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Abstract. The radius and coordinate of sliding circle are taken as searching variables in slope stability
analysis. Genetic algorithm is applied for searching for critical factor of safety. In order to search for critical
factor of safety in slope stability analysis efficiently and in a robust manner, some improvements for simple
genetic algorithm are proposed. Taking the advantages of efficiency of neighbor-search of the simulated
annealing and the robustness of genetic algorithm, a hybrid optimization method is presented. The numerical
computation shows that the procedure can determine the minimal factor of safety and be applied to slopes
with any geometry, layering, pore pressure and external load distribution. The comparisons demonstrate that
the genetic algorithm provides a same solution when compared with elasto-plastic finite element program.
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1. Introduction

The stability of slopes has received wide attention due to its practical importance in the design of

excavations, embankments, earth and rock-fill dams and tailing dams. There are numerous methods

available for the stability analysis of slopes. The majority of slope stability analyses performed in

practice still use traditional limit equilibrium approaches. In a survey of equilibrium methods of

slope stability analysis reported by Duncan, the characteristics of a large number of methods were

summarized (Griffiths 1999), including the ordinary method of slices (Fellenius 1936), Bishop’s

Modified Method (Bishop 1955), force equilibrium methods (Lowe and Karafiath 1960), Janbu’s

generalized procedure of slices (Janbu 1968), Morgenstern and Price’s method (Morgenstern and

Price 1965) and Spancer’s method (Spencer 1967). Some of these methods satisfy only overall

moment, like the ordinary and simplified Bishop methods and are applicable to a circular slip

surface, while Janbu’s method satisfies only force equilibrium and is applicable to any shape slope.

Spencer’s method, however, satisfies both moment and force equilibrium and it is applicable to

failure surface of any shape. It is considered as one of the rigorous and accurate methods for

solving stability problems. A difficulty with all the equilibrium methods is that they are based on

the assumption that the failing soil mass can be divided into slices (Al-Karni 2000). The general

procedure in all these methods may be summarized as follows: 1) the postulation of a slip surface;

2) the static analysis of the shear stress applied to the slip surface; 3) the calculation of the factor of

safety k, which is defined as the ratio of the shearing strength available to the applied shear stress;

and 4) the determination of the critical slip surface giving the minimum kmin by performing multiple

searches. Considerable work has been done on searching for critical factor of safety in slope

stability analysis by using numerical methods (Chugh 1981). Uncertainty and reliability analysis

applied to slope stability problems have been respectively developed by Juang (1998) and Malkawi

(2000). And model uncertainty is addressed by evaluating the relative performance of the slope

stability methods, which include Ordinary, Bishop, Janbu and Spencer’s method. Chen (2001)

proposed a three-dimensional slope stability analysis method by using the upper bound theorem and

used the simulated annealing algorithm to search for the critical failure mode. The dynamic

programming method was developed by Pham (2003) for analyzing the slope stability. 

Existence of more than one numerical solution to the slope stability problems derived on the basis

of traditional nonlinear optimization techniques is indicated. The main shortcoming of these

techniques lies in the uncertainty as to robustness of the algorithms to locate the global minimum

factor of safety rather than the local minimum factor of safety for complicated and non-homogenous

geological subsoil conditions. Attempts at using traditional optimization method were unsuccessful

and failed to converge to global minimum for factor of safety (Anthony 1999). Genetic algorithm is

an approach to optimization based upon the concepts of genetics, in which an optimum solution

evolves through a series of generations. Genetic algorithm has the super ability of global

convergence and parallel searching so that the problem of local optimum can be avoided (Caosta

2001). The objective of this paper is to describe that there exist a few of solutions for the

complicated geotechnical slopes, but only one solution is the global minimum for factor of safety

and the corresponding slip surface is called the critical slip surface. The other objective of this paper

is to study the use of hybrid genetic algorithm in solving practical slope stability problems. In order

to demonstrate the effectiveness of proposed searching method, numerous example problems have

been solved by using genetic algorithm and elasto-plastic finite element program. 
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2. Computation for the stability analysis of slopes

Most problems in slope stability are statically indeterminate, and as a result, some simplifying

assumptions are made in order to determine a unique factor of safety. Due to the differences in

assumption, various methods have been developed. For the ordinary method of slices, which is

considered the simplest method of slices, the factor of safety is directly obtained. The method

assumes that the inter-slice forces are parallel to the base of each slice (Makawi 2000). Slope

stability analysis using the methods of slices involves passing a slip surface through the earth mass

and dividing the inscribed portion into vertical slices, shown as Fig. 1. According to the Bishop’s

simplified method of slice, the safety factor is determined by the equation (Al-Karni 2000)

 (1)

Where n is the slice number, w
n
 represents the total weight of slice, b

n
 denotes the width of slice, ϕ

n

is angle of fraction, θ
n
 is the angle between the horizontal and the line connecting the midpoint of

the base of the slice and the center of rotation of failure circle, c
n
 is the cohesion of the soil for

slice, u
n
 is the pore pressure and k is the factor of safety.

