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Abstract.  Corrugated-core sandwich panels are prevalent for many applications in industries. The researches 

performed with the aim of optimization of such structures in the literature have considered a deterministic approach. 

However, it is believed that deterministic optimum points may lead to high-risk designs instead of optimum ones. In 

this paper, an effort has been made to provide a reliable and robust design of corrugated-core sandwich structures 

through stochastic and probabilistic multi-objective optimization approach. The optimization is performed using a 

coupling between genetic algorithm (GA), Monte Carlo simulation (MCS) and finite element method (FEM). To this 

aim, Prob. Design module in ANSYS is employed and using a coupling between optimization codes in MATLAB 

and ANSYS, a connection has been made between numerical results and optimization process. Results in both cases 

of deterministic and probabilistic multi-objective optimizations are illustrated and compared together to gain a better 

understanding of the best sandwich panel design by taking into account reliability and robustness. Comparison of 

results with a similar deterministic optimization study demonstrated better reliability and robustness of optimum 

point of this study. 
 

Keywords:  sandwich structure; corrugated core; optimization; probabilistic; genetic algorithm; finite 

element method 

 
 

1. Introduction 
 

Corrugated-core sandwich panels are a type of low weight and high strength structures that are 

extensively used in a variety of applications in aerospace, marine and automotive industries. Due 

to desirable energy absorption, acoustic, thermal and cooling characteristics as well as durability, 

sandwich panels have been very desirable for industrial applications. Mechanical properties of 

sandwich panels highly depend on their core configuration (Wadley et al. 2003). 

Due to the above-mentioned characteristics, these structures have drawn considerable attention 

in recent years. Lu et al. (2001) designed and optimized a flexural actuator consisting of a 

triangular corrugated core with shape memory alloy (SMA) faces. They concluded that cantilever 

actuators consisting of SMA face sheets and triangular corrugated cores can successfully operate 

against large restraining moments at almost low weight compared to pertaining concepts, such as 

bimorphs. Wadley et al. (2003) demonstrated the possibility of fabrication of robust metallic 

sandwich panels with periodic, open cell, cores by protocols based both on the sheet forming of 
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trusses and textile assembly. They also showed that sandwich panels constructed with these cores 

sustain loads at weights greatly superior to stochastic foams. Valdevit et al. (2004) performed 

single objective optimization of sandwich panels with corrugated cores considering non-

dimensional form of the structure weight as objective function and occurrence of yielding and 

buckling in face and core sheets as optimization constraints. Tan and Soh (2007) performed multi-

objective optimization of a new type of sandwich panels with prismatic cores considering the 

lowest weight and maximum heat transfer performance of the sandwich panel. They used genetic 

algorithms and obtained a set of compromised solutions, known as the trade-off surface. Biagi and 

Bart-Smith (2012) used analytical, numerical, and experimental methods to characterize the failure 

response of sandwich panels with corrugated core under in-plane loading. Bartolozzi et al. (2015) 

proposed a simplified multilayered model instead of a fully detailed 3D one for aluminum 

sandwich panel with a sinusoidal corrugated core. Wei et al. (2014) fabricated ZrO2 ceramic 

corrugated-core sandwich panels using gelcasting technique and pressureless sintering. They 

measured the three-point bending strength, the compressive strength and the specific bending 

strength of this type of sandwich panel with corrugated core. Chang et al. (2006) also developed 

the elasto-plastic modeling of corrugated-core sandwich panels based on incremental theory of 

plasticity. They employed a combination of Hill’s criterion for naturally orthotropic material and 

Ilyushin’s criterion for isotropic plates and shells as the yield criterion. Dynamic response of a 

sandwich beam with foam or functionally graded cores was also investigated for a single impact 

loading considering arbitrary impacted face sheet and locations (Malekzadeh et al. 2015). 

