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Abstract.  Simplified techniques based on in situ testing methods are commonly used to assess seismic 

liquefaction potential. Many of these simplified methods were developed by analyzing liquefaction case histories 

from which the liquefaction boundary (limit state) separating two categories (the occurrence or non-occurrence of 

liquefaction) is determined. As the liquefaction classification problem is highly nonlinear in nature, it is difficult to 

develop a comprehensive model using conventional modeling techniques that take into consideration all the 

independent variables, such as the seismic and soil properties. In this study, a modification of the Multivariate 

Adaptive Regression Splines (MARS) approach based on Logistic Regression (LR) LR_MARS is used to evaluate 

seismic liquefaction potential based on actual field records. Three different LR_MARS models were used to analyze 

three different field liquefaction databases and the results are compared with the neural network approaches. The 

developed spline functions and the limit state functions obtained reveal that the LR_MARS models can capture and 

describe the intrinsic, complex relationship between seismic parameters, soil parameters, and the liquefaction 

potential without having to make any assumptions about the underlying relationship between the various variables. 

Considering its computational efficiency, simplicity of interpretation, predictive accuracy, its data-driven and adaptive 

nature and its ability to map the interaction between variables, the use of LR_MARS model in assessing seismic 

liquefaction potential is promising. 
 

Keywords:  multivariate adaptive regression splines; logistic regression; seismic liquefaction potential; 

interaction; basis function; limit state function 

 
 

1. Introduction 
 

Evaluation of seismic liquefaction of soils can be performed through laboratory tests or 

numerical simulations (Toyota et al. 2004, Lancelot et al. 2004, Atigh and Byrne 2004, Lade and 

Yamamuro 2011, Liu et al. 2014, Duman et al. 2014, Chen et al. 2013, 2015). As an alternative, 

simplified techniques based on an in situ testing measurement index are commonly used to assess 

seismic liquefaction potential. Most of these simplified charts or equations rely on the analysis of 

liquefaction case histories. Using empirical, simple regression, or statistical methods, a boundary 
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(liquefaction curve) or classification technique is used to separate the occurrence or non-

occurrence of liquefaction. 

Techniques using the standard penetration test (SPT) have been developed for evaluating soil 

liquefaction potential (Seed and Idriss 1971, Seed et al. 1985, Law et al. 1990, Cetin et al. 2004, 

Duman et al. 2014). Similarly, methods based on the use of the cone penetration test (CPT) have 

been developed (Stark and Olson 1995, Robertson and Wride 1998, Juang et al. 2003, Moss et al. 

2006). Other in-situ test methods to evaluate liquefaction potential include the use of the 

dilatometer (Marchetti 1982) and the shear wave velocity test (Andrus and Stokoe 2000). 

Statistical methods were commonly adopted to assign probabilities of liquefaction through various 

statistical classification and regression analyses (Liao et al. 1988, Juang et al. 1999, Lai et al. 2004, 

Tosun et al. 2011). 

Finding the liquefaction boundary separating two categories (the occurrence or non-occurrence 

of liquefaction) for multivariate variables can be considered as a pattern-classification problem. In 

mathematical terms, an input vector of variables is used to determine a category (classification) by 

being shown data of known classifications. Some common pattern-recognition tools include 

discriminant analysis (DA) (Friedman 1989), classification and regression tree (CART) (Breiman 

et al. 1984), neural networks (Specht 1990, Zhang 2000), support vector machine (SVM) (Vapnik 

et al. 1997) and genetic programming (GP) (Muduli and Das 2014a, b, Muduli et al. 2014). This 

study utilizes a modified Multivariate Adaptive Regression Splines (MARS) method (Friedman 

1991), in which Logistic Regression (LR) is applied to separate data into various categories. 

In this present study, the LR_MARS method was used to analyze three different databases of 

field liquefaction CPT case records. These three database case records are from Goh (2002), Juang 

et al. (2003) and Chern et al. (2008), respectively. Each database is used to train and test the 

reliability of the LR_MARS model to correctly classify the occurrence or non-occurrence of 

liquefaction, in comparison with the results from the neural network approaches, including the 

Probabilistic Neural Network (PNN) model proposed by Goh (2002), a three layer feed-forward 

network adopted by Juang et al. (2003) and a fuzzy-neural system developed by Chern et al. 

(2008). For the neural networks, the training data is used to optimize the connection weights to 

reduce the errors between the actual and target outputs through minimization of the defined error 

function (e.g., sum squared error) using the gradient descent approach. Validation of the neural 

network performance is performed by “testing” with a separate set of data that was never used in 

training process, to assess the generalization capacity of the trained model to produce the correct 

input-output mapping even the input is different from the datasets used to train the network. The 

predictive capacities of neural network models are satisfactory. However, they have been criticized 

for the computational inefficiency and the poor model interpretability. 
 