In Bishop’s method the factor of safety is determined by trail and error, using an iterative process,

since the factor of safety appears in both sides of equation. The inter-slice shear forces are

neglected, and only normal forces are used to determine the inter-slice forces. When taking into

account of earthquake action, the earthquake inertial force is represented using horizontal seismic

coefficient kh, and the safety factor is expressed as follows 
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Fig. 1 General slope stability problem description
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Where R is the radius of slip circle; en is the vertical distance from the slice center to slip center. kH

is horizontal seismic coefficient; Cz is the comprehensive affection coefficient of earthquake action.

Spencer developed a slope stability analysis technique based on the method of slices, which satisfies

all equilibrium equations. Spencer’s method is suitable for a failure surface of arbitrary shape

(Bolton 2003).

When the coordinates of the circle center and radius of slip surface are determined, the factor of

safety for slope stability can be calculated according to Eq. (1) or Eq. (2). The location of the

critical failure surface can be viewed as a form of nonlinear and non-smooth global optimization

problem and the objective function to be minimized is the factor of safety function. The critical slip

surface is defined as the slip surface that yields the minimum value of safety factor in slope stability

analysis. Minimization techniques using optimization methods have been proposed to search for the

critical slip surface in slope stability computations. The objective function of the safety factor k is

non-smooth and can be non-convex in nature. The constraints which include kinematically acceptable

shapes of failure surfaces, rock and soil profile may also be non-smooth, non-convex functions. It

appears that the existence of multiple local minima is the fundamental feature of slope stability

problem (Cheng 2003). 

The shear strength reduction technique is a commonly used method of conducting slope stability

analysis using the finite element method (FEM) or the finite difference method. This technique was

used as early as 1975 by Zienkiewicz et al., and has since been applied by Duncan, Matsui and

San, Ugai and Leschinsky, Griffiths and Lane, Dawson et al. and many others. Many experiences

have been accumulated and detailed comparisons between the strength reduction technique and the

limit equilibrium methods have been made. The progress made in this study lies in two aspects.

First, it proves that any elasto-plastic material must obey Mohr-Coulomb’s yield criterion. Second,

an initial value problem of a system of ordinary differential equations for critical slide lines is

formulated and a robust numerical procedure for the initial value problem is proposed (Zheng

2005).

For slopes, the factor of safety k is traditionally defined as the ratio of the actual soil shear

strength to the minimum shear strength required to prevent failure. As Duncan bring forward that k

is the factor by which the soil shear strength must be divided to bring the slope to the verge of

failure. Since it is defined as a shear strength reduction factor, the way of computing k with the

finite element is simply to reduce the soil shear strength until collapse occurs. So the result of the k

is the ratio of the soil’s actual shear strength to reduced shear strength at failure. In the mid 1970s,

techniques for applying the FEM to slope stability analysis started appearing in geotechnical literature.

They were mostly based on an approach that flows naturally from the definition of slope factor of

safety, and is now commonly referred to as the Shear Strength Reduction (SSR) technique. By

definition, the factor of safety of a slope is the “ratio of actual soil shear strength to the minimum

shear strength required to prevent failure,” or the factor by which soil shear strength must be

reduced to bring a slope to the verge of failure. In the SSR finite element technique elasto-plastic

strength is assumed for slope materials. The material shear strengths are progressively reduced until

collapse occurs. The parameter, cf and ϕf, are given by

(4)
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For Mohr-Coulomb materials, the steps for systematically searching for the critical factor of safety

value, k, which brings a previously stable slope to the verge of failure, are as follow: Step 1:

Develop an FE model of a slope, using the deformation and strength properties established for the

slope materials. Compute the model and record the maximum total deformation in the slope. Step 2:

Increase the value of F and calculate factored Mohr-Coulomb material parameters as described

above. Enter the new strength properties into the slope model and re-compute. Record the maximum

total deformation. Step 3: Repeat Step 2, using systematic increments of k, until the FE model does

not converge to a solution, i.e., continue to reduce material strength until the slope fails. The critical

k value just beyond which failure occurs will be the slope factor of safety.

