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Abstract.  An investigation has been carried out for the propagation of torsional surface waves in an 

inhomogeneous prestressed layer over an inhomogeneous half space when the upper boundary plane is 

assumed to be rigid. The inhomogeneity in density, initial stress (tensile and compressional)  and rigidity are 

taken as an arbitrary function of depth, where as for the elastic half space, the inhomogeneity in density and 

rigidity is hyperbolic function of depth. In the absence of heterogeneities of medium, the results obtained are 

in agreement with the same results obtained by other relevant researchers. Numerically, it is observed that 

the velocity of torsional wave changes remarkably with the presence of inhomogeneity parameter of the 

layer. Curves are compared with the corresponding curve of standard classical elastic case. The results may 

be useful to understand the nature of seismic wave propagation in geophysical applications. 
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1. Introduction 
 

The term “Prestress” is meant by stresses developed in a medium before it is being used for 

study. The earth is an initially stressed medium. Due to presence of external loading, slow process 

of creep and gravitational field, considerable amount of stresses (called pre-stresses or initial 

stresses) remain naturally present in the layers. These stresses may have significant influence on 

torsional waves produced by earthquake or explosions (Kakar and Kakar 2012). For seismologists, 

the propagation of torsional surface wave in elastic and viscoelastic layered media is useful to 

understand earthquake disaster prevention because during propagation, the said wave twists the 

medium. Due to inhomogeneity in the crust of the earth, the study of torsional wave becomes 

important to understand earthquake disaster. Also, torsional waves are affected by the material 

properties of the medium through which they travel. If the variation in elastic parameters of the 

medium is quite small, the main effect will be an attenuation of the seismic energy. 

Much literature is available on the subject of surface waves such as Rayleigh and Love waves 

due to drastic capabilities during earthquake and practical applications in the field of geophysical 

prospecting; unfortunately little literature is available on torsional surface wave propagation in 
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inhomogeneous elastic and viscoelastic media. Dey et al. (1996) discussed the propagation of 

torsional surface waves with constant density and variable rigidity in heterogeneous anisotropic 

media. Gupta et al. (2010) formulated the influence of rigid boundary on the propagation of 

torsional wave in a homogeneous layer over a heterogeneous half space. The works done by 

Chattopadhyay et al. (2011, 2012), Gupta et al. (2013), Vishwakarma et al. (2012) on torsional 

wave propagation cannot be overlooked as their contributions are commendable. Kakar and Gupta 

(2013) studied torsional surface waves in a non-homogeneous isotropic layer over viscoelastic 

half-space. Kumari and Sharma (2014) discussed torsional waves in a viscoelastic layer over an 

inhomogeneous half space. Kakar (2014) analyzed the effect of gravity and nonhomogeneity on 

Rayleigh waves in higher-order elastic-viscoelastic half-space. Kakar and Gupta (2014) 

investigated the existence of Love waves in an intermediate heterogeneous layer placed in between 

homogeneous and inhomogeneous half-spaces using Green’s function technique. Recently, 

Chattaraj et al. (2015) presented a note on torsional surface wave in dry sandy crust laid over an 

inhomogeneous half space. Dhua and Chattopadhyay (2015) studied torsional wave in an initially 

stressed layer sandwiched  between two inhomogeneous media. 

In this problem, we investigate the propagation of torsional wave in an in-homogeneous crustal 

layer over an inhomogeneous half space under the influence of rigid boundary and initial stress. 

The inhomogeneity of the crustal layer and elastic half space has been taken as 
 0
1 ,az    0

1 bz   ,  0
1P P cz  and 

2

1 cosh ( / ),z f   
2

1 cosh ( / )z f   

where ,     and P are the rigidity, mass density and initial stress respectively, a, b and c are 

constants having dimension that are inverse of length and f have the dimension of length. The 

effect of inhomogeneity parameter and initial stresses (tensile and compressional) on the 

propagation of torsional surface wave has been presented graphically by plotting the dispersion 

curves. 