 

2. Elements of analysis 
 

2.1 MARS methodology 
 

Friedman (1991) introduced MARS as a statistical method for fitting the relationship between a 

set of input variables and dependent variables. MARS is a nonlinear and nonparametric regression 

method and is based on a divide-and-conquer strategy in which the training data sets are 

partitioned into separate regions, each gets its own regression line. No specific assumption about 

the underlying functional relationship between the input variables and the output is required. The 

end points of the segments are called knots. A knot marks the end of one region of data and the 
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beginning of another. The resulting piecewise curves, known as basis functions (BFs), give greater 

flexibility to the model, allowing for bends, thresholds, and other departures from linear functions.  

MARS generates BFs by searching in a stepwise manner. It searches over all possible 

univariate knot locations and across interactions among all variables. An adaptive regression 

algorithm is used for selecting the knot locations. MARS models are constructed in a two-phase 

procedure. The forward phase adds functions and finds potential knots to improve the performance, 

resulting in an overfit model. The backward phase involves pruning the least effective terms. An 

open MARS source code from Jekabsons (2010) is used in carrying out the analyses presented in 

this paper. 

Let y be the target output and X = (X1, , XP) be a matrix of P input variables. Then it is 

assumed that the data are generated from an unknown “true” model. In case of a continuous 

response this would be 

𝑦 = 𝑓 𝑋1 , … , 𝑋𝑃 + 𝑒 = 𝑓 𝑋 + 𝑒 (1) 

 

in which e is the distribution of the error. MARS approximates the function f by applying basis 

functions (BFs). BFs are splines (smooth polynomials), including piecewise linear and piecewise 

cubic functions. For simplicity, only the piecewise linear function is expressed. Piecewise linear 

functions are of the form max 0, 𝑥 − 𝑡  with a knot occurring at value t. The equation max .   
means that only the positive part of  .   is used otherwise it is given a zero value. Formally 

 

max 0, 𝑥 − 𝑡 =  
𝑥 − 𝑡,      if     𝑥 ≥ 𝑡

0,      otherwise
  (2) 

 

The MARS model 𝑓 𝑋 , is constructed as a linear combination of BFs and their interactions, 

and is expressed as 

𝑓 𝑿 = 𝛽0 +  𝛽𝑚

𝑀

𝑚=1

𝑚  𝑿  (3) 

 

where each 𝑚  𝑋  is a basis function. It can be a spline function, or the product of two or more 

spline functions already contained in the model (higher orders can be used only when the data 

warrants it; for simplicity, at most second-order is assumed in this paper and the predictive 

accuracy based on it is proved to be satisfactory). The coefficient 0 is a constant, and m is the 

coefficient of the mth basis function, estimated using the least-squares method. 

Fig. 1 presents a simple example of how MARS would use piecewise linear spline functions to 

attempt to fit data. The MARS mathematical equation is expressed as 

 

Ozone level = 10.242 − 0.0113 × max 0, Wind speed − 6 × max 0, 200 − Visibility  (4) 

 

This expression models air pollution (measured by ozone level) as a function of wind speed and 

visibility. The term “max” is defined as: max (j, k) is equal to j if j > k, else k. The knots are 

located at Wind speed = 6 m/s and Visibility = 200 m. Fig. 1 plots the predicted Ozone level as 

Wind speed and Visibility vary. The figure shows that the Wind speed does not affect the Ozone 

level unless the Visibility is low. This plot indicates that MARS can build quite flexible regression 

surfaces by combining knot functions. 

The MARS modeling is a data-driven process. To fit the model in Eq. (3), first a forward  
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Fig. 1 Knots, linear splines, and variable interaction in a MARS model 

 

 

selection procedure is performed on the training data. A model is initially constructed with only 

the intercept 0, and the basis pair that produces the largest decrease in the training error is added. 

Considering a current model with M basis functions, the next pair is added to the model in the 

form 

𝛽 𝑀+1𝑚  𝑋 max 0, 𝑋𝑗 − 𝑡 + 𝛽 𝑀+2𝑚  𝑋 max 0, 𝑡 − 𝑋𝑗   (5) 
 

with each  being estimated by the method of least squares. As a basis function is added to the 

model space, interactions between BFs that are already in the model are also considered. BFs are 

added until the model reaches some maximum specified number of terms Kmax, leading to a 

purposely overfit model. Kmax is set by the user as referenced in Friedman (1991) and generally it 

is directly related to the number of input parameters n. Kmax can be assigned any value from 2n to 

n2. 

To reduce the number of terms, a backward deletion sequence follows. The aim of the 

backward deletion procedure is to find a close to optimal model by removing extraneous variables. 

