clamped-clamped beam, with 

slenderness ratio ranging from 3 to 10. It can be seen that the discrepancies between the results 

based on HBT and TBT are quite small, while those between results obtained by HBT and EBT are 

not negligible, due to the shear deformation. The relative errors between the HBT and EBT, 

however, show to decrease with the increase of the slenderness ratio. Thus, it may be concluded 

that it should be avoided to use EBT in the analysis of deep beam structures, and the TBT model is 

good at the deflection prediction. 
 

4.2 Numerical verification and comparison 
 

In order to verify the proposed finite element, several numerical examples are presented, 

including both linear and nonlinear cases. In the linear examples, two static analyses of beam on 

Pasternak foundation are performed. One explores the influence of axial deformation on beam‟s 

deflection and internal forces, and the other investigates its influence on the stresses. In the 

nonlinear examples, comparisons with the work of Sapountzakis and Kampitsis (2013) are carried 

out to demonstrate the reliability of the proposed finite element program. 
 

4.2.1 Linear example 1 
In this section, the numerical results of Shirima and Giger (1992) are used as a comparison. The 

numerical example deals with a Timoshenko beam with free-free boundary conditions (see Table 1) 

resting on a Pasternak foundation. The load case 2 shown in the table is considered, and the other 

parameters are also shown in Table 1. 
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Fig. 6 Influences of the axial deformation 
 

 

q(x) = 12kN/m T(x) = 6kN/m
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Fig. 7 Structural parameters for numerical example 2 

 

 

Fig. 6 compares the present results with those of Shirima and Giger (1992), who neglected the 

longitudinal displacement (denoted as u0 in the present study) at the centroid axis. It is clearly 

shown that the results of Shirima and Giger (1992) and the present have a good agreement, if the 

axial displacement u0 is also neglected in the proposed HBT model. It is revealed that the 

Timoshenko‟s first order shear deformation assumption may achieve a decent fidelity in the 

analyses of deflection, shear force and bending moment in this case. However, a significant 

discrepancy between the results arises, if u0 is considered in the model. Thus, it may be concluded 

that the centroid‟s longitudinal deformation influences much on the behavior of the beam on 

Pasternak foundation, and we guess it may also affect the stress analysis, which, as a result, will be 

further discussed in Section 4.2.2. 
 

4.2.2 Linear example 2 
This example aims to investigate the effects of u0 on the stress analyses, including axial normal 

stress, transverse normal stress and shearing stress. As is shown in Fig. 7, the same boundary 

conditions, geometric and material parameters as Table 1 shows are considered, except for the load 

case. Herein the top surface of beam is subjected to the uniformly distributed pressure q(x) = 12 

kN/m and traction T(x) = 6 kN/m. 

Fig. 8 presents the contours of axial normal stress, where the results based on HBT, TBT and 

plane stress models are provided in Fig. 8(a). It is observed from the figure that the present HBT 

model predicts axial normal stress much closer to plane stress model than does the TBT model. Fig. 
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8(b) in contrast with Fig. 8(a), shows the corresponding results when the centroid‟s axial 

displacement is neglected. It can be concluded that the contour discrepancies among different 

theories demonstrate the significance of u0. This might be the reason accounting for the deviation 

of bending moment caused by the u0 shown in Fig. 6(c). 

Similarly, Figs. 8-9 are devoted to investigating the influences of the centroid‟s displacement u0 

on the distribution of transverse normal stress and shearing stress. Fig. 9(a) shows a decent 

convergence of transverse normal stress using plane stress model and the proposed HBT, where 

the results based on TBT can‟t be given due to the kinematics itself. The effects of axial 

deformation are also checked in Fig. 9(b), where the same phenomenon, as expected, is observed 

that a serious distortion of stress occurs if the u0 is neglected. Moreover, Fig. 10(a) indicates that 

the results based on the present HBT and plane stress model almost coincide exactly with each 

other, whereas the results based on TBT can only capture a uniform distribution of shearing stress 

due to the first order shear deformation assumption. A further analysis has also been conducted to  
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Fig. 8 Contours of axial normal stress in kPa, using the plane stress model, HBT and TBT 
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Fig. 9 Contours of transverse normal stress, using the plane stress model and higher order 

beam model 
 

106



 

 

 

 

 

 

Nonlinear FEA of higher order beam resting on a tensionless foundation with friction 
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Fig. 10 Contours of shearing stress resulting from plane stress model, HBT and TBT 
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Fig. 11 Shearing stress over the mid-span cross 

section 

Fig. 12 Load-displacement curve at the mid-point 

of the beam of nonlinear example 1 

 

 

examine the distribution of shearing stress over the mid-span cross-section in Fig. 10, where an 

amazing matching of shearing stress based on the proposed HBT and plane stress model is 

observed. However, the results neglecting u0 shown in Fig. 10(b) and 11 manifest an obvious 

distortion. Thus far, it may be concluded that the centroid‟s axial displacement should be 

considered in the stress analysis of beam-foundation system. 