Optimal design of sandwich panels deals with optimizing two objective functions including 

weight and stiffness of the structure. However, these objective functions are known to represent 

conflicting trend, meaning that improving one leads to deteriorating another. Such problems 

concerned with optimization of conflicting objective functions are recognized as multi-objective 

optimization problems (MOP). Multi-objective optimization problems are very prevalent in 

advanced design and engineering practices. Some of the recent works include utilizing multi-

objective optimization algorithms for minimizing the power consumption of piezoelectric patches, 

while obtaining the highest vertical displacement of smart FML panels using method of modified 

multi-objective Elitist-Artificial Bee Colony (E-ABC) algorithm. (Ghashochi-Bargh and Sadr 

2014), as well as multi-objective optimization of steel frames to obtain both the lowest damage 

and minimum cost (Kaveh et al. 2013). In another study, multi-objective optimization was 

performed on a parametric ship hull form represented by B-Spline curves via Genetic Algorithm 

(Guha and Falzarano 2015). In addition, a modified particle swarm approach was employed for 

multi-objective optimization of laminated composite structures (Sepehri et al. 2012). Method of 

Non-dominated Sorting Genetic Algorithm II (NSGA II) was also used to simultaneously optimize 

size and topology of a geometrically nonlinear dome structure by minimizing its weight & joint 

displacements and maximizing load-carrying capacity (Targul 2012). 

Optimization of the sandwich panel for gaining the best structure by incorporating low weight 

and high strength is actually a multi-objective optimization problem encountered with conflicting 

objective functions. Although many researches in the literature have conducted numerical and 

experimental investigations on modeling and analysis of these panels, only a few research works 

can be found connected with performing optimization. 

Different methods for solving MOPs have been proposed by previous researchers (Collette and 

Siarry 2013, Lee et al. 2011). Method of NSGA-II proposed by Deb (2001) and Srinivas and Deb 

(1994) which is a Pareto based approach, has been found an effective algorithm for solving MOPs. 

It generates a set of non-dominated solutions (Pareto solutions), where a non-dominated solution 
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has better characteristics in at least one criterion than the other solutions. To improve NSGA-II, 

Nariman-Zadeh (Nariman-Zadeh et al. 2006) proposed modified NSGA-II which uses ε-

elimination algorithm instead of crowding factor (Nariman-Zadeh et al. 2006). This method has 

been proved to work successfully in many recent studies (Khalkhali and Safikhani 2012, Khalkhali 

et al. 2014). 

The main drawback of conventional optimization techniques lies in the fact that these 

approaches do not take into account design uncertainties, hence, a deterministic approach is taken 

toward the optimization process. Notably, it has been proved that such an optimization without 

considering uncertainties actually results in potentially high-risk solutions instead of optimal 

designs. Therefore, finding a reliable and robust design with low performance variation in the 

presence of uncertainties is highly crucial for realistic industrial applications. In this regard, 

researchers are going more and more towards utilization of probabilistic approaches incorporating 

reliability and robustness of design in structural optimization. (Sun and Betti 2015, Yang et al. 

2015, Richardson et al. 2015, Li et al. 2015) 

Generally, there are two stochastic approaches accommodating influence of uncertainties, 

namely robust design optimization (RDO) as well as reliability-based design optimization (RBDO) 

(Papadrakakis et al. 2004). Both approaches propose a probabilistic optimization process instead 

of deterministic formulations. 

In RDO view, it is required to decrease the sensitivity of the robust performance to the random 

variation generated by uncertain design variables, so the performance degradation from ideal 

deterministic behavior becomes minimized. While, in RBDO approach, some pre-defined 

reliability metrics subjected to probabilistic constraints are met. In fact, a limiting index has been 

defined as the probability of failure of each design. Regardless the choice of any of corresponding 

approaches, the objective functions and the constraints of the optimal design should be assessed to 

reflect the effect of probabilistic nature of uncertain parameters in the system performance. By 

means of computational power, a great number of researches in the field of robust analysis and 

design leaded to the use of Monte Carlo simulation (MCS) (Lönn et al. 2009, Khakhali et al. 2010). 

In fact, MCS has also been an efficient tool for verification of the results of other methods in RDO 

or RBDO problems provided that the number of sampling is sufficient. 