The backward pass prunes the model by removing the BFs with the lowest contribution to the 

model until it finds the best sub-model. Thus, the BFs maintained in the final optimal model are 

selected from the set of all candidate BFs, used in the forward selection step. Model subsets are 

compared using the less computationally expensive method of Generalized Cross-Validation 

(GCV). The GCV equation is a goodness of fit test that penalizes large numbers of BFs and serves 

to reduce the chance of overfitting. For the training data with N observations, GCV for a model is 

calculated as follows (Hastie et al. 2009) 
 

𝐺𝐶𝑉 =

1
𝑁

  𝑦𝑖 − 𝑓 𝑥𝑖  
2𝑁

𝑖=1

 1 −
𝑀 + 𝑑 ×

𝑀 − 1
2

𝑁
 

2 
(6) 

272



 

 

 

 

 

 

Evaluating seismic liquefaction potential using multivariate adaptive regression... 

in which M is the number of BFs, d is the penalizing parameter, representing a cost for each basis 

function optimization and is a smoothing parameter of the procedure. Larger values for d will lead 

to fewer knots being placed and thereby smoother function estimates. According to Friedman 

(1991), the optimal value for d is in the range 2 ≦ d ≦ 4 and generally the choice of d = 3 is fairly 

effective. In this study, a default value of 3 is assigned to the penalizing parameter d. N is the 

number of data sets, and f(xi) denotes the predicted values of the MARS model. The numerator is 

the mean square error of the evaluated model in the training data, penalized by the denominator. 

The denominator accounts for the increasing variance in the case of increasing model complexity. 

Note that (M ‒ 1)/2 is the number of hinge function knots. The GCV penalizes not only the 

number of BFs but also the number of knots. At each deletion step a basis function is removed to 

minimize Eq. (3), until an adequately fitting model is found. MARS is an adaptive procedure 

because the selection of BFs and the variable knot locations are data-based and specific to the 

problem at hand. 

After the optimal MARS model is determined, by grouping together all the BFs that involve 

one variable and another grouping of BFs that involve pairwise interactions (and even higher level 

interactions when applicable), a procedure termed the analysis of variance (ANOVA) 

decomposition (Friedman 1991) can be used to assess the relative importance of the contributions 

from the input variables and the BFs. Previous applications of MARS algorithm in civil 

engineering can be found in various literatures (Attoh-Okine et al. 2009, Lashkari 2012, 

Mirzahosseinia et al. 2011, Zarnani et al. 2011, Samui 2011, Samui and Karup 2011, Zhang and 

Goh 2013, 2014, Goh and Zhang 2014). However, use of MARS in soil liquefaction potential 

assessment is limited. 
 

2.2 Logistic regression 
 

Linear regression is a commonly used statistical method for predicting values of a dependent 

variable from observed values of a set of predictor variables. Logistic Regression (LR) is a 

variation of linear regression for situations where the dependent variable is not a continuous 

parameter but rather a binary event (e.g., yes/no, good/bad, 0/1). The value predicted by LR is the 

probability of an event, ranging from 0 to 1. LR is more appropriate than linear regression for 

assessing seismic liquefaction potential as it allows for binary outputs where each individual 

liquefaction record is classified as liquefied or non-liquefied (0 for non-liquefied case while 1 for 

liquefied case). Eq. (1) is applicable for the case of a continuous response of a MARS model. For a 

binary response, assuming Pr is the estimated probability that an individual case is liquefied, then 

the LR_MARS model is 

logit𝑃𝑟 𝑦 = 1 = 𝑓 𝑋1 ,, 𝑋P +  (7) 
 

in which the distribution of the error  is an exponential. Further, Eq. (7) can be expressed as 
 

log  
𝑃𝑟

1 − 𝑃𝑟
 = 𝑓 𝑿 = 𝛽0 +  𝛽𝑚

𝑀

𝑚=1

𝑚  𝑿  (8) 

or 
 

𝑒
log  

𝑃𝑟
1−𝑃𝑟

 
= 𝑒𝑓 𝑿 = 𝑒𝛽0+ 𝛽𝑚

𝑀
𝑚 =1 𝑚  𝑿  (9) 

 

The estimated liquefaction probability is 
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Table 1 Confusion matrix 

Predicted class 
True class 

Liquefied Non-liquefied 

Liquefied a b 

Non-liquefied c d 

 

 

𝑃𝑟 =
1

1 + e−𝑓 𝑿 
=

1

1 + e−𝛽0− 𝛽𝑚
𝑀
𝑚 =1 𝑚  𝑿 

 (10) 

 

in which the  values are estimated using the least-squares method as in Eq. (3). 
 

2.3 Modeling accuracy 
 

Two simple and common methods of evaluating the performance of a pattern-classification 

model are to determine the error rate (the percentage of misclassified cases, termed as ER) or the 

success rate (the percentage of correctly classified cases, termed as SR). In assessing the 

performance of various seismic liquefaction potential models, most researchers have either 

adopted the success rate or error rate as the criterion. 

However, the use of either ER or SR does not take into consideration the misclassification costs 

(classifying liquefied as non-liquefied and non-liquefied as liquefied) which may not be equal or 

could be subject to change. When the misclassification costs are not equal, then a confusion matrix 

is commonly used to quantify the costs and minimize the expected loss. A confusion matrix is a 

table used to evaluate the performance of a classifier. It is a matrix of the observed versus the 

predicted classes, with the observed classes in rows and the predicted classes in columns as shown 

in Table 1. 

Table 1 represents a confusion matrix, where each cell contains a count of seismic liquefaction 

cases belonging to each particular class. There are four classes in total with each cell labeled by a, 

b, c, and d. The diagonal elements a and d include the frequencies of correctly classified instances 

and the non-diagonal elements b and c include the frequencies of misclassification. The modeling 

inaccuracy is easily calculated as 
b+c

a+b+c+d
 while the modeling accuracy is expressed as 

a+d

a+b+c+d
. 

