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Abstract.  The purpose of this paper is to study the propagation of Rayleigh waves in an anisotropic heterogeneous 

crustal layer over a gravitational semi-infinite sandy substratum. It is assumed that the heterogeneity in the crustal 

layer arises due to exponential variation in elastic coefficients and density whereas the semi-infinite sandy substratum 

has homogeneous sandiness parameters. The coupled effects of heterogeneity, anisotropy, sandiness parameters and 

gravity on Rayleigh waves are discussed analytically as well as numerically. The dispersion relation is obtained in 

determinant form. The proposed model is solved to obtain the different dispersion relations for the Rayleigh wave in 

the elastic medium of different properties. The results presented in this study may be attractive and useful for 

mathematicians, seismologists and geologists. 
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1. Introduction 
 

The knowledge of wave propagation in elastic and viscoelastic layered medium with different 

regions or boundaries helps geophysicists and seismologists to interpret the seismic pattern of 

earth at different edge or border. Material anisotropy and in-homogeneities of the earth affect the 

wave propagation. Several studies have been carried out to explain the nature of Rayleigh waves in 

isotropic homogeneous and heterogeneous media but less literature is available to show the effect 

of anisotropy of the medium on the Rayleigh wave propagation. So, in order to understand the 

accurate seismic pattern it becomes important and necessary to consider anisotropy and different 

heterogeneities of the elastic material (Wilson 1942). The elastic wave problems in elastic semi-

infinite substratum are subject of many investigators. Moreover, the static and dynamic problems 

of the earth can be understood with the help of gravity parameter. In eighteenth century, Bromwich 

(1898) suggested gravity parameter to explain surface wave propagation in an elastic solid medium. 

In extension of work proposed by Bromwich, Love (1911) has shown the influence of gravity 

parameter on Rayleigh wave velocity. Biot (1965) investigated the influence of gravity parameter 

and initial hydrostatic stress on Rayleigh wave velocity. Vishwakarma and Gupta (2014) discussed 

Love waves under the effect of the rigid boundary. Gupta (2013) discussed the Love waves in 

prestressed layer over prestressed half‐space. Addy and Chakraborty (2015) has studied a problem 
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in which they have shown the effect of temperature and initial stress on Rayleigh waves in a 

viscoelastic medium but they did not show the effect of anisotropy and in-homogeneities of the 

medium. Vashishth and Sharma (2008) analyzed elasticity anisotropy and poroviscoelastic 

anisotropy of rocks. Singh and Bala (2013) have discussed a problem on Rayleigh wave in 

temperature field using theory of thermoelasticity. Vinh (2009) gave a complete solution of 

Rayleigh waves in elastic media under the effect of gravity and initial stress. Abd-Alla et al. (2011) 

investigated propagation of Rayleigh waves in granular medium under various parameters. Kumar 

and Singh (2011) discussed the effect of mountain on propagation of Rayleigh waves. Abd-Alla et 

al. (2010) studied Influences of rotation, magnetic field, initial stress, and gravity on Rayleigh 

waves in a homogeneous orthotropic elastic half-space. Sethi et al. (2012) discussed the effect of 

gravity and stress on Rayleigh waves propagating in inhomogeneous orthotropic elastic media. 

Acharya and Monda (2002) investigated Rayleigh surface waves in nonlocal viscoelastic solids 

with small wavelengths. Abd-Alla and Ahmed (1997) studied the effect of gravity, temperature and 

stress on Rayleigh waves in orthotropic elastic medium. Recently, Ghatuary and Chakraborty 

(2015) studied the effect of temperature, magnetic field and stress on Rayleigh waves propagating 

in isotropic homogeneous elastic half-space. Extensive literature has been devoted to the Rayleigh 

wave in anisotropic configurations by Favretto-Cristini et al. (2011). Similarly Vinh and Seriani 

(2009) have discussed the propagation of Rayleigh waves by introducing the concept of gravity. 

Pal et al. (2014) discussed the propagation of Rayleigh waves in anisotropic layer overlying a 

semi-infinite sandy medium in the absence of gravitational field. 