In this paper, firstly, regarding different uncertainties in design performance, geometrical 

design variables and material properties of the sandwich panel with corrugated core are considered 

as probabilistic parameters with Gaussian distribution. Dimensionless weight, the mean and 

standard deviation of the deflection of the sandwich panel structure are considered as three 

conflicting objective functions in the present MOP. Deflection of the panel based on geometrical 

design parameters has been calculated using an APDL code developed in ANSYS. In addition, by 

means of a coupling between MATLAB and ANSYS commercial software, the APDL code 

obtained in ANSYS is employed in MATLAB for the optimization process during the run time. 

Subsequently, modified NSGA-II algorithm is utilized for solving the MOP, where both RDO and 

RBDO approaches are taken into consideration. Concerning RDO approach in the optimization 

process, the standard deviation of the distribution of the panel deflection is to minimize, while, 

RBDO is achieved by considering some probabilistic reliability constrains, preventing the failure 

of the panels. Best possible combinations of the values for objective functions generate a set of 

optimal design points known as a Pareto front. Finally, to select some trade-off optimum design 

points among the obtained Pareto points, two methods including the Nearest to Ideal Point Method 

(NIP) and Technique for Order Performance by Similarity to Ideal Solution method (TOPSIS) are 

introduced and utilized in this study. 
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Fig. 1 Geometry of one unit of a sandwich panel with corrugated core and the 

corresponding design variables 
 

 

 

Fig. 2 Finite element model of the sandwich panel with corrugated core 

 

 

2. Finite element analysis 
 

Geometrical configuration as well as design variables for one unit of the considered sandwich 

panel with corrugated cores are depicted in Fig. 1. 

Accordingly, the geometrical design variables of this model include d as the thickness of the 

panel faces, dc as the thickness of the core member, and H as the value of the distance between the 

face sheets. Fig. 2 also indicates the associated FE model of the sandwich panel with corrugated 

core. FE simulation of the transverse loading and modeling of this panel are done using ANSYS 

commercial software, in which 3D beam elements (BEAM 189) are used for discretization. 

The total length of the panel in all FE analyses is constantly equal to 1m. In FE simulations, one 

end of the sandwich panel is completely fixed and a downward transverse load with a magnitude 

of 6317.5 N is applied to the point at the other end. This value for force has been selected 

according to the results obtained by authors in (Valdevit et al. 2004). As mentioned earlier, unlike 

the methodology employed in this study, they carried out a deterministic single-objective 

optimization to exclusively optimize the weight of the sandwich panel structure. Based on the 

graphs represented by Valdevit et al. (2004) the amount of load applied to one of the optimum 

designs for a single-array sandwich panel was equal to 6317.5 N. After applying the load, 

maximum deflection of the panel corresponding to the design variables as inputs, is calculated by 

an APDL script developed in ANSYS. To check the accuracy of FE analysis, 5 different FE 

simulations were performed and deflection of the panel was compared to corresponding values 

reported by Valdevit et al. (2004). Obtained root mean square error was equal to 0.0039, 

indicating acceptable accuracy of FE modeling in this study. 

To consider the effects of uncertainties in design variables, Prob. Design module in ANSYS is 

utilized. In fact, this module provides as a probabilistic finite element analysis, meaning, instead of 
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deterministic values of geometrical and mechanical properties, a distribution of them are entered in 

this module to accommodate uncertainty from deterministic values. Based on the initial 

distribution of inputs in this module, outputs such as panel deflection will be calculated with a 

certain stochastic distribution instead of a specific value. Initial values for different samples as 

design variables are first produced in MATLAB. Subsequently using the APDL code in Prob. 

Design, a probabilistic finite element analysis is performed to obtained outputs including mean and 

standard deviation of panel deflection along with its dimensionless weight. Finally, these outputs 

are again imported to the optimization code to initiate the process of multi-objective optimization, 

producing a set of probabilistic outputs corresponding to a specific set of probabilistic inputs. 