Other measures of interest are the proportion of liquefied classified as non-liquefied (termed as 

Type  error), 
c

a+c
 , and the proportion of non-liquefied classified as liquefied (termed as Type  

error), 
b

b+d
. In general, the misclassification costs of liquefaction potential associated with Type  

error are higher than those associated with Type  error. It is worse to assess a case as non-

liquefied when it is actually liquefied, than it is to assess a case as liquefied when it is in fact non-

liquefied. 
 

 

3. Databases of field liquefaction cases and neural network modeling results 
 

3.1 Database 1 
 

The database used by Juang et al. (2003) consists of 226 cases, 133 liquefied cases and 93 non-

liquefied. These cases are derived from CPT measurements at over 52 sites and field observations 
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of 6 different earthquakes. The depths h at which the cases are reported range from 1.4 to 14.1 m. 

For the details of these cases and the neural network approach, the reader is referred to Juang et al. 

(2003). 

The neural network model adopted by Juang et al. (2003) utilizes four input neurons 

representing normalized core penetration resistance qc1N, the soil type index Ic, the effective stress 

v and the cyclic stress ratio CSR7.5. Among the four inputs, v is the only variable derived 

directly from CPT measurements. The qc1N, Ic and CSR7.5 are intermediate parameters, determined 

through the following empirical equations 
 

𝐶𝑆𝑅7.5 = 0.65  



′
  

𝑎max

𝑔
 (𝑟d)/𝑀𝑆𝐹  (Seed and Idriss 1971) (11) 

 

𝑟d =  
1.0 − 0.00765𝑧,    𝑖𝑓 𝑧 ≦ 9.15 𝑚

1.174 − 0.0267𝑧,    9.15 𝑚 < 𝑧 ≦ 23 𝑚
   (Liao et al. 1988) (12) 

 

𝑀𝑆𝐹 = 102.24 𝑀w
2.56 =  𝑀w 7.5  −2.56   (Youd et al. 2011) (13) 

 

𝑞c1N =
𝑞c 100 

 
′ 100  0.5

  (Robertson and Wride 1998) (14) 

 

𝐼c =   3.47 − log10𝑞c1N 2 +  log10𝐹 + 1.22 2 0.5  (Robertson 1990) (15) 

 

𝐹 =
𝑓s

𝑞c − 

  (Robertson 1990) (16) 

 

where fs = sleeve friction (kPa); σv = total vertical stress (kPa); amax = the peak acceleration at the 

ground surface (g); g = acceleration of gravity; rd = shear stress reduction factor; MSF = 

magnitude scaling factor; z = depth in meters; Mw = moment magnitude; qc = measured cone tip 

resistance (MPa); F = normalized friction ratio. The trained neural network structure and modeling 

results for the training (tr.) and testing (te.) data are summarized in column 2 of Table 2. 

 

3.2 Database 2 
 

The case records used by Goh (2002) represent 104 sites that liquefied and 66 sites that did not 

liquefy. PNN approach based on the Bayesian classifier method is used with four layers: the input 

layer, the pattern layer, the summation layer and the output layer. The inputs consisted of six 

neurons representing the earthquake magnitude M, amax, σv, σv, qc, and the mean grain size D50 

(mm). The trained neural network structure and modeling results are summarized in column 3 of 

Table 2. For the details of these cases and the PNN approach, the reader is referred to Goh (2002). 

 

3.3 Database 3 
 

Database 3 compiled by Chern et al. (2008) includes 466 CPT-based field liquefaction records 

from more than 11 major earthquakes between 1964 and 1999. The records comprised 250 

liquefied cases and 216 non-liquefied cases. Chern et al. (2008) developed a fuzzy-neural network 
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Table 2 Summary of CPT databases of field liquefaction cases and neural network modeling results 

Database description 

and neural network 

modeling results 

Database number 

1 2 3 

Observations 

226 cases 

133 liquefied 

93 non-liquefied 

170 cases 

104 liquefied 

66 non-liquefied 

466 cases 

250 liquefied 

216 non-liquefied 

Reference Juang et al. (2003) Goh (2002) Chern et al. (2008) 

Neural Network structure 
three-layer feed-forward 

with 3 hidden neurons 

four-layer PNN with 

Bayesian classifier 

fuzzy-neural system 

with 4 clusters and 

6 hidden neurons 

Data patterns for modeling 
151 cases for tr. 

75 cases for te. 

114 cases for tr. 

56 cases for te. 

350 cases for tr. 

116 cases for te. 

Modeling results 

SR for tr.: 98% 

SR for te.: 91% 

overall SR: 96% 

SR for tr.: 100% 

SR for te.: 100% 

overall SR: 100% 

SR for tr.: 98% 

SR for te.: 95.7% 

overall SR: 97.4% 

Confusion matrix 
96.2% 4.3% 100% 0% 96.8% 1.9% 

3.8% 95.7% 0% 100% 3.2% 98.1% 

 

 

to evaluate the liquefaction potential using 5 parameters: M, σv, σv, qc, and amax. The best trained 

neural network model and the modeling results are summarized in column 4 of Table 2. In addition, 

parametric sensitivity analyses indicated that amax and qc were the two most important parameters 

influencing liquefaction assessment. 
 