 
 

2. Formulation of the problem 
 
Let H be the thickness of the initially stressed crustal layer with linear variation in rigidity and 

density placed over inhomogeneous half-space with hyperbolic variation in rigidity and density, 

where top of the layer is assumed to be rigid. We consider propagation of torsional waves which 

have only circumferential displacements (independent of azimuthal angle) in an in-homogeneous 

layer of finite thickness H. Let r-axis along the direction of torsional wave propagation and z-axis 

toward the interior of the elastic half-space. The variations of inhomogeneity in rigidity, density 

and initial stress in the crustal layer are taken as  
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and for elastic half- space inhomogeneity in rigidity and density are 
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Fig. 1 Geometry of the problem 

 

 

where 
0 0 1 1 0

0, 0, 0, 0 and , , ,   ,a b d f P        are constants.  

 

 
3. Boundary conditions 
 

The geometry of the problem leads to the following boundary conditions:  

(i) At the free surface z=-H, when the upper boundary is assumed to be rigid then 

0
0 H.v at z                                                    (3a) 

(ii) At the interface z=0, the continuity of the stress requires that 

0 1
0 1 0.

v v
at z

z z
 

 
 

 
                                            (3b) 

(iii) The continuity of the displacement requires that 

0 1
0.v v at z                                                      (3c) 

(iv) Displacement is bounded as 

 1
lim 0
z

v z


                                                        (3d) 

where 
0

v  and 
1

v  are the displacement in the layer and the half-space respectively. 

 

 

4. Solution of the problem 
 

The dynamical equations of motion in cylindrical coordinate (r,θ,z) are (Love 1944)  
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where, , , , . , ,rr r rz rr z zzs s s s s s s   are the respective stress components, , ,R ZT T T  are the 

respective body forces and , ,u v w  are the respective displacement components.  

The stress-strain relation are given by  

2 , 2
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where   and   are Lame’s constants, and 
1u v u w

r r r z

   
     

   
 denotes the dilatation. 

The strain-displacement relations are 
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                     (6) 

The torsional wave is characterized by the displacements  

0u  ,   0w  ,   ( , , )v v r z t                                                 (7) 

Now, considering Eq. (5)-(7), the dynamical equations of motion for torsional surface waves 

propagating in the radial direction under initial stress can be written as Biot (1965) 
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                                      (8) 

where ( , , )v r z t  is the displacement along the  (azimuthal) direction and r is the radial 

coordinates. The stress are related to the displacement component by 

 r
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                                     (9) 

Using Eq. (9), Eq. (8) takes the form 
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                       (10) 

756



 

 

 

 

 

 

Torsional wave in an inhomogeneous prestressed elastic layer overlying… 

where 
( )

( ) ( )
2

P z
G z z  , ( )P z being the compressive initial stress in the medium along 

( )P z direction Chattopathyay et al. (2013), Dua and Chattopadhayay (2015). 

The solution of Eq. (10) is of the form  

     1
U J expv z Kr i t                                                 (11) 

where U( )z  is the solution of the following equation 

2 2 2
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z
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 
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 
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 
                  (12) 

In the above equation, 
K


   is the torsional wave velocity, 

s





 ,  is the angular 

frequency, K is the wave number and 
1
( )J Kr is the first order Bessel function of first kind. 

 

4.1 Solution for the crustal layer 
 

The crustal layer is inhomogeneous isotropic with initial stress, so using the relation 

 
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The Eq. (12) reduces to 
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We can rewrite the Eq. (13) as  

 

 

 

 

 
 

2 2 2
2

122 2

0

1 1( )
0,

1 14 1

az czd z
K z

dz z zz

  


  

    
     

      

                      (14) 
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Introducing ( ) ( )z   in the Eq. (14), where
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where 

2
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2

0

1
2

K
R M

M



 

  
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1
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2

0

1
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

 

  
   
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are dimensionless quantities. 

Eq. (15) is the well known Whittaker’s equation [Whittaker and Watson
 
(1990)]. 

The solution of Whittaker’s Eq. (15) is given by 
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where A and B are arbitrary constants and    
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,
R R
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  are the Whittaker function. 

Hence the displacement for the torsional wave in the crustal layer is 
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4.2 Solution for the lower in-homogeneous elastic half space 
 

Putting 1
U

U


 in Eq. (12) without taking initial stress and using Eq. (2), we get 
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The dispersion relation for torsional waves can be obtained by using boundary conditions Eq. 