 

4.2.3 Nonlinear example 1 
This example, which was previously studied by Sapountzakis and Kampitsis (2013) using the 

EBT-based boundary element method, is given to verify the reliability of the proposed model and 

its finite element program on the nonlinear analyses. Herein a simply supported beam of length 

7.62 m and square cross-section of side 159.004 mm subjected to a monotonically increasing 

concentrated vertical load P0 at its midpoint is studied. The beam is assumed to be elastic-plastic 

with modulus of elasticity E = 199.948 GPa and shear modulus G = 80 GPa, yielding stress ss = 

206.843 MPa and ηs = 160 MPa, and a strain hardening slop Et = 2.79927 GPa and Gt = 1.12 GPa; 
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(a) Bending moment (b) Deflection 

Fig. 13 Numerical results of nonlinear example 1, with mid-span deflection prescribed to be 127 mm 

 

 
the Winkler foundation p-y curve is also considered to be elastic-plastic with initial stiffness kw = 

3.44738 MPa, yielding pressure 175.127 kN/m and a hardening slope kwt = 34.4738 kPa. The 

longitudinal stiffness kp is neglected in this example. The entire span of the beam is meshed by 101 

elements of even length, and five Gauss integration nodes are used for cross-sectional integration; 

four Gauss integration nodes are used for the longitudinal direction integration. 

Fig. 12 presents load-deflection curves of the beam‟s mid-span obtained by Ref. (Sapountzakis 

and Kampitsis 2013) and the present model, from which an excellent agreement can be observed 

when mid-span deflection is less than 50 mm, while the deviation develops with the further 

increase of deflection. This can be accounted, on the one hand, that the shear effect tends to be 

negligible for the present very slender beam (whose slenderness ratio is 47.9) in the linear elastic 

stage, on the other hand, the larger shear deformation results in the decrease of the shear stiffness 

in the nonlinear stage, which may cause softening of global stiffness shown in Fig. 12. The 

bending moment and deflection along the beam are presented in Fig. 13, in which the mid-span 

deflection is prescribed to be 127 mm. The very few of discrepancy shown in the figure again 

confirms the reliability of the present program. 

 

 
Table 4 Materials for nonlinear example 2 

Materials Parameters Perfectly plastic Strain hardening 

Beam 

Initial Elastic modulus, E0 [MPa] 32318.4 32318.4 

Yield strength for normal stress ss [MPa] 20.0 20.0 

Harding modulus, Et [MPa] 0.0 650.0 

Initial shear modulus, G0 [GPa] 12.80 

Yield strength for shearing stress ηs [MPa] 25.60 

Harding shear modulus, Gt [MPa] 0.0 

Foundation 

Initial Stiffness for pressure kw [MPa] 20.0 

Yield strength for pressure kws [kN/m] 60.0 

Longitudinal stiffness kp [MPa] 55.5556 
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(a) Load case 1 (b) Load case 2 

Fig. 14 Load-displacement curve at the mid-point of nonlinear example 2 

 
 
4.2.4 Nonlinear example 2 
In order to carry out a more comprehensive verification of the proposed finite element program, 

a beam resting on the nonlinear Pasternak foundation is studied. The dimensions of the beam is H 

= 0.6 m, B = 0.3 m and L = 6.0 m and both of its ends are clamped. There are two types of 

nonlinear materials shown in Table 4 used for the beam to describe normal strain-stress 

relationship. One is Perfectly Plastic and the other is Strain Hardening. The behavior of shear 

deformation is both assumed to follow the perfectly plastic model, which is also shown in Table 4. 

Furthermore, two types of foundation are used in the example: one is elastic Pasternak with the 

initial stiffness parameters shown in Table 4 throughout the entire working stage, and the other is 

Perfectly Plastic with yield strength 60 kN/m. 