 

Table 3 LR_MARS models and modeling results 

Model    

Database No. 1 2 3 

Input variables M h qc Rf v v amax M v v qc amax D50 M h v v qc amax 

Data sets for 

tr. & te. 

170 for training 

56 for testing 

114 for training 

56 for testing 

350 for training 

116 for testing 

Model settings 
13 BFs, 2nd order interaction, 

linear spline 

6 BFs, 2nd order interaction, 

linear spline 

12 BFs, 2nd order interaction, 

linear spline 

Exec. time (s) 0.95 0.17 2.34 

Results plot Fig. 2 Fig. 3 Fig. 4 

SR 

tr.: 94.1% 

te.: 89.3% 

overall: 92.9% 

tr.:  90.4% 

te.:  91.1% 

overall: 90.6% 

tr.: 93.4% 

te.: 87.9% 

overall: 92.1% 

Confusion matrix 
130 (97.7%) 14 (15.1%) 99 (95.2%) 11 (16.7%) 227 (90.8%) 14 (6.5%) 

3 (2.3%) 79 (84.9%) 5 (4.8%) 55 (83.3%) 23 (9.2%) 202 (93.5%) 

BFs and model 

expression 
Table 4 Table 5 Table 6 
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4. MARS models and modeling results 
 

Three different LR_MARS models were used to analyze the same databases and the results are 

compared with the neural network results. Table 3 shows the results of LR_MARS models. It 

summarizes the database used, the input variables, the data sets for training and testing, the model 

settings, the execution time (PC with 3.0 GHz Intel Core2Quad Q9650 processor, 4 GB RAM), the 

plot of predictions, the success rates, the confusion matrix and the basis function together with the 

performance functions for each LR_MARS model. Figs. 2-4 illustrate the training and testing 

results for LR_MARS models respectively. Tables 4-6 list the corresponding basis functions and 

LR_MARS expressions for these models. Table 7 shows the ANOVA decomposition of the 

various LR_MARS models. The relative importance of the input variables and the important 
 

 

 

(a) 
 

 

(b) 

Fig. 2 Modeling results of model : (a) training data; (b) testing data 
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Table 4  

Basis functions Expression 

BF1 max(0, 0.21 ‒ amax) 

BF2 max(0, qc ‒ 3.1) 

BF3 max(0, Rf ‒ 2) 

BF4 BF2 × max(0, 5.8 ‒ h) 

BF5 BF2 × max(0, 0.6 ‒ Rf) 

BF6 BF2 × max(0, amax ‒ 0.15) 

BF7 BF2 × max(0, 0.15 ‒ amax) 

BF8 BF3 × max(0, amax ‒ 0.19) 

BF9 BF3 × max(0, 0.19 ‒ amax) 

BF10 BF1 × max(0, M ‒ 6.6) 

BF11 max(0, Rf ‒ 2.8) 

BF12 max(0, h ‒ 4.2) 

BF13 max(0, 4.2 ‒ h) 

𝑦 = 26.51 − 372.26 × BF1 − 5.32 × BF2 − 40.3 × BF3 − 0.87 × BF4 + 6.89 × BF5 + 11.95 × BF6 

+107.85 × BF7 + 47.23 × BF8 + 261.62 × BF9 + 407.94 × BF10 + 27.69 × BF11 − 1.82 × BF12 

−5.13 × BF13 

𝑓(𝑥) =
1

1 + e−𝑦
 

 

 

interaction terms between input parameters for each LR_MARS model are also shown in Table 7. 

 

4.1 Model  
 

Model  is the LR_MARS model used to analyze database 1 which consisted of 170 training 

and 56 testing records. The input variables were M, h, qc, Rf , v, v and amax. The training and 

testing results are shown in Fig. 2. Model  has an overall success rate of 92.5%. The model 

accuracy in predicting liquefied cases is very high (97.7%). The Type  error is very low (2.3%). 

Table 4 shows the basis function expressions and Model  expression. The derived f(x) can be used 

to determine the liquefaction potential. ANOVA decomposition of model  in row 2 of Table 7 

indicates that qc and amax are the two most significant parameters. The ANOVA decomposition also 

indicates that interaction between qc and amax is significant. 

 

4.2 Model  
 

Model  is the LR_MARS model used to analyze database 2 which consisted of 114 training 

and 56 testing records. The input variables were M, v, v, qc, amax and D50. The training and 

testing results are shown in Fig. 3. Model  has an overall success rate of 90.6%. The model 

accuracy in predicting liquefied cases is relatively high (95.2%). The Type  error is 4.8%. Table 5 

shows the basis function expressions and model  expression. ANOVA decomposition of model  

in row 3 of Table 7 indicates that qc and M are the two most significant parameters. The interaction 

between M and v is also of significance in assessing liquefaction potential. 
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(a) 

 

 

(b) 

Fig. 3 Modeling results of model : (a) training data; (b) testing data 

 

 

4.3 Model  
 

Model  is the LR_MARS model used to analyze database 3 which consisted of 350 training 

and 116 testing patterns. The input variables include M, h, v, v, qc, and amax. The training and 

testing results are shown in Fig. 4. Model  has an overall success rate of 92.1%. The model 

accuracy in predicting liquefied cases is 90.8% and in predicting non-liquefied cases is 93.5%. The 

Type  error is 9.2%. Table 6 shows the basis function expressions and model  expression. 