(3). Therefore, the displacement for the torsional wave in the in-homogeneous half-space using 

boundary condition (3d) becomes 
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Now using the boundary conditions (3b), (3c) and (3a), we get 
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From Eq. (20), (21) and (22) to eliminate , andA B C  we have 
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The expansion of Whittaker function up to linear term is taken as the form 
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Now expanding the above determinant we get 
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where 
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Eq. (25) is the dispersion equation of torsional wave in an in-homogeneous prestressed crustal 

layer over an in-homogeneous half space when the upper boundary plane is assumed to rigid.  
 
Special cases 
 
i. For torsional wave in an in-homogeneous prestressed layer over an isotropic homogeneous 

half space when the upper boundary plane is assumed to be rigid, in that case f  , then Eq. 

(25) reduces to 
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


 
    

    
   

                       (26) 

ii. For torsional wave in a homogeneous layer over an isotropic homogeneous half space when 

the upper boundary plane is assumed to be rigid, in that case 0, 0, 0,P a b f    , then 

Eq. (25) reduces to 

2

2
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2 2
0 0

2
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1
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



  




 

  
 
  

                                              (27) 
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iii. For torsional wave in a homogeneous layer over an inhomogeneous half space when the 

upper boundary plane is assumed to be rigid, in that case 0, 0, 0,P a b    then Eq. (25) 

reduces to 

2

2 2 22
11

2 2
0 0

2

0

1
1

cot KH 1

1

f K





  



 
 

  
 
  

                                     (28) 

iv. For torsional wave in a homogeneous layer over an isotropic homogeneous half space when 

the upper boundary plane is assumed to be free, in that case 0,P  0, 0,a b f   , then 

Eq. (25) reduces to 

2

22
11

2
2

0 0

2

0

1

tan 1

1

KH





  



 
    

  
    

 
 

                                            (29) 

Eq. (29) is the classical dispersion equation of Love waves given by Love (1911) and Ewing et 

al. (1957), which validates our solution. 

 
 

6. Numerical analysis 
 

To show the effect of inhomogeneity parameters 
a

l
K

  and 
b

m
K

  on nature of torsional wave 

motion, we have plotted non-dimensional phase velocity β/β0 against dimensionless wave number 

KH on the propagation of torsional wave in the crustal layer by using MATLAB software. Figs. 2-

3 are plotted for Eq. (25) and Eq. (27) by taking parameters in Table 1, Gubbins (1990). 

In Figs. 2 and 3 curves have been plotted with vertical axis as dimensionless phase velocity 

non-dimensional phase velocity β/β0 against dimensionless wave number KH. In both the Figs. 2 

and 3, the curve 1 denotes the classical case of Love wave. However curves 2,3,4,5 of figure 2 are 

drawn for the various values of in-homogeneity parameter 
a

l
K

  keeping b
m

K
  and 0

0
2

P



  

constant and curves 2,3,4,5 of Fig. 3 are drawn for the various values of in-homogeneity parameter 

 

 
Table 1 Material parameters 

Layer Rigidity Density 

Inhomogeneous Crustal 

Layer 
10 2

0 6.34 10 /N m    
3

0 3364 /Kg m   

Inhomogeneous elastic 

Half-space 
10 2

1 11.77 10 /N m    
3

1 4148 /Kg m   
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Fig. 2 Variation of dimensionless phase velocity against dimensionless wave number when m=0.8, 

ζ=0.5 and fK=0.5 

 

 
Fig. 3 Variation of dimensionless phase velocity against dimensionless wave number for l=0.4, ζ=0.5 

and fK=0.5 

 

 
Fig. 4 Variation of dimensionless phase velocity against dimensionless wave number when l=0.4, 

m=0.8 and fK=0.5 
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Fig. 5 Variation of dimensionless phase velocity against dimensionless wave number when l=0.4, 

m=0.8 and fK=0.5 

 

 
Fig. 6 Variation of dimensionless phase velocity against dimensionless wave number under the effect 

of inhomogeneity associated with rigidity the layer 

 