Sapountzakis and Kampitsis (2013) had also studied this example using the boundary element 

method, where the EBT was used in their model. There are two load cases analyzed in the example, 

which are shown in Figs. 14(a) and (b), respectively, and the same scheme of element integration 

 

 
Table 5 Geometric and materials parameters for Section 4.3 

1
m

H
=

1
m

B=0.3

P0 

T0 

M0 

Beam: Strain Harding 

Soil: Masing‟s friction material

10m 10m

cross 

section

 

Materials Parameters Value 

Beam 

Initial Elastic modulus, E0 [GPa] 200 

Yield strength for normal stress ss [MPa] 207 

Harding modulus, Et [GPa] 2.8 

Initial shear modulus, G0 [GPa] 80 

Yield strength for shearing stress ηs [MPa] 160 

Harding shear modulus, Gt [MPa] 1.12 

Foundation 

Initial Stiffness for pressure kw [MPa] 8.0 

Yield strength for pressure kws [kN/m] 200 

Initial longitudinal stiffness kp [MPa] 50 

Coefficient of sliding friction 0.85 or 0.3 
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and meshing are used as those used in Section 4.2.3. The force incremental technique is applied to 

this example and the results are shown in Fig. 14, from which it can be observed that the global 

stiffness in the linear stage decreases, due to the refinement of beam kinematics, whichever 

combination of materials the soil-foundation system adopts. Thus, the finite element program 

implemented, to some extent, is verified by the good consistence of overall load-displacement 

curves generated by HBT and EBT. 
 

4.3 Effects of friction and tensionless characteristics 
 

In this section, the effects of interfacial interaction between the beam and foundation as well as 

the tensionless (Sapountzakis and Kampitsis 2013) feature of the foundation are studied through 

two numerical examples. Herein a foundation beam with dimensions B = 0.3 m, H = 1 m and L = 

20 m (see Table5) is resting on the nonlinear foundation, and is subjected to point loads at the mid-

point of beam. The beam and foundation are assumed to be strain hardening and perfectly plastic, 

respectively, whose detailed parameters are listed in Table 5. Based on these parameters, extensive 

quasi-static analyses are carried out in the following sub-sections. 
 

4.3.1 Effects of friction 
The vertical ultimate bearing capacity at the midpoint of beam Pu is obtained from the load-

displacement curve shown in Fig. 15, assuming T0 = 0, M0 = 0 and the coefficient of sliding friction 

μ = 0.85. From the figure, a Pu of quantity 4000 kN is determined. Subsequently, the pressure 

reactions of the foundation under three load levels P0 = 0.2Pu, P0 = 0.5Pu and P0 = 0.8Pu are 

respectively captured and shown in Fig. 16. It can be approximately judged from Fig. 15 that the 

structure‟s mechanical behavior is linear in the load levels P0 = 0.2Pu and P0 = 0.5Pu, whereas it 

manifests obvious nonlinearity when P0 = 0.8Pu. Accordingly, the reaction responding to P0 = 

0.2Pu and P0 = 0.5Pu (see Fig. 16), is of proportion very close to 2:5. And the reaction responding 

to level P0 = 0.8Pu turns out to be definitely unproportional to the results resulting from the 

previous two load levels. 

The influence of interfacial friction on the longitudinal bearing capacity is illustrated in Fig. 17, 

where the previously used three load levels are considered. Herein the u0 of the mid-span cross-

section is chosen as the controlling DOF in the displacement incremental technique and the 
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program runs until u0 reaches 10 mm. It can be clearly seen that the longitudinal bearing capacity 

increases significantly with the increase of vertical load P0, which can be accounted that the 

increase of interfacial pressure, as is shown in Fig. 16, improves the sliding strength of the friction 

pair. The comparison of Figs. 17(a) and (b) carries on confirming that the ultimate longitudinal 

bearing force can be elevated by roughening the surfaces of the friction pair. The results based on 

elastic longitudinal interfacial interaction are also presented in the figure, from which it can be 

concluded that a serious overestimation of longitudinal bearing force may arise in the case when 

the vertical load is small or the friction interface is not very rough. 

 

4.3.2 Effects of tensionless characteristics 
This example is presented to demonstrate the significance of the tensionless characteristics in 

the analyses and design. Herein it is assumed that P0 = 800 kN, T0 = 0 and μ = 0.85. From Fig. 18, 

it can be seen that the ultimate bearing capacity of external moment M0 would be magnified from 

Mu1 = 6399.42 kN·m to Mu2 = 19194.02 kN·m, that is almost an overestimation of 200%, if the 

foundation is capable of resisting tension and the function F2(w) is symmetric with respect to the  
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Fig. 19 Effects of tensionless characteristics of foundation 
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origin of the p-y curve. Furthermore, it is illustrated that the linear range of load-displacement 

curve may be conspicuously extended by the extra tension, judging from the curve of linear 

Pasternak model. 