ANOVA decomposition of model  in row 4 of Table 6 indicates that qc and amax are the two most 

significant parameters, which are consistent with the conclusions of Chern et al. (2008). The 

interaction between qc and amax is also of significance. 
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Table 5 BFs and LR_MARS expression for model 

Basis functions Expression 

BF1 max (0, 13.85 ‒ qc) 

BF2 BF1 × max(0, 0.16 ‒ amax) 

BF3 max(0, M ‒ 6.4) 

BF4 max(0, 6.4 ‒ M) 

BF5 BF3 × max(0, 215.7 ‒ v) 

BF6 BF1 × max(0, v ‒ 153) 

𝑓(𝑥) =
1

1 + e−(−22.65+3.44× BF 1−72.35× BF 2+13.46× BF 3−32.19× BF 4−0.07× BF 5−0.04× BF 6)
 

 

 

(a) 
 

 

(b) 

Fig. 4 Modeling results of model I: (a) training data; (b) testing data 
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Table 6  

Basis functions Expression 

BF1 max(0, 10.61 ‒ qc) 

BF2 max(0, 0.22 ‒ amax) 

BF3 BF1 × max(0, v ‒ 136.8) 

BF4 max(0, M ‒ 6) 

BF5 max(0, 6 ‒ M) 

BF6 max(0, amax ‒ 0.22) × max(0, 5.5 ‒ qc) 

BF7 BF1 × max(0, amax ‒ 0.25) 

BF8 BF1 × max(0, 0.25 ‒ amax) 

BF9 BF2 × max(0, v ‒ 59.8) 

BF10 BF2 × max(0, 59.8 ‒ v) 

BF11 max(0, qc ‒ 5.8) 

BF12 max(0, 5.8 ‒ h) 

y = −17.71 + 5.48 × BF1 − 187.87 × BF2 − 0.04 × BF3 + 5.65 × BF4 − 202.65 × BF5 − 27.72 × BF6 

+9.23 × BF7 − 22.17 × BF8 + 3.41 × BF9 + 12.28 × BF10 − 1.46 × BF11 − 2.89 × BF12 

𝑓(𝑥) =
1

1 + e−𝑦
 

 

 

Table 7 Parameters derived from ANOVA decomposition for each model 

Model The two most important single variables The most important interaction terms 

I qc & amax (qc , amax) 

II qc & M (M, v) 

III qc  & amax (qc , amax) 

 

 

4.4 ANOVA decomposition 
 

As described previously, ANOVA decomposition was used to assess the contributions from the 

input variables and the interaction between the various input parameters. Table 7 displays the 

ANOVA decomposition of the three LR_MARS models. For each model, the two most significant 

(important) single variables in determining model accuracy are listed. Also listed are the most 

important interaction factors between earthquake parameters (M and amax), in situ stress factors (v 

and v) and the soil resistance factors (qc). 
 

 

5. Conclusions 
 

This paper has demonstrated the usefulness of the LR_MARS approach to model the complex 

relationship between the seismic parameters, the in situ stress factors, the soil resistance factors 

and the liquefaction potential using the in situ measurements based on the CPT field tests. 

Comparisons indicate that the LR_MARS performs as well as, or marginally worse than, neural 

network methods in terms of accuracy. However, considering its computational efficiency, 

simplicity of interpretation, predictive accuracy, its data-driven and adaptive nature, its ability to 
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map the interaction between variables and the relatively low number of Type  error predictions, 

the use of LR_MARS model in assessing seismic liquefaction potential is promising. Since MARS 

explicitly defines the intervals (boundaries) for the input variables, the model enables engineers to 

have an insight and understanding of where significant changes in the data may occur. 

It should be noted that the performance of MARS deteriorates significantly when small or 

scarce sample sets are used. As the built MARS model makes predictions based on the knot values 

and the basis functions, interpolations between the knots of design variables are more accurate and 

reliable than extrapolations. The proposed LR_MARS models was developed using database 

records with limited ranges of earthquake parameters, soil properties, and in situ stress factors. 

Therefore it is not recommended that the model be applied for values of input parameters beyond 

the specified ranges in this study. Additional new data sets are required to further evaluate and 

update the current LR_MARS models. 
 

 

Acknowledgments 
 

The first author would like to express his appreciation to Juang et al. (2003), Goh (2002), and 

Chern et al. (2008) for making their databases available for this work. 
 

 

References 
 
Andrus, R.D. and Stokoe, K.H. (2000), “Liquefaction resistance of soils from shear-wave velocity”, J. 

Geotech. Geoenviron., 126(11), 1015-1025. 