3. Application of genetic algorithm to the stability analysis of slopes

Many approaches have been developed to automate the search for the critical slip surface. This is

not too complicated for circular slip surface because it only involves the optimization of three

variables, which consist of the horizontal and vertical coordinates of the slip surface and the radius

of the circle. Traditional mathematical optimization methods that have been used include dynamic

programming, conjugate-gradient, random search, and simplex optimization. The gradient searching

algorithms can not guarantee that the critical failure surface as obtained is the global minimum

because the multiple minima exist in a feasible solution domain. The simple genetic algorithm has

been applied to slope stability analysis (McCombie 2002, Zolfaghari 2005).

Let m represent the optimization variable vector, m = {xc, yc, Rc}
T, and xc, yc and Rc denote x and

y coordinate and radius of slip surface, respectively. The solution of the searching problem of slope

stability analysis consists in obtaining a minimum of an objective function, which is the factor of

safety for slope stability analysis 

 (6)

Where m represents the variable vector, which belongs to the space of admissible parameters RP, g j

are inequality constraints, which define the feasible domain D:

 (7)

Genetic algorithm (GA) is a search method based on Darwin’s theory of evolution and survival of

the fittest. Based on the concept of genetics, GA simulates the evolutionary process numerically.

Genetic algorithms strongly differ in conception from other search methods, including traditional

optimization methods and other stochastic search methods. The basic difference is that while other

methods always process single points in the search space, genetic algorithms maintain a population

of potential solutions (Firswell 1998). Genetic algorithms constitute a class of search methods

especially suited for solving complex optimization problems. Search algorithms in general consist of

systematically walking through the search space of possible solutions until an acceptable solution is

found. Genetic algorithms transpose the notions of natural evolution to the world of computers, and

imitate natural evolution. They were initially introduced by John Holland for explaining the

adaptive processes of natural systems and for creating new artificial systems that work on similar

bases. In Nature new organisms adapted to their environment develop through evolution. The

genetic algorithm has been widely used in the identification, short-term load forecasting, the design

optimization, dynamic channel assignment, the parameter identification of inelastic constitutive
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models (Costa 2001, Friswell 1998, Garcia 1998). Genetic algorithms evolve solutions to the given

problem in a similar way. The main evolutionary processes of genetic algorithm include the

evaluation of fitting function, selection operation, crossover operation, mutation and elitist strategy. 

The probability of survival of any individual is determined by its fitness: through evolution the

fitter individuals overtake the less fit ones. In order to evolve good solutions, the fitness assigned to

a solution must directly reflect its ‘goodness’, i.e. the fitness function must indicate how well a

solution fulfills the requirements of the given problem. The evaluation of the fitness can be

conducted with a linear scaling, where the fitness of each individual is calculated as the worst

individual of the population subtracted from its objective function value. Fitness assignment can be

performed in several different ways: We define a fitness function and incorporate it in the genetic

algorithm. When evaluating any individual, this fitness function is computed for the individual.

 (8)

Where fj is the fitting function; S is the population size. kj is the factor of safety of j-th individual.

Selection, also called reproduction, is simply the copying of quality solution in proportion to their

effectiveness. Here, since the goal is to minimize the objective function, several copies of candidate

solutions with small objective functions are made; solutions with large objective functions tend not

to be replicated. The intrinsic pricple of the genetic algorithm is Darwin’s natural selection

principle. Selection is the impetus of the genetic algorithm, by which, the superior individual are

seleted into the next generation while the inferior ones are washout. A part of the new population

can be created by simply copying without change selected individuals from the present population.

This gives the possibility of survival for already developed fit solutions. The seletion pressure is the

intrinsic creteria, if the pressure is too excessive, the searching process will end in premature, while,

if the pressure is too less, the convergent speed will be too low. The selection process can produces

a new population, extracting with repetition individuals from the old population. 

In tournament selection, a set of n individuals are chosen from the population at random. Then the

best of the pool is selected. The higher is the value of fitness value, the more directed the selection

is towards better individuals. The extraction can be carried out in several ways. Another selection is

ranked selection. The problem of fitness-proportional selection is that it is directly based on fitness.