In this paper, geometrical design variables, namely, H, d and dc as well as module of elasticity 

E (for both cores and panel) are considered as probabilistic design variables with Gaussian 

distribution. Mean and variance of the distributions for each of the above-mentioned design 

variables will be further investigated in Section 6. Considering excessively high number of runs 

needed for this module in the optimization process, an APDL script has been developed 

particularly for the probabilistic analysis in Prob. Design module. 

Moreover, Monte Carlo simulation method has been utilized in Prob. Design module and the 

number of samples has been regarded 1000 individuals. The mean deflection (𝛿 ) and its standard 

deviation (𝜎) have been considered as outputs of this FE analysis. To evaluate the effect of the 

number of samples in accuracy of probabilistic FE analysis, firstly, several analyses regarding 

different values for the number of samples including 100, 1000, 10000 and 100000 individuals 

were done, wherein the difference in the values of the outputs was investigated for each analysis. It 

was proved that 1000 individuals as the number of samples showed a good accuracy in the outputs, 

while for the numbers below 1000, output values had an unacceptable accuracy. 
 

 

3. Reliability-based and robust stochastic methods 
 

A comprehensive explanation of the probabilistic stochastic method employed in this study can 

be found by Khakhali et al. (2010). Briefly, to achieve a robust design, it is required to minimize 

the variability of a random process due to the presence of uncertainties in deterministic design 

variables. This robust approach toward the MOP can be given by 
 

 

)()(

)()(Minimize

)],,([  )],,,([

UL

UL

ddd

xxx

pdxfpdxf







 (1) 

 

Where f (x, d, p) is the performance or the cost function, µ is the mean value and υ is one 

stochastic dispersion index, namely variance (σ2), standard deviation (σ) or coefficient of variation 

(Cv = σ/µ), x is the vector of uncertain design variables, d is the vector of deterministic design 

variables and p is the vector of uncertain parameters which are not design variables. 

To consider a reliability-based design view, some reliability metrics by means of some 

inequality constraints based on the probability of failure of the design are defined. A deterministic 

constraint is regarded in the form of gi(x,d,p) ≤ ĝi where ĝi is the limiting value of ith constraint. 

Using the definition of a random process, such a deterministic constraint can be converted into a 

probabilistic one as follows 

),,,(ˆ),,( pdxggpdxG ii   (2) 
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The typical probability constraint is then given as 
 

  ),...,3 2, 1,(0),,( mipdxGPP i
i
f    (3) 

 

where 
i
fP  is the probability of failure of the ith reliability index and m is the number of inequality 

constraints and ɛi is the highest value of the desired admissible probability of failure. Clearly, the 

ideal value of each 
i
fP  is zero. 

Consequently, a set of N different solutions is generated by the propagation of the known 

probabilistic distribution of the variation of x and p in the model. Afterwards, each constraint gi 

can be investigated for each sample to check its possible violation. If r cases (of N) do not satisfy 

gi constraints, the probability of failure of 
i
fP  of Eq. (3) can be simply computed by the value of 

r/N. 

In addition, corresponding Eqs. for the mean value (µ) and standard deviation (σ) in Eq. (1) can 

be calculated as 
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In the present reliability-based robust multi-objective optimization problem, there are several 

conflicting reliability-based metrics that should be minimized simultaneously. This methodology 

can be formulated as 
 

 
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



 (6) 

 

In this paper, Hammersley Sequence Sampling (HSS) method has been used to generate 

samples for probability estimation of failures in the reliability-based robust multi-objective process. 

HSS is a low-discrepancy method capable of producing uniform distribution of n points in a k-

dimensional hypercube (Kalagnanam and Diewekar 1997). This method has been proved to be an 

efficient and precise algorithm, in particular, for robust design and optimization under presence of 

uncertainties (Kalagnanam and Diewaker 1997, Diewekar and Urmila 2003). Furthermore, HSS 

technique has been widely used for generation of uniform samples in probabilistic optimization 

studies incorporating effect of design uncertainty (Fu et al. 2000, Subramanyan et al. 2004, 

Khalkhali et al. 2010, Lingshuang et al. 2013). 
 