In this study, a sincere attempt is made to explain the behaviour of Rayleigh wave in anisotropy 

heterogeneous crustal layer over a sandy semi-infinite substratum. It is believed that the upper 

boundary plane is free. Biot‟s equations are modified in context of heterogeneity of the medium 

with gravity. The heterogeneity in the layer is assumed to vary exponentially. The dispersion 

relation in 6×6 determinant form is obtained. The effects of heterogeneity and depth on the phase 

velocity are also shown in corresponding figures. In special cases, Rayleigh waves in sandy semi-

infinite substratum under gravity, Rayleigh waves in isotropic semi-infinite substratum under 

gravity, Rayleigh waves in sandy semi-infinite substratum, Rayleigh waves in isotropic semi-

infinite substratum, Rayleigh waves in a heterogeneous orthotropic layer lying over sandy semi-

infinite substratum under gravity and Rayleigh waves in a heterogeneous isotropy layer lying over 

sandy semi-infinite substratum under gravity are derived. These said cases are further studied by 

plotting curves between real and imaginary phase velocity „c‟ and wave number „k‟ for different 

values of heterogeneity parameter, thickness of layer and sandy parameter for a particular model. 

 

 

 

Fig. 1 Geometry of the problem 
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2. Formulation of the problem 
 

We assume an anisotropic and heterogeneous elastic layer of finite thickness h lying over a 

sandy semi-infinite substratum under the effect of gravity. It is considered that the interface of 

these two media is at z = 0, whereas upper free surface is at z = −h. Further, the x-axis is along the 

direction of wave propagation and z-axis vertically downwards (Fig. 1). Let (u, v, w) denote the 

displacement components at any point P(x, y, z) of the medium then v = 0 and u, w are functions 

of (x, z) and t only, because the displacement of Rayleigh wave does not depend on y-axis. 
 

 

3. Solution of the problem 
 

3.1 Solution for the crustal layer 
 

It is assumed that the equilibrium conditions for the initial stresses are due to gravitational field, 

given by 

0, 0,g
x z

 


 
  

 
 (1a) 

 

, 0.xx zz xz       (1b) 

 

The dynamical equations of motion governing the propagation of three dimensional waves 

under the effect of gravity are given by Biot (1965) 
 

2

1 1
1 1 2

,
xyxx xz w u

g
x y z x t

 
 

   
   

      
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  
 

    
   
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(3) 

 
2

1 1 1
1 1 2

,
yzxz zz u v w

g
x y z x y t

 
 

      
     

        

(4) 

 

where ρ1 is the density of the layer. 

The stress-strain relations for a heterogeneous anisotropic layer are of the form 
 

 11 12 13 14 15 16 ,z

xx xx yy zz yz xz xye a e a e a e a e a e a e        (5a) 

 

 12 22 23 24 25 26 ,z

yy xx yy zz yz xz xye a e a e a e a e a e a e        (5b) 

 

 13 23 33 34 35 36 ,z

zz xx yy zz yz xz xye a e a e a e a e a e a e        (5c) 

 

 14 24 34 44 45 46 ,z

yz xx yy zz yz xz xye a e a e a e a e a e a e        (5d) 
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 15 25 35 45 55 56 ,z

xz xx yy zz yz xz xye a e a e a e a e a e a e        (5e) 

 

 16 26 36 46 56 66 ,z

xy xx yy zz yz xz xye a e a e a e a e a e a e        (5f) 

 

and the density is taken as ρ1 = ρ0e
εz. 

Now, the equations of motion for the propagation of Rayleigh waves in a heterogeneous 

anisotropic medium obeying Eqs. (2)-(5), become 
 

2 2 2 2 2 2

1 1 1 1 1 1
11 15 55 35 15 13 552 2 2 2

2 ( )
u w u w u w

a a a a a a a
x x z z x z x z

     
     

       
 

2

1 1 1 1 1 1
15 55 55 35 0 0 2

,
u w u w w u

a a a a g
x x z z x t

     
     

     
     

 

(6) 

 
2 2 2 2 2 2

1 1 1 1 1 1
15 55 35 33 13 55 352 2 2 2

( ) 2
u w u w u w

a a a a a a a
x x z z x z x z

     
     

       
 

  

2

1 1 1 1 1 1
13 35 35 33 0 0 2

.
u w u w u w

a a a a g
x x z z x t

     
     

     
     

 

(7) 

 

On seeking solution for the above equations in the form u1(x, z, t) = A(z)eik(x−ct) and w1(x, z, t) = 

B(z)eik(x−ct), we have 
 

2 2 2 2

55 15 55 0 11 15(2 ) ( )a D ika a D k c a k ik a A          

     
 2 2

35 13 55 35 15 55 0( ) ( ) 0,a D ik a a a D a k ik a ik g B              

(8) 

 

 2 2

35 13 55 35 15 13 0( ) ( )a D ik a a a D a k ik a ik g A            
2 2 2 2

33 35 33 0 55 35(2 ) ( ) 0.a D ika a D k c a k ik a B            

(9) 