Figs. 19 and 20 are presented to illustrate the significance of the tensionless characteristics of 

the foundation, where P0 = 800 kN, T0 = 0 and three load levels of M0 = 0, M0 = 0.5Mu1 and M0 = 

0.8Mu1 are considered. It can be observed from Fig. 19 that the pressure reaction of the foundation 

along the left half span decreases with the increase of concentrated external moment M0, if the 

tensionless property of foundation is considered. There, however, arises interface in tension in the 

vicinity of the left end of the beam, and the region is to extend with the increase of external 

moment. Moreover, an increasing underestimation of foundation pressure, due to the extra tension, 

can also be observed. Fig. 20 examines the bending moment of the beam responding to the 

external moment, and it can be seen that bending moment decreases with the increase of external 

moment, if the tensionless characteristics of the soil is considered. Whereas, a hogging region 

arises in the left half span of the beam, when M0 = 0.5Mu1 or M0 = 0.8Mu1, if the foundation can 

resist tension. Thus far, it has been illustrated that the tensionless property of the beam-foundation 

interface is a factor of crucial importance in the analysis and design. 

 

4.4 CPU time and memory issues 
 

CPU time cost is an essential factor in the analysis of the foundation beam. As far as the 

computation examples above performed, the total degrees of freedom is really small compared 

with the 2D elements like the quadrilateral plane stress elements or 3D hexahedral solid elements. 

Moreover, the beam on foundation can usually be discreted with not much of elements (63 for 

instance in Section 4.1.1). Therefore, the CPU time and memory requirement could not be the 

factor hinders the present finite element analysis. 

 

 

5. Conclusions 
 

In this paper, a new type of higher order beam model, which provides both longitudinal and 

transversal displacements and stresses, is proposed. And the model is applied to the nonlinear 

beam-foundation system problem, where the beam-foundation interaction is described by Masing‟s 
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friction law and Pasternak‟s foundation model on the one hand and the nonlinear material of beam 

are also considered on the other. Then, the corresponding finite element for the proposed model is 

formulated and verified by the comparison with the existed results of Refs. (Shirima and Giger 

1992, Sapountzakis and Kampitsis 2013) and those based on classical Pasternak beam-foundation 

system. The convergence performance of the proposed element is conducted, showing that the 

present element is locking free. Finally, extensive quasi-static analyses are performed to study the 

influences of tensionless property and friction on the mechanical behavior. Through this study, the 

following main conclusions can be drawn: 
 

(1) The proposed higher order beam model can be a good candidate for detailed analysis of 

beam structures. 

(2) The DOF of u0, on the one hand, influences much on the mechanical behavior of the 

beams, including displacement and internal-force results, on the other hand, a serious 

distortion of stress resultants may arise without this DOF. 

(3) The tensionless and friction characteristics of the beam-foundation interface shall be 

considered, or an underestimation of foundation pressure reaction and bending moment 

may arise. 
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Appendix A 
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Fig. 21 Infinitesimal element for the Timoshenko beam on Pasternak foundation 

 

A.1 Timoshenko beam on Pasternak foundation 
 

For Timoshenko beam on Pasternak foundation, where the centroid‟s axial displacement u0 is 

considered (see Fig. 21(a)), the displacement based governing differential equations can be 

formulated as 

 

w
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0 p 0
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(A.1) 

 

and force boundary conditions 
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(A.2) 

 

hereafter, symbols ,M  sF  and NF  denote the external force acting on the boundary x=0 or L. 

For the free-free boundary conditions, ,0M  0sF  and 0N F , at both x = 0 and L; k, G, 

A and I are Timoshenko shearing stress correction factor (herein k = 5/6), shear modulus, area of 

the cross-section and moment of inertia, respectively. 

In the case when u0 is neglected (see Fig. 21(b)), the governing differential equations can be 

expressed as 
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(A.3) 

 

and force boundary conditions 
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(A.4) 

 

A.2 Euler-Bernoulli beam on Pasternak foundation 
 

For Euler-Bernoulli beam on Pasternak foundation, an additional kinematic constraint shall be 

introduced as θ = w′. Subsequently, the displacement based governing differential equations 

considering u0 can be reduced to 
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and force boundary conditions 
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If u0 is neglected, Eqs. (A.5)-(A.6) will be reduced to the follows 
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and force boundary conditions 
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All the above differential equations are linear boundary value problems, and they can be directly 

solved by computer algebra system. Herein, these equations are analytically solved by 

Mathematica. 

 

116