Atign, E. and Byrne, P.M. (2004), “Liquefaction flow of submarine slopes under partially undrained 

conditions: an effective stress approach”, Can. Geotech. J., 41(1), 154-165. 

Attoh-Okine, N.O., Cooger, K. and Mensah, S. (2009), “Multivariate adaptive regression spline (MARS) 

and hinged hyper planes (HHP) for doweled pavement performance modeling”, Constr. Build. Mater., 

23(9), 3020-3023. 

Breiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J. (1984), Classification and Regression Trees, 

Wadsworth & Brooks, Monterey, CA, USA. 

Cetin, K.O., Seed, R.B., Der Kiureghian, A.K., Tokimatsu, K., Harder, L.F. Jr., Kayen, R.E. and Moss, 

R.E.S. (2004), “Standard penetration test-based probabilistic and deterministic assessment of seismic soil 

liquefaction potential”, J. Geotech. Geoenviron., 130(12), 1314-1340. 

Chen, Y., Liu, H. and Wu, H. (2013), “Laboratory study on flow characteristic of liquefied and post-

liquefied sand”, Eur. J. Environ. Civil Eng., 17, 23-32. 

Chen, Y., Xu, C., Liu, H. and Zhang, W. (2015), “Physical modeling of lateral spreading induced by 

inclined sandy foundation in the state of zero effective stress”, Soil Dyn. Earthq. Eng., 76, 80-85. 

Chern, S.G., Lee, C.Y. and Wang, C.C. (2008), “CPT-based liquefaction assessment by using fuzzy-neural 

network”, J. Mar. Sci. Technol., 16(2), 139-148. 

Duman, E.S., Ikizier, S.B., Angin, Z. and Demir, G. (2014), “Assessment of liquefaction potential of the 

Erzincan, Eastern Turkey”, Geomech. Eng., Int. J., 7(6), 589-612. 

Friedman, J.H. (1989), “Regularized discriminant analysis”, J. Am. Stat. Assoc., 84(405), 165-175. 

Friedman, J.H. (1991), “Multivariate adaptive regression splines”, Ann. Stat.,19, 1-141. 

Goh, A.T.C. (2002), “Probabilistic neural network for evaluating seismic liquefaction potential”, Can. 

Geotech. J., 39(1), 219-232. 

Goh, A.T.C. and Zhang, W.G. (2014), “An improvement to MLR model for predicting liquefaction-induced 

lateral spread using multivariate adaptive regression splines”, Eng. Geol., 170, 1-10. 

Hastie, T., Tibshirani, R. and Friedman, J. (2009), The Elements of Statistical Learning: Data Mining, 

282



 

 

 

 

 

 

Evaluating seismic liquefaction potential using multivariate adaptive regression... 

Inference and Prediction, (2nd Edition), Springer-Verlag, New York, NY, USA. 

Jekabsons, G. (2010), VariReg: A Software Tool for Regression Modelling using Various Modeling Methods, 

Riga Technical University, Latvia. URL: http://www.cs.rtu.lv/jekabsons/ 

Juang, C.H., Rosowsky, D.V. and Tang, W.H. (1999), “Reliability-based method for assessing liquefaction 

potential of soils”, J. Geotech. Geoenviron., 125(8), 684-689. 

Juang, C.H., Yuan, H., Lee, D.H. and Lin, P.S. (2003), “Simplified cone penetration test-based method for 

evaluating liquefaction resistance of soils”, J. Geotech. Geoenviron., 129(1), 66-80. 

Lade, P.V. and Yamamuro, J.A. (2011), “Evaluation of static liquefacion potential of silty sand slopes”, Can. 

Geotech. J., 48(2), 247-264. 

Lai, S.Y., Hsu, S.C. and Hsieh, M.J. (2004), “Discriminant model for evaluating soil liquefaction potential 

using cone penetration test data”, J. Geotech. Geoenviron., 130(12), 1271-1282. 

Lancelot, L., Shahrour, I. and Mahmoud, M.A. (2004), “Instability and static liquefaction on proportional 

strain paths for sand at low stresses”, J. Eng. Mech., 130(11), 1365-1372. 

Lashkari, A. (2012), “Prediction of the shaft resistance of non-displacement piles in sand”, Int. J. Numer. 

Anal. Met., 38(7), 904-931. 

Law, K.T., Cao, Y.L. and He, G.N. (1990), “An energy approach for assessing seismic liquefaction 

potential”, Can. Geotech. J., 27(3), 320-329. 

Liao, S.C., Veneziano, D. and Whitman, R.V. (1988), “Regression models for evaluating liquefaction 

probability”, J. Geotech. Eng., 114(4), 389-411. 

Liu, H., Chen, Y.M., Yu, T. and Yang, G. (2014), “Seismic analysis of the Zipingpu concrete-faced rockfill 

dam response to the 2008 Wenchuan, China, Earthquake”, J. Perform. Constr. Facil., 29(5), 0401429. 