 

Following the standard method for solving simultaneous linear algebraic equations with 

constant coefficients, we write A(z) = ϕe−kδz, B(z) = ψe−kδz and by using Eqs. (8) and (9), we have 
 

2 255 15
55 15 0 112

a i a
a ia c a

k k

 
   

    
        
    

 

 2 35 55 0
35 13 55 15 0,

a i a i g
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k k k

  
  

    
            

    
 

(10) 

 

  

 2 35 33 0
35 13 55 15

a i a i g
a i a a a

k k k

  
  

    
          
    

 

2 233 35
33 35 0 552 0.

a i a
a ia c a

k k

 
   

    
          

    
 

(11) 
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In order to obtain a non trivial solution of Eqs. (10) and (11), the following condition should be 

fulfilled 
4 3 2

0 1 2 3 4 0,              (12) 

 

where, α0, α1, α2, α3 and α4 are given in the Appendix. 

If by δj (j = 1,..., 4) we denote the roots of Eq. (12), the ratio of the displacement components 

j

j

B

A
from Eq. (10) corresponding to δ = δj is 

 

2 255 15
55 15 0 11

2 35 55 0
35 13 55 15

2

.

j j

j j

j

j j
j j

a i a
a ia c a

B k k
p

A a i a i g
a i a a a

k k k

 
  



   
 

    
         

      
    

          
    

 (13) 

 

Thus, the solution of Eqs. (6) and (7) can be written as 
 

   31 2 4

1 1 2 3 4 ,
ik x ctk zk z k z k z

u e e e e e
     

  
     (14) 

 

   31 2 4

1 1 1 2 2 3 3 4 4 .
ik x ctk zk z k z k z

w p e p e p e p e e
     

  
     (15) 

 

where k is the wave number and c is the phase velocity. 

 

3.2 Solution for the sandy substratum 
 

The dynamical equations of motion for the propagation of Rayleigh waves under the effect of 

gravity are given by Biot (1965) 
 

2

2 2
2 2 2

,xx xz w u
g

x z x t

 
 

   
  

   
 (16) 

 
2

2 2
2 2 2

,xz zz u w
g

x z x t

 
 

   
  

   
 (17) 

 

where ρ2 is the density of the sandy medium. The stress-strain relations for a sandy medium are 

given by the relations 

  2 2
2 2 22 ,xx

u w

x z
    

  
     

 (18a) 

 

 2 2
2 2 22 ,zz

u w

x z
    

  
     

 (18b) 

 

2 2
2 ,xz

w u

x z
 

  
  

  
 (18c) 
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where ρ2 is the density of the sandy medium. The stress-strain relations for a sandy medium are 

given by the relations 

   
2 2 2 2

2 2 2 2 2
2 2 2 2 2 2 22 2 2

2 ,
u w u w u

g
x x z z x t

        
    

     
     

 (19) 

 

   
2 2 2 2

2 2 2 2 2
2 2 2 2 2 2 22 2 2

2 .
w u w u w

g
x x z z x t

        
    

     
     

 (20) 

 

Assuming that the solution of above equations is of the form u2(x, z, t) = [Fe−kγz + Gekγz]e−ik(x−ct) 

and w2(x, z, t) = [Pe−kγz + Qekγz]e−ik(x−ct) and substituting in Eqs. (19) and (20), we have 
 

    2 2 2
2 2 2 2 2 2 0,

i g
c F i G

k


         

 
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 
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k


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 
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 
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    2 2 2
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c P i G

k


         

 
       

 
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    2 2 2
2 2 2 2 2 2 0,

i g
c Q i G

k


         

 
       

 
 (24) 

 

where γ is the parameter to be determined, k is the wave number and c is the phase velocity. 

Eliminating F, G, P and Q from Eqs. (21)-(24), we get the following biquadratic algebraic 

equation in γ 
4 2

0 1 2 0,        (25) 
 

where, β0, β1 and β2 are defined in the Appendix . Let ±χ1, ±χ2 be the roots of Eq. (25), then 

0

20
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112
1

2
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





  and .

2

4

0

20
2

112
2







  

In view of Eq. (25), the displacements in the gravitational sandy layer are given by 
 

1 2 2 2 ( )

2 1 2 1 2( , , ) ,
k z k z k z k z ik x ctu x z t Fe F e G e G e e
            (26) 

 

1 2 1 2 ( )

2 1 1 2 2 1 1 2 2( , , ) ,
k z k z k z k z ik x ctw x z t m Fe m F e m G e m G e e
            (27) 

 

where Pj = mjFj and Qj = −mjGj, the ratio of the displacement components, is 
 

22
22

2 2

1 1

2

2 2

2

1

( 1,2).