 

4. Reliability-based and robust multi-objective optimization of 
sandwich panels with corrugated core 

 

In conventional MOPs of sandwich panels, it is usually desirable to minimize the dimensionless 
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weight (𝜓) and the deflection of the sandwich panel (𝛿) under transverse loading. However, for 

achieving a RDO, objective functions should be as insensitive as possible to the presence of 

uncertainties. This necessitates minimizing the standard deviation of deflection (𝜎) as another 

objective function. In addition, for acquiring a RBDO, several probabilistic failure constraints 

should also be met in the process of optimization. In a corrugated core sandwich panel, for the 

transverse loading case, the non-dimensional loading index which is based on the maximum value 

of the shear force can be calculated as follows 
 

EM

V
  (7) 

 

where, V and M are maximum values of the shear force and bending moment, both per unit width, 

and E is the Young modulus of the panel constitutive material. Assuming that the shear force is 

undergone almost entirely by the core and the bending moment almost completely by the face 

sheets, the failure constraints are as follows (Valdevit et al. 2004) 
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Parameter l is defined according to the length of loading and the boundary conditions and can 

be calculated as 

V

M
l   (12) 

 

In this paper, the sandwich panel has been considered as a cantilever, so the effective value of l 

is equal to the total length of the beam. Furthermore, Kf and Kc which are the Euler’s Eq. 

correction factors, are defined as follows (Valdevit et al. 2004). 
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In the present MOP, dimensionless weight (𝜓), mean deflection (𝛿 ) and standard deviation of 

715



 

 

 

 

 

 

Abolfazl Khalkhali, Morteza Sarmadi, Sharif Khakshournia and Nariman Jafari 

deflection (𝜎) of the sandwich panel have been considered as three objective functions. The 

dimensionless weight has been calculated using a simple mathematical equation as 
 

l

cd

Cosl

d

l

W




1
2

2
  (15) 

 

Where  and θ denote the density of the constitutive material and the core sheet angle, 

respectively. In the present study, θ is considered equal to 54.7° in which the structure shear 

strength will be maximized (Wadley et al. 2003). To calculate the mean and standard deviation of 

the deflection of the sandwich panels, Prob. Design module in ANSYS has been used. To do this, 

the optimization script, which is written in MATLAB program, is connected to the APDL script, 

written in ANSYS program. As a result, outputs of finite element analysis, which are objective 

function of this study, are imported to the optimization algorithm. In each generation, design 

variables are produced by the optimization script and afterwards the APDL script is employed for 

computation of the three objective functions. To achieve a reliable design for sandwich panels with 

corrugated core, the probability of failure of constraints g1 to g4 has been regarded less than 10%. 

In this MOP, there are three geometrical design variables with probabilistic normal distributions 

including: the face sheet thickness (d), the core sheet thickness (dc) and the face sheet distance (H). 

Moreover, two different uncertain parameters which are not design variables are also 

considered with probabilistic normal distributions including: the elasticity module (E) and yield 

stress (y). It is assumed that the standard deviations of d, dc, H, E and y are equal to 0.0001 m, 

0.0001 m, 0.01 m, 10 MPa and 2 GPa, respectively. These values have been considered according 

to 0.3 mm, 0.3 mm, 30 mm, 30 MPa and 6 GPa tolerance in the face sheet thickness, core sheet 

thickness, sheet distance, yield stress and elasticity module, respectively, based on 3𝜎 as the value 

of tolerance. The mean of elasticity module and yield stress of the material are considered equal to 

70 GPa and 490 MPa, respectively. These values are equal to those deterministic values that were 

considered by Valdevit et al. (2004) for aluminum alloy as the constitutive material of the 

sandwich panel. The present probabilistic optimization problem can be defined in accordance with 

equations (Bartolozzi et al. 2015) as follows 
 

Minimize 𝜓 = 2 d +
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cos ⁡𝜃
  

Minimize 𝛿  = 𝜇[𝑓1 𝐻, 𝑑, 𝑑𝑐 , 𝐸 ] 

(Calculated using ANSYS APDL script, Prob. Design module) 

Minimize 𝜎 = 𝑣[𝑓1 𝐻, 𝑑, 𝑑𝑐 , 𝐸 ] 