In most cases, we cannot define an accurate measure of goodness of a solution, so the assigned

fitness value does not express exactly the quality of a solution. Still, an individual with better fitness

value is a better individual. In rank based selection, the individuals are ordered according to their

fitness. The individuals are then selected with a probability based on some linear function of their

rank. Fitness-proportional selection is commonly used in the population reproduction. When using

this selection method, a solution has a probability of selection directly proportional to its fitness.

The mechanism that allows fitness proportional selection is similar to a roulette wheel that is

partitioned into slices. Each individual has a share directly proportional to its fitness. When the

roulette wheel is rotated, an individual has a chance of being selected corresponding to its share.

One of the most commonly used is the roulette wheel selection, where individuals are extracted in

probability following a Monte Carlo procedure. The extraction probability of each individual is

proportional to its fitness as a ratio to the average fitness of all the individuals. In the selection

process, the reproduction probabilities of individuals are given by their relative fitness

(9)

fj = max kj| j = 1, 2, …, S{ } − kj

pi = fi/  ∑ fi
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Where pi is the reproduction probability of the ith individual. 

Recombination, also called crossover, is a process by which information contained in two

candidate solutions is combined. In the recombination, each individual is first paired with an

individual at random. New individuals are generally created as offspring of two parents (as such,

crossover being a binary operator). One or more so-called crossover points are selected (usually at

random) within the chromosome of each parent, at the same place in each. The parts delimited by

the crossover points are then interchanged between the parents. The individuals resulting in this way

are the offspring. Beyond one point and multiple point crossover there exist more sophisticated

crossover types. Let a pair of present individuals be given by [ , ]. a new pair [ , ] is

then created in terms of a phenomenological recombination formula (Costa 2001)

 (10)

 (11)

Where μ is a random number changing from 0 to 1. 

A new individual is created by making modifications to one selected individual. The modifications

can consist of changing one or more values in the representation or in adding/deleting parts of the

representation. In genetic algorithms mutation is a source of variability, and is applied in addition to

crossover and reproduction. Mutation is a process by which vectors resulting from selection and

recombination are perturbed. The mutation is conducted with only a small probability by definition.

An individual, after this mutation, , is described as

 (12)

Where mdown and mup represent lower and upper bounds of parameters; rand{.} represents the

random selection from the reasonable solution domains. At different stages of evolution, one may

use different mutation operators. At the beginning mutation operators resulting in bigger jumps in

the search space might be preferred. Later on, when the solution is close by, a mutation operator

leading to slighter shifts in the search space could be favored. However, the above mutation

operation is a random one with no clear aim. 

Simulated annealing is another important algorithm which is powerful in optimization and high-

order problems (Alkhanmis 1999). It uses random processes to help guide the form of its search for

minimal energy states. Simulated annealing is a generalization of a Monte Carlo method for

examining the equations of state and frozen states of n-body systems. The concept is based on the

manner in which liquids freeze or metals re-crystallize in the process of annealing. In an annealing

process a melt, initially at high temperature and disordered, is slowly cooled so that the system at

any time is approximately in thermodynamic equilibrium (Sahab 2005). As cooling proceeds, the

system becomes more ordered and approaches a “frozen” ground state at T=0. The paper provides a

mutation method based on the simulating annealing algorithm, which makes the average fitness of

the population tend to be optimized. Firstly, we define a neighborhood structure, then select a new

solution in the neighborhood structure of the intermediate solution, that is to say, getting a new

solution by cause a disturb on the old one.

(13)

Where, Δm is a random disturb. Then, reject or accept the new solution according the Metropolis

rule, the probability of accepting the new generated solution is expressed as the follows (Jeong 1996)
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(14)

where, δk is the increasement of the objective function, δJ = knew − kold, Tk is the annealing

tempreature, which tends to be droped during the evolutional process. The probability of rejecting

the new solution is

(15)

One feature that is currently missing in this selection procedure is that it does not guarantee the

best individual always survives into the next generation, particularly when many individuals have

fitness close to that of the best individual. The elitist strategy, where the best individual is always

survived into the next generation on behalf of the worst individual, can compensate for some

disadvantages of missing the best individual in selection operation or mutation operation. With the

elitist strategy, the best individual always moves in a descent direction, thereby a stable convergence

is obtained. The gradient search algorithm adopted in genetic algorithm is the most popular quasi-

Newton method with the BFGS algorithm. The individual after the recombination is formulated as

follows (Furukawa 2002) 

 (16)
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Fig. 2 Fundamental structure of hybrid genetic algorithm with simulated annealing
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Where A is a well-known positive-define matrix used on behalf Hessian matrix. The main steps for

searching problem of slope stability by using hybrid genetic algorithm are shown in Fig. 2. 