1

j

j

j
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m j

c i g
i

c k

  


 

 

 
   

   
   

 
(28) 
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The approximate solution for Eqs. (26) and (27) is given by 
 

1 2 ( )

2 1 2( , , ) ,
k z k z ik x ctu x z t Fe F e e
        (29) 

 

1 2 ( )

2 1 1 2 2( , , ) .
k z k z ik x ctw x z t m Fe m F e e
        (30) 

 

 

4. Boundary conditions and dispersion relation 
 

(i) At the interface, z = 0, the continuity of the displacement along the x direction requires that 

u1 = u2 and w1 = w2, where u1 and w1 are the displacement component in the layer along 

the x and zdirections respectively. 

(ii) At the interface, z = 0, the continuity of the stress requires that (τxz)medium1 = (τxz)medium2 and 

(τzz)medium1 = (τzz)medium2, where τxz and τzz are the relevant stress components. 

(iii) At the upper boundary plane (free surface) i.e., at z = −h, the stresses vanish i.e., (τxz)medium1 

= 0 and (τzz)medium1 = 0. 
 

Using the boundary conditions (i), (ii), (iii) and Eqs. (14), (15), (29) and (30) we have, 

respectively 

1 2 3 4 1 2 0,F F          (31) 

 

1 1 2 2 3 3 4 4 1 1 2 2 0,p p p p m F m F          (32) 

 

1 1 2 2 3 3 4 4 2 1 1 1 2 2 2 2( ) ( ) 0,T T T T im F im F                (33) 

 

     5 1 6 2 7 3 8 4 2 2 2 1 1 1 2 2 2 2 2 23
2 2 0,T T T T i m F i m F                        (34) 

 

31 2 4

1 1 2 2 3 3 4 4 0,
k hk h k h k h

T e T e T e T e
          (35) 

 

31 2 4

5 1 6 2 7 3 8 4 0.
k hk h k h k h

T e T e T e T e
          (36) 

 

Eliminating ϕ1, ϕ2, ϕ3, ϕ4, F1 and F2 from Eqs. (29) to (34), we have 
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Eq. (37) is the dispersion equation for the Rayleigh waves in a heterogeneous anisotropic layer 

lying over a sandy substratum under gravity. eq. (37) is the dispersion equation and its solution can 
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be expressed as Real(c) + i Imaginary (c).The real part of the dispersion relation gives the phase 

velocity of Rayleigh waves and the imaginary part of it represents its dispersive nature. It can be 

noted that both the frequency and the layer thickness h affect the solution c, not only frequency 

through k. 
 

 

5. Special cases 
 

Case 1 
 

If h → 0, Eq. (37) reduced to 
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Eq. (38) is the dispersion equation for Rayleigh waves in a sandy semi-infinite substratum 

under gravity. 
 

Case 2 
 

If h → 0, δ → 1, Eq. (37) reduced to 
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where root corresponding to Eq. (25) are given by ).2  ,1(
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Eq. (39) is the dispersion equation for Rayleigh waves in isotropic semi-infinite substratum 

under gravity. 
 

Case 3 
 

If h → 0, g → 0, Eq. (37) reduces to 
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where the root corresponding to Eq. (25) are given by ).2  ,1(
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Eq. (40) is the dispersion equation for Rayleigh waves in sandy semi-infinite substratum which 

is in agreement with the result given by Pal et al. (2014). 
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Case 4 
 

If we take h → 0, g → 0, δ → 1, Eq. (37) reduces to 
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Eq. (41) is the dispersion equation for Rayleigh waves in an isotropic semi-infinite substratum. 
 

Case 5 
 

If we take a15 = a35 = 0. Eq. (37) reduces dispersion equation for Rayleigh waves in a 

heterogeneous orthotropic layer lying over sandy semi-infinite substratum under gravity. 
 

Case 6 
 

If we take a15 = a35 = 0, a11 = a33 = λ1 + 2μ1, a13 = λ1, a55 = μ1, Eq. (37) reduces dispersion 

equation for Rayleigh waves in a heterogeneous isotropy layer lying over sandy semi-infinite 

substratum under gravity. 
 