(Calculated using ANSYS APDL script, Prob. Design module) 
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Those design vectors which violate the constraints are eliminated from the optimization process 

by means of a penalty function. This function multiplies the real values of the objective functions 

by a very large coefficient. A mathematical formulation for such a function can be presented as 
 

)(10)( 10 xGfxF ii   (17) 
 

where 
 


4

1

)( ixG 
  

 λi = 0     If the ith constraint is satisfied for design vector x 

λi = 1     If the ith constraint is not satisfied for design vector x 

 

 

5. Results and discussion 
 

The evolutionary-based probabilistic multi-objective optimization was performed using a 

population of 30 individuals with a crossover probability (Pc) of 0.7 and mutation probability (Pm) 

of 0.07 has been used in 400 generations that no further improvement has been achieved for such 

population size. Solving the optimization problem described by Eq. (30) using modified NSGA-II 

algorithm gives a set of non-dominated optimal design vectors, known as Pareto points. It should 

be emphasized that while these obtained Pareto points are non-dominated to each other, they 

provide better performance, reliability as well as robustness in design in comparison to other 

vectors of design variables, which are not Pareto points, within the search space. Corresponding 

Pareto fronts of 𝜓 − 𝛿  and 𝜎 − 𝛿  are shown in Figs. 3 and 4, respectively. As evident from Fig. 

3, an increase in the weight of the sandwich panel structure results in a decrease in its mean 

deflection. This finding indicates that unlike some previous studies by Valdevit et al. (2004) the 

weight of the sandwich panel structure cannot be considered as the only objective function in case 

of single-objective optimization of the structure because a sandwich panel with the lowest weight 

has the maximum deflection. In addition, Fig. 4 indicates a direct relationship between the mean 

value and standard deviation of the panel deflection. It is clear that in case of a probabilistic 

optimization, when uncertainties are accounted, the lower the weight of the sandwich panel 

structure, the more its mean as well as standard deviation of the deflection. This result again shows 

that due to an increase in the standard deviation of the sandwich panel deflection and resultantly a 

decrease in the design robustness, exclusively regarding the weight of sandwich panels as the only 

objective function is not accurate. 

It is now desirable to select some optimal trade-off points among all presented Pareto fronts 

using TOPSIS and NIP methods. TOPSIS is a popular multi-criteria decision making method 
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Fig. 3 Pareto front of non-dimensional weight vs. mean deflection of the sandwich panel 
 

 

 

Fig. 4 Pareto front of standard deviation vs. mean deflection of the sandwich panel 

 

 

widely used for engineering optimization in multi-objective problems (Shidpour et al. 2013, 

Athawale and Chakraborty 2010, Gadakh 2012). A comprehensive review about its areas of 

application as well as explanation of underlying concept behind TOPSIS can be found in 

(Behzadian et al. 2012). 

Moreover, NIP method works based on minimizing distance of a set of non-dominant points 

relative to an ideal point with best characteristic for each objective function. This method has been 

widely used for finding the trade-off point in multi-objective problems (Khalkhali 2015, Khalkhali 

et al. 2014, 2016). 

The best trade-off points are obtained and represented in Figs. 3 and 4. Additionally, it may be 
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Table 1 Trade off design points found by TOPSIS and NIP methods along with 

single-objective optimization under uncertainties 

Method ℎ  𝑑  𝑑𝑐
    𝜓 𝛿  𝜎 

TOPSIS 0.099 0.0062 0.0021 0.016034 0.0114 0.0026 

NIP 0.090 0.0059 0.0020 0.015261 0.0143 0.0039 

A 0.100 0.0097 0.0026 0.023899 0.0073 0.0016 

B 0.050 0.0050 0.0019 0.013289 0.0621 0.0642 

Refraction point recommended 

by the deterministic study 
0.094 0.0057 0.002 0.014861 0.0136 0.0034 

NIP point recommended 

by the deterministic study 
0.082 0.0055 0.0018 0.014115 0.0185 0.0059 

 

 

noteworthy to find the optimum points in regard to a single-objective optimization problem. 