DOI: 10.1061/(ASCE)CF.1943-5509.0000506 

Marchetti, S. (1982), “Detection of liquefiable sand layers by means of quasi-static penetration tests”, 

Proceedings of the 2nd European Symposium on Penetration Testing, Volume 2, Amsterdam, The 

Netherlands, May, pp. 458-482. 

Mirzahosseini, M., Aghaeifar, A., Alavi, A., Gandomi, A. and Seyednour, R. (2011), “Permanent deformation 

analysis of asphalt mixtures using soft computing techniques”, Expert. Syst. Appl., 38(5), 6081-6100. 

Moss, R.E.S., Seed, R.B., Kayen, R.E., Stewart, J.P., Der Kiureghian, A.K. and Cetin, K.O. (2006), “CPT-

based probabilistic and deterministic assessment of in situ seismic soil liquefaction potential”, J. Geotech. 

Geoenviron., 132(8), 1032-1051. 

Muduli, P.K. and Das, S.K. (2014a), “CPT-based seismic liquefaction potential evaluation using multi-gene 

genetic programming approach”, Ind. Geotech. J., 44(1), 86-93. 

Muduli, P.K. and Das, S.K. (2014b), “Evaluation of liquefaction potential of soil based on standard 

penetration test using multi-gene genetic programming model”, Acta. Geophys., 62(3), 529-543. 

Muduli, P.K., Das, S.K. and Bhattacharya, S. (2014), “CTP-based probabilistic evaluation of seismic soil 

liquefaction potential using multi-gene genetic programming”, Georisk, 8(1), 14-28. 

Robertson, P.K. (1990), “Soil classification using the cone penetration test”, Can. Geotech. J., 27(1), 151-158. 

Robertson, P.K. and Wride, C.E. (1998), “Evaluating cyclic liquefaction potential using the cone penetration 

test”, Can. Geotech. J., 35(3), 442-459. 

Samui, P. (2011), “Determination of ultimate capacity of driven piles in cohesionless soil: A multivariate 

adaptive regression spline approach”, Int. J. Numer. Anal. Method. Geomech., 36(11), 1434-1439. 

Samui, P. and Karup, P. (2011), “Multivariate adaptive regression spline and least square support vector 

machine for prediction of undrained shear strength of clay”, Int. J. Appl. Metaheur. Comput., 3(2), 33-42. 

Seed, H.B. and Idriss, I.M. (1971), “Simplified procedure for evaluating soil liquefaction potential”, Soil 

Mech. Found. Eng., 97(9), 1249-1273. 

Seed, H.B., Tokimatsu, K., Harder, L.F. and Chung, R. (1985), “Influence of SPT procedures in soil 

liquefaction resistance evaluations”, J. Geotech. Eng., 111(12), 861-878. 

Specht, D. (1990), “Porbabilistic neural networks”, Neural Networks, 3(1), 109-118. 

Stark, T.D. and Olson, S.M. (1995), “Liquefaction resistance using CPT and field case histories”, J. Geotech. 

Eng., 121(12), 856-869. 

Tosun, H., Seyrek, E., Orhan, A., Savas, H. and Turkoz, M. (2011), “Soil liquefaction potential in Eskisehir, 

283

http://www.cs.rtu.lv/jekabsons/


 

 

 

 

 

 

Wengang Zhang and Anthony T.C. Goh 

NW Turkey”, Nat. Hazard Earth Syst., 11, 1071-1082. 

Toyota, H., Towhata, I., Imamura, S. and Kudo, K. (2004), “Shaking table tests on flow dynamics in 

liquefied slope”, Soils Found., 44(5), 67-84. 

Vapnik, V., Golowich, S. and Smola, A. (1997), “Support vector method for function approximation, 

regression estimation, and signal processing”, Adv. Neural Inform. Process. Syst., 9, 281-287. 

Youd, T.L., Idriss, I., Andrus, R., Arango, I., Castro, G., Christian, J., Dobry, R., Finn, W., Harder, L. Jr., 

Hynes, M., Ishihara, K., Koester, J., Liao, S., Marcuson, W. III, Martin, G., Mitchell, J., Moriwaki, Y., 

Power, M., Robertson, P., Seed, R. and Stokoe, K. II (2001), “Liquefaction resistance of soils: Summary 

report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance 

of soils”, J. Geotech. Geoenviron., 127(10), 817-833. 

Zarnani, S., El-Emam, M. and Bathurst, R.J. (2011), “Comparison of numerical and analytical solutions for 

reinforced soil wall shaking table tests”, Geomech. Eng., Int. J., 3(4), 291-321. 

Zhang, G.Q. (2000), “Neural networks for classification: A survey”, IEEE Transactions on Systems, Man, 

and Cybernetics-Part C: Applications and Reviews, 30(4), 451-462. 

Zhang, W.G. and Goh, A.T.C. (2013), “Multivariate adaptive regression splines for analysis of geotechnical 

engineering systems”, Comput. Geotech., 48, 82-95. 

Zhang, W.G. and Goh, A.T.C. (2014), “Multivariate adaptive regression splines model for reliability 

assessment of serviceability limit state of twin caverns”, Geomech. Eng., Int. J., 7(4), 431-458. 

 

CC 

 

 

284