4. Case studies 

To illustrate the effectiveness of the proposed searching method based on genetic algorithm, three

test problems are conducted, and the searthing results of factor of safety by using GA are compaired

with by using FEM. The first example is a simple slope consisting of homogeneous soil, as shown

in Fig. 3. The total height of slope is 10.0 m. The slope angle is 26.565o. The soil mechanical

parameters are shown in Table 1. The genetic algorithm parameters are shown as follows: number

of generations 200, population size 80, crossover rate 0.85, and mutation rate 0.03. Minimal factor

of safety results by using different method are shown in Table 2. Fig. 4 depicts the comparison of

critical failure surfaces founded by using GA and FEM for the homogeneous slope example. The

solid line is critical slide searched by genetic algorithm. The color contours are maximum shear

strain lines computed by FEM. The stability of a slope can also be expressed in terms of development

Fig. 3 Geometry of homogeneous slope

Table 1 Mechanical parameters of soil layer for the homogeneous slope example

Unit weight/(kN⋅m−3) Cohesion/kPa Angle of shearing resistance/ο

20.0 3.0 19.6

Table 2 Factor of safety results for the homogeneous slope example

 method Bishop Spencer Janbu FEM

factor of safety 0.989 0.988 0.991 0.990

Fig. 4 Comparison of critical failure surfaces founded by using GA and FEM for the homogeneous slope
example
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of strains. Hence, the failure of the slopes can also be seen as shear strain rate contours as shown in

the Fig. 4. It is clearly evident that the slopes developed a circular failure with high shear strain rate

along the failure plane. The critical slide line searched by genetic algorithm agrees well with

maximum shear strain computed by FEM.

The second example is a complex slope comprising of 3 layers of soil, as shown in Fig. 5. The

height of the slope is 10.0 m. The slope angle is 26.565o. The mechanical parameters of soil layers

are listed in Table 3. The genetic algorithm parameters are chosen as same as example 1. Table 4

lists factor of safety results by using different method for the three-material slope example. Fig. 6

shows the comparison of critical failure surfaces founded by using GA and FEM for the three-

material slope example. The solid line is critical slide searched by genetic algorithm. The color

contours are maximum shear strain lines computed by FEM. The critical slide line searched by

genetic algorithm agrees well with maximum shear strain computed by FEM.

The third example models a non-homogeneous, three layer slope with material properties given in

Table 3 and geometry as shown in Fig. 5. A horizontal seismically induced acceleration of 0.15 g is

included in the analysis. Table 5 lists the minimal factor of safety by using different method for the

Fig. 5 Geometry of three-material slope

Table 3 Mechanical parameters of soil layers for the three-material slope example

Soil layer number Unit weight/(kN⋅m−3) Cohesion/kPa Angle of shearing resistance/ο

1
2
3

19.5
19.5
19.5

0.0
5.3
7.2

38.0
23.0
20.0

Table 4 Factor of safety results for the three-material slope example

method Bishop Spencer Janbu FEM

factor of safety 1.407 1.377 1.358 1.360

Fig. 6 Comparison of critical failure surfaces founded by using GA and FEM for the three-material slope
example
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case with a seismic action. Fig. 7 shows the comparison of critical failure surfaces founded by using

GA and FEM for the case with a seismic action. The solid line is critical slide searched by genetic

algorithm. The color contours are maximum shear strain lines computed by FEM. The critical slide

line searched by genetic algorithm agrees well with maximum shear strain computed by FEM.

5. Conclusions

The objective of the work has been the development of a global search procedure for slope stability

problem. Genetic algorithm performs a multidirectional search of a population of many potential

solutions, not just a single solution. The search for critical factor of safety in slope stability analysis

will normally not become trapped in local optima. Some examples have been presented to demonstrate

the effectiveness and robustness of the genetic algorithm. The proposed hybrid genetic algorithm

can be applied to find the slip surface with lowest or near-lowest factor of safety when compared

with simple genetic algorithm and gradient-based optimization. From the example, it has been

concluded that the search procedure is able to locate a minimal factor of safety and the corresponding

slip surface for slope stability problem. The computational results show that the proposed searching

method can be used in slope stability analysis of earth dams, natural slopes and any other

geotechnical problems with multi-layers, external loads, and earthquake action. 
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