 

6. Numerical results and discussion 
 

In order to show the effect of non-homogeneity and phase velocity dependence on the wave 

number, we have taken data in Table 1 for layer and sandy substratum. Analytical curves of the 

wave number calculated with MATLAB software are plotted versus the phase velocity in Fig. 2 to 

fig 15. For each case, the real and imaginary parts are shown separately. In Fig. 2, the relevant 

graph is plotted for the real part of phase velocity real(c) against the wave number (k) for different 

values of the heterogeneity parameter ε (0.0011, 0.0013, 0.0015 and 0.0017) at constant depth h = 

5 km and sandiness parameter δ = 1.5. The curves show that the phase velocity decreases for 

increasing wave number. However as we increase the heterogeneity parameter ε, the magnitude of 

the phase velocity increases for all k‟s. The behavior of the curves is same but the curves are 

getting closer and closer with increasing values of wave number. It is clearly seen that the effect of 

heterogeneity on phase velocity is more significant for small values of the wave number, and as 

the wave number increases, the effect of heterogeneity decreases. In Fig. 3, the relevant graph is 

plotted for the imaginary part of phase velocity against the wave number k for different values of 

heterogeneity parameter ε (0.0011, 0.0013, 0.0015 and 0.0017) and constant depth at constant 

depth h = 5 km and sandiness parameter δ = 1.5. The figure shows that the phase velocity 

decreases for increasing wave numbers, but as we increase ε, the phase velocity increases for all 

k‟s as before. In Fig. 4, the relevant graph is plotted for the real part of phase velocity against the 

wave number k for ε = 0.0015 and different depths h (0, 5, 10 and 15) km at δ = 1.5. It can be seen 

from the graph that the phase velocity decreases for increasing wave number. As we increase the 
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Table 1 Data for elastic and sandy medium 

Symbol Numerical value Units 

a11 17.77 Gpa 

a12 3.78 Gpa 

a13 3.76 Gpa 

a14 0.24 Gpa 

a15 -0.28 Gpa 

a16 0.03 Gpa 

a22 19.45 Gpa 

a23 4.13 Gpa 

a24 -0.41 Gpa 

a25 0.07 Gpa 

a26 1.13 Gpa 

a33 21.79 Gpa 

a34 -0.12 Gpa 

a35 -0.01 Gpa 

a36 0.38 Gpa 

a44 8.30 Gpa 

a45 0.66 Gpa 

a46 0.06 Gpa 

a55 7.62 Gpa 

a56 0.52 Gpa 

a56 7.77 Gpa 

ρ0 2216 kg/m3 

λ2 1.82 Gpa 

μ2 3.52 Gpa 

ρ2 3380 kg/m3 
 

 

 

Fig. 2 Variation of phase velocity Real(c) against wave number k for different ε at constant h = 5 

km, δ = 1.5 when layer is anisotropy in nature 
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Fig. 3 Variation of phase velocity Imaginary(c) against wave number k for different ε at constant 

h = 5 km, δ = 1.5 when layer is anisotropy in nature 
 

 

 

Fig. 4 Variation of phase velocity Real(c) against wave number k for different h at constant ε = 

0.0015, δ = 1.5 when layer is anisotropy in nature 
 

 

 

Fig. 5 Variation of phase velocity Imaginary(c) against wave number k for different h at constantε = 

0.0015, δ = 1.5 when layer is anisotropy in nature 
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thickness of the layer, the phase velocity increases for some wave number k‟s, but all curves for 

different thicknesses come closer as k increases. It is shown that the thickness of the layer has 

significant effects on the phase velocity. In Fig. 5, the relevant graph is plotted for the imaginary 

part of the phase velocity against the wave number k for ε = 0.0015 and different depths h (0, 5, 10 

and 15) km at δ = 1.5. The figure suggests that as we increase the thickness of the layer, the phase 

velocity increases for all k‟s, but the behaviour of the curve remains same. In Figs. 6 and 7 the 

relevant graph is plotted for phase velocity Real(c) and Imaginary(c) against wave number k for 

different δ at constant h = 4 km, ε = 0.0015 when layer is anisotropy in nature. It shows as 

sandiness parameter δ increases Real(c) increases but Imaginary(c) decreases with increase of δ. 