Subsequently, points A and B are the obtained optimal design points through the single-objective 

optimization of the weight and the mean deflection of the sandwich panel structure, respectively. 

These points are highlighted in Pareto fronts represented in the above-mentioned figures. 

Associated values of design variables as well as objective functions for corresponding points are 

tabulated in Table 1. 

A similar two-objective, however, deterministic, optimization problem has been conducted by 

Khalkhali et al. (2014). The optimization algorithm, geometrical configurations and boundary 

conditions of the study are very close to that of the present study. We have also considered the FE 

model analogous to that of the mentioned study, for a meaningful comparison. However, in that 

study, authors have ignored the presence of uncertainties by taking a deterministic approach, 

furthermore, they have used refraction method instead of TOPSIS for finding the best trade-off 

point. 

It can be very conducive to compare the results acquired from probabilistic optimization to 

those of deterministic optimization. To this aim, the weight and deflection of the optimum points 

obtained from probabilistic optimization can be calculated in the deterministic environment. 

Corresponding values have been compared to the results of the deterministic study by Khalkhali et 

al. (2014) and designated as Prob. to Deter. in Fig. 5. 

These points are directly entered into the deterministic optimization code by knowing their 

design variables, as inputs. To import probabilistic optimum points into the deterministic space, 

mean of the design variables for these points have been entered into a deterministic space. This 

method provides meaningful comparison of both probabilistic and deterministic optimum designs 

in the deterministic space. 

Moreover, trade-off design points found by TOPSIS and NIP methods in the present study and 

those found using refraction point method and NIP by Khalkhali et al. (2014) are addressed in this 

figure. As obvious, for points with deflection of more than 0.01 m, the weight of the sandwich 

panel, in case of probabilistic design, is higher than that of deterministic one represented by the 

deterministic study for the same value of the deflection. This increase in the sandwich panel 

weight in comparison to deterministic optimization is due to the presence of constraints considered 

in probabilistic optimization problem. In fact, in the presence of design uncertainties and failure 

constraints, sandwich panel structures are needed to have some added weight to guarantee a safer 

design. Also this figure indicates that there is no optimal and reliable design vector with the mean 
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Fig. 5 Non-dimensional weight vs. deflection of the panel. Green triangle refers to NIP point 

of this study, while the orange one shows that of the deterministic study 
 

 

 

Fig. 6 Non-dimensional weight vs. mean deflection of the panel; Comparison of the present study 

with the deterministic study. Green triangle refers to NIP point of this study, while the 

orange one shows that of deterministic study 

 

 

deflection of more than 0.05 m. This finding is because of the fact that points with the mean 

deflection of more than 0.05 m violate some of probabilistic failure constraints. Similarly, Figs. 6 

and 7 show a comparison between the results obtained from both probabilistic and deterministic 
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optimizations imported to the probabilistic environment. 

It must be pointed out that similar to points designated by Prob. to Det., points identified by 

Det. to Prob. are the optimum deterministic points that have been directly entered into the 

probabilistic optimization code based on their design variables. In fact, to import deterministic 

results to probabilistic space, design variables of these points have been entered, as new inputs, 

into the probabilistic optimization code. Consequently for each set these design variables, 

probabilistic objective functions such as mean and standard deviation of deflection are calculated. 

This method serves as an advantageous asset for comparing results of deterministic optimization 

with probabilistic one, as both solutions are evaluated considering the same uncertain environment. 

In Fig. 7(a), the probability of failure for optimal points achieved by deterministic optimization 

have been investigated. As it is depicted in this figure, for all of the optimum points including the 

trade-off ones proposed by the deterministic study with the mean deflection of more than 0.03 m, 

at least one of the failure constraints is violated. Notably, according to Fig. 6, from optimal NIP 

point obtained in this study to that of the deterministic study by (Khalkhali et al. 2014), the weight 

of the sandwich panel has increased by almost 7%, while the percentage of the change in the 

 

 

 

(a) Optimum deterministic points in probabilistic space are designated by Det. To Prob. points 

 

 

(b) Investigation of reliability of results for each constraint between deterministic and probabilistic studies 