 
Fig. 7 Variation of dimensionless phase velocity against dimensionless wave number under the effect 

of inhomogeneity associated with density the layer 
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Fig. 8 Variation of dimensionless phase velocity against dimensionless wave number under the effect 

of inhomogeneity associated with initial stress the layer 

 
 

b
m

K
  keeping 

a
l

K
  and 0

0
2

P



 constant. Fig. 2 signifies the dispersion curve of the 

torsional surface wave under the effect of in-homogeneity parameter 
a

l
K

  involved in the 

rigidity of the crustal layer. From this figure, it is clear that speed of torsional wave decreases with 

the increase of wave number. Also from curve no 2 to 5 we observed that the velocity of the 

torsional wave is directly proportional to the rigidity of the medium. Fig. 3 represents the 

dispersion curve of the torsional wave under the effect of in-homogeneity parameter 
b

m
K

  

involved in the density of the crustal layer. The speed of torsional surface wave decreases rapidly 

with the increase of wave number. Also from curve no 2 to 5 we observed that the velocity of the 

torsional wave is inversely proportional to the density of the medium. Fig. 4 depicting the 

dispersion curve of the torsional wave, shows the effect of parameter 0

0
2

P



  designating the 

stress of the crustal layer. The speed of the torsional surface wave increases rapidly with the 

increase of wave number. Also from curves 2-5, we observe that the velocity of the torsional wave 

is directly proportional to the tensile stresses of the medium. In Fig. 5 curves have been plotted 

with vertical axis as dimensionless phase velocity non-dimensional phase velocity β/β0 against 

dimensionless wave number KH for compressional stresses. Also from curves 2-5, in Fig. 5, we 

observe that the velocity of the torsional wave is inversely proportional to the compressional 

stresses of the medium. 
In Figs. 6 and 7curves have been plotted with vertical axis as dimensionless phase velocity non-

dimensional phase velocity β/β0 against dimensionless wave number KH under the effect of 

inhomogeneity associated with rigidity and density of the layer, respectively. Fig. 6 signifies the 

dispersion curve of the torsional surface wave under the effect of in-homogeneity parameter aH 
associated with rigidity of the crustal layer. From this figure, it is clear that speed of torsional 

wave decreases with the increase of wave number. Also from curve no 2 to 5 we observed that the 
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velocity of the torsional wave is directly proportional to the rigidity of the medium. Fig. 7 

represents the dispersion curve of the torsional wave under the effect of in-homogeneity parameter 

bH involved in the density of the crustal layer. The speed of torsional surface wave decreases 

rapidly with the increase of wave number. Also from curve no 2 to 5 we observed that the velocity 

of the torsional wave is inversely proportional to the density of the medium. Fig. 8 represents the 

dispersion curve of the torsional wave under the effect of in-homogeneity parameter cH involved 

in the initial stress of the crustal layer. The speed of torsional surface wave increases rapidly with 

the increase of wave number. Also from curve no 2 to 5 we observed that the velocity of the 

torsional wave is directly proportional to the density of the medium. 

 
 

7. Conclusions 
 

We have studied the propagation of torsional wave in an inhomogeneous initially stressed 

crustal layer over an inhomogeneous half space when the upper boundary plane is assumed to be 

rigid. We have employed Whittaker’s function to find the frequency equation of torsional surface 

wave. Close form solutions for the displacement in the crustal layer have been derived. In a 

particular case, the dispersion equation coincides with the well-known classical equation of Love 

wave when the crustal layer and lower half-space are homogeneous for upper free space, and 

hence it validates the solution of the problem. From above numerical analysis, it may be conclude 

that: 

a. The velocity of the torsional wave is inversely proportional to the inhomogeneity factor aH 

of the medium. 

b. The inhomogeneity factor a

K
 has a prominent effect on torsional wave propagation. The 

velocity of the torsional wave is directly proportional to the rigidity of the medium. 

c. The velocity of the torsional wave is inversely proportional to inhomogeneity factor bH of 

the medium. 

d. The velocity of the torsional wave is directly proportional to inhomogeneity factor cH of the 

medium. 

e. The inhomogeneity factor b

K
 has a prominent effect on torsional wave propagation. The 

velocity of the torsional wave is inversely proportional to the density of the medium. 

f. Phase velocity 
0




 (non-dimensional) of torsional wave decreases with increase of wave 

number kH (non-dimensional). 

g. The velocity of the torsional wave is inversely proportional to the compressional stresses 

0

0
2

P



  of the medium and directly proportional tensile stresses 0

0
2

P



  . 
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