However both Real(c) and Imaginary(c) increases with increasing wave number k‟s. In Fig. 8 and 

Fig. 9 the relevant graph is plotted for phase velocity Real(c) and Imaginary(c) against wave 

number k for different h at constant ε = 0.0015, δ = 1.5 when layer is assumed to be orthotropic in 

nature. In Fig. 8, Real(c) increases as h increases, this trend is reciprocal in Fig. 9 form 

Imaginary(c). Figs. 10 and 11shows the variation of phase velocity Real(c) and Imaginary(c) 
 

 

 

Fig. 6 Variation of phase velocity Real(c) against wave number k for different δ at constant h = 5 

km, ε = 0.0015 when layer is anisotropy in nature 
 

 

 

Fig. 7 Variation of phase velocity Imaginary(c) against wave number k for different δ at constant h = 

5 km, ε = 0.0015 when layer is anisotropy in nature 
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Fig. 8 Variation of phase velocity Real(c) against wave number k for different h at constant ε = 

0.0015, δ = 1.5 when layer is orthotropic in nature 

 

 

 

against wave number k for different δ at constant h = 4 km, ε = 0.0015 when layer is orthotropic in 

nature. In Fig. 10 Real(c) increases as δ increases while Imaginary(c) decreases in Fig. 11 as δ 

increases. In Fig. 12, the relevant graph is plotted for the real part of phase velocity real(c) against 

the wave number (k) for different values of h at constant ε = 0.0015, δ = 1.5 when layer is isotropic 

in nature. In Fig. 13, the relevant graph is plotted for the imaginary part of phase velocity 

Imaginary(c) against the wave number (k) for different values of h at constant ε = 0.0015, δ = 1.5 

when layer is isotropic in nature. In Fig. 12 Real(c) increases as δ increases while Imaginary(c) 

decreases in Fig. 13 as δ increases. Figs. 14-15 shows the variation of phase velocity Real(c) and 

Imaginary(c) against wave number k for different δ at constant h = 4 km, ε = 0.0015 when layer is 

isotropic in nature. In Fig. 14, Real(c) increases as δ increases, this trend is reciprocal in Fig.15 for 

Imaginary(c). 

 

 

 

 

Fig. 9 Variation of phase velocity Imaginary(c) against wave number k for different h at constantε = 

0.0015, δ = 1.5 when layer is orthotropic in nature 
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Fig. 10 Variation of phase velocity Real(c) against wave number k for different δ at constant h = 

5 km, ε = 0.0015 when layer is orthotropic in nature 
 

 

 

Fig. 11 Variation of phase velocity Imaginary(c) against wave number k for different δ at constant 

h = 5 km, ε = 0.0015 when layer is orthotropic in nature 
 

 

 

Fig. 12 Variation of phase velocity Real(c) against wave number k for different h at constant 

ε = 0.0015, δ = 1.5 when layer is isotropic in nature 
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Fig. 13 Variation of phase velocity Imaginary(c) against wave number k for different h at constantε = 

0.0015, δ = 1.5when layer is isotropic in nature 
 

 

 

Fig. 14 Variation of phase velocity Real(c) against wave number k for different δ at constant h = 5 

km, ε = 0.0015 when layer is isotropic in nature 
 

 

 

Fig. 15 Variation of phase velocity Imaginary(c) against wave number k for different δ at constant 

h = 5 km, ε = 0.0015 when layer is isotropic in nature 

151



 

 

 

 

 

 

Rajneesh Kakar and Shikha Kakar 

7. Conclusions 
 

An analytical and numerical approach is used to study the propagation of Rayleigh wave in a 

heterogeneous anisotropy crustal layer over a gravitational sandy semi-infinite substratum under 

the assumption of free upper boundary plane. From above numerical analysis, it may be conclude 

that: 
 

(a) In entire figures, the magnitude of both real and imaginary phase velocity of Rayleigh 

waves increases with wave number for increase in the thickness of layer except for 

orthotropic layer. 

(b) Phase velocity of Rayleigh wave shows remarkable change with heterogeneity and 

sandiness parameters of the material. 

(c) The real phase velocity of Rayleigh wave increases for increase of sandiness parameter but 

this trend is reversed for imaginary phase velocity. 

(d) The material anisotropy affects the Rayleigh wave phase velocity remarkably. 

(e) From the above discussion it can be concluded that heterogeneous elastic properties and 

heterogeneous density of materials affect the Rayleigh wave. 

(f) Also, it is seen that the Rayleigh waves are affected by the direction of wave propagation. 

(g) The heterogeneity parameter  of the layer, sandiness parameter   of semi-infinite 

substratum and anisotropy of the layer play a significant role in the Rayleigh wave 

propagation. 

(h) It can be concluded from diagrams that the thickness of the layer have remarkable effect 

on the phase velocity. 

(i) The gravity parameter has no major role on phase velocity due to its low involvement in 

the final dispersion relation. 
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