Fig. 7 Standard deviation vs. mean deflection of panel. Comparison of the present results with the 

deterministic study (Khalkhali et al. 2014) 
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Fig. 8 Relation between design variables and Probability of violation of g1. Comparison of the 

present results with the deterministic study. Green triangle refers to NIP point of this 

study, while the orange one shows that of deterministic study 
 

 

 

Fig. 9 Relation between design variables and Probability of violation of g3. Comparison of the 

present results with the deterministic study. Green triangle refers to NIP point of this 

study, while the orange one shows that of deterministic study 

 

 
mean deflection has remained negligible. In addition, optimal TOPSIS point has the highest weight 

among all optimal points, highlighting the fact that in case of deterministic optimization of the 

panel weight and deflection, because of the lower weight of the achieved trade-off design points, 

they are actually high risk designs instead of optimal ones. This clearly indicates the necessity of 

taking RBDO and RDO approaches in optimization procedure. Furthermore, Fig. 7(b) compares 

the standard deviation of the panel deflection and the range of the feasibility and violation of each 

constraint in two studies. This figure shows that the standard deviation of deflection for all of the 

optimal values found in the present study are less than 0.07 m; whereas the corresponding 
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parameters in case of deterministic optimization reaches to 1 m. This low amount of variation in 

case of the probabilistic optimization shows the robustness of the design. 

Figs. 8-10 give a comparison between the probability of failure of constraints g1 ‒ g4 introduced 

in Eqs. (22)-(25) for various design variables in both probabilistic and deterministic approaches. It 

should be noted that g2 is never violated within the range of design variables in neither of 

approaches, so that no such a figure is illustrated for this constraint. The horizontal red line in Figs. 

8-10 exhibits the purported limiting value of the probability of violation for each constraint. 

Accordingly, none of the proposed optimal trade-off points using NIP and TOPSIS methods and 

other Pareto optimal points in probabilistic optimization exceed the limitation. Whereas, a portion 

 

 

 

Fig. 10 Relation between design variables and Probability of violation of g4. Comparison of the 

present results with the deterministic study. Green triangle refers to NIP point of this 

study, while the orange one shows that of deterministic study 
 

 

 

Fig. 11 A comparison between normal (Gaussian) distributions graphs for the mean deflection of 

the panel for probabilistic optimal trade-off points. NIP and refraction point correspond to 

the deterministic study 
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of the optimal design points including the trade-off optimal points found by Khalkhali et al. (2014) 

exceed this limiting line. Fig. 8 indicates that for sandwich panel designs with the face sheet 

distance higher than 0.0445 m and face sheet thickness higher than 0.005 m, the reliability is 

guaranteed in terms of the face sheet yielding failure. 

The normal (Gaussian) distribution graphs for the mean deflection of the panel for probabilistic 

optimal trade-off points are shown in Fig. 11. As shown, the optimum point found by TOPSIS in 

the present study has more robustness and better performance in comparison to that of the 

deterministic study and can successfully be used by designers. In addition, based on findings in the 

present study, it is vitally important to consider the effect of uncertainties to achieve a robust and 

reliable optimum design. 
 
 

6. Conclusions 
 

Results achieved in this paper can be briefly summarized as: 
 

● Modified NSGA-II algorithm and its coupling with Prob. Design module in ANSYS were 

successfully employed, and the good efficacy of the corresponding methodology was proved. 

It was also highlighted that such couplings between FE-based and computational programs 

can serve as an extremely conducive asset. 

● Several non-dominated design points (Pareto points) considering optimum trends in all of 

the three conflicting objective functions were obtained. These points can be used for design 

purposes with respect to prevalence of either of objective functions in different applications. 

● Using TOPSIS along with NIP methods, several compromising trade-off optimum points 

were selected and analyzed among all of the optimum points. 

● The importance of taking a probabilistic approach instead of a deterministic one in 

engineering optimization was proved to be significant. This was accomplished through a 

detailed comparison between results of this study and that of a deterministic-based study 

with almost similar modeling and problem domain. 
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