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Abstract.  Earthquake can occur anywhere in the world and it is essential to design important members in 

special structures based on maximum possible forces that can be produced in them under severe earthquake. 

In addition, since the earthquake is an accidental phenomena and there are no similar earthquakes, therefore 

the possibility of strong earthquakes should be taken into account in earthquake-resistant design of important 

structures. Based on this viewpoint, finding the critical acceleration which maximizes internal forces is an 

essential factor in structural design. This paper proposes critical excitation method to compute the critical 

acceleration in design of important members in special structures. These critical accelerations are computed 

so that the columns’ internal shear force at the base of the structure at each time step is maximized under 

constraints on ground motion. Among computed critical accelerations (of each time step), the one which 

produces maximum internal shear force is selected. A numerical example presents to show the efficiency of 

critical excitation method in determining the maximum internal shear force and base moment under variety 

of constraints. The results show that these method can be used to compute the resonant earthquake which 

have large enough effective duration of earthquake strong motion (between 12.86 sec to 13.38 sec) and 

produce the internal shear force and base moment for specific column greater than the same value for 

selected earthquakes in constructing the critical excitation (for different cases about 2.78 to 1.29 times the 

San Fernando earthquake). Therefore, a group of them can be utilized in developing the response spectrum 

for design of special structures. 
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1. Introduction 
 

A great number of exact and approximate methods have been developed to investigate the 

behavior, deflection, vibration and modification of different types of tall buildings subjected to 

lateral loads (static or dynamic loading) over the past few decades (Kamgar and Saadatpour 2012, 

Kamgar and Rahgozar 2013, Heidari et al. 2014, Rahgozar and Sharifi 2009, Taranath 2012, Wu 

and Li 2003, Swaddiwudhipong et al. 2002, Kuang et al. 2004, Jahanshahi et al. 2012, Rahgozar 

et al. 2014, Malekinejad and Rahgozar 2014). After sever earthquakes, depending on the type of 

the structure, the damage must be eliminated or reduced. Therefore, it is necessary to have an  
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estimate of the maximum internal shear force and moment of base columns that can be produced 
in case of a severe earthquake.  

Variability of ground motion is an important and challenging factor. Code-specified design 
ground motions are usually constructed by taking into account the knowledge from past 
observations and probabilistic insights. However, uncertainties in characteristics of earthquakes (or 
ground motions), the fault rupture mechanisms, the wave propagation mechanisms, the ground 
properties, etc. present serious difficulties in defining reasonable design ground motion; especially 
for important buildings in which severe damage or collapse must be avoided (Singh 1984, 
Anderson and Bertero 1987, Takewaki 2001a, 2002, 2013, Stein 2003). Critical excitation method 
is a promising robust technique in accounting for inherent uncertainties in earthquake 
characteristics and for constructing design earthquake ground motions in a reasonable way 
(Takewaki 2001b). In the field of structural engineering, robustness, redundancy and resilience 
play an important role in order to guarantee the safety of infrastructures against severe 
disturbances, e.g., earthquakes, strong winds, impacts (Takewaki 2013). 

The method of critical excitation was proposed by Drenick (1970) for linear elastic, viscously 
damped single degree of freedom (SDOF) systems in order to take into account inherent 
uncertainties in ground motions. This method is aimed at finding the excitation which produces the 
maximum response from a class of allowable inputs. Drenick (1977) pointed out that the 
combination of probabilistic approach with worst-case analysis should be employed to make 
robust seismic resistant design. It was pointed out that the critical response based on Drenick’s 
model is conservative. To resolve this point, Shinozuka (1970) discussed the same critical 
excitation problem in frequency domain. He proved that if an envelope function of Fourier 
amplitude spectra can be specified, a near upper bound of the maximum response can be obtained. 
Takewaki (2005) treated the earthquake input energy as the objective function in a new critical 
excitation problem. It has been shown that the formulation of the earthquake input energy in the 
frequency domain is essential for solving the critical excitation problem and deriving a bound on 
the earthquake input energy for a class of ground motions. Therefore, the frequency domain is 
used frequently by researchers (Fujita et al. 2014). Westermo (1985) considered the input energy 
during time acceleration divided by mass as the objective function in a new critical excitation 
model. His solution is not necessarily complete and explicit because the response velocity is 
actually a function of the excitation to be obtained (Takewaki 2013). Abbas (2006), Moustafa 
(2009), Moustafa (2011) studied the problem of modeling earthquake ground motions as design 
input for multi degree of freedom inelastic structures. 

Finding the critical acceleration which maximizes internal forces (i.e., shear force, bending 
moment and so on) of important members, such as columns that their instability will lead to failure 
of the building, is an essential factor in structural design. The unexpected severe damage of 
infrastructure and buildings and the loss of lives during recent earthquakes as well as previous 
earthquakes have raised significant concern and questions on life safety and performance of 
engineering structures under possible future earthquakes (Moustafa 2012). 

In this paper, maximum internal shear force and moment for columns at the base of the 
structure (referred as internal shear force and base moment) are determined. For this purpose, 
limited information on strong ground motion is assumed to be available at the given site. The 
design earthquake acceleration is expressed as a Fourier series, with unknown amplitude and phase 
angle, modulated by an envelope function. This method was presented by Moustafa (2011). The 
critical acceleration is computed by solving an inverse dynamic problem, using nonlinear 
programming technique, based on the available information from recorded ground motion so that 
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the columns’ internal shear force at the base of the structure is maximized. Amongst computed 
critical accelerations (from each time step), one which produces maximum internal shear force is 
selected.  

As an example, a building which has been strengthened by a belt truss system is considered. 
This building is analyzed and designed using SAP 2000 program and allowable stress design 
(ASD 1989) method. In addition, since interior frames resist gravity loads while the exterior 
frames, strengthened by belt truss system, resist lateral loads and some part of the gravity loads, 
for critical excitation analysis only one of the exterior frames modeled as a two dimensional shear 
building under lateral loading is considered. Time history analysis is used and critical excitation 
based on constraints on ground motion at different times, between (0-T*), is computed so that the 
internal shear force is maximized. From the set of these critical accelerations one which produces 

the maximum internal shear force is selected. Newmark  -method with ( 1
2  and 1

6  ) is 

used for time history analysis.  
 
 

2. Critical excitation method for multi degree of freedom (MDOF) elastic structures 
 

Moustafa (2011) introduced a method in construction of critical acceleration. He showed that 
ground acceleration can be represented as the product of Fourier series and an envelope function 

( 1 2
0 2 1( ) (e e ),    t te t A        ) as follows 

1 2
0

1

(e e ) cos( )
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t t
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u (t) A R t    
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Where iR  and i  are the unknown amplitudes and phase angles, respectively, and 
  i fi = 1,2,...,N are frequencies present in the ground acceleration, selected to span the 

frequency range (for example 0.1  25  Hzto ). Moustafa (2011) expressed that it is also useful to 
select some of these frequencies to coincide with natural frequencies of the elastic structure, as 
well as placing relatively more points within the modal half-power bandwidth. In the envelope 
function, 2  and 1  are parameters that impact the observed transient trends in the recorded 
ground motion; and 0A  parameter is a scaling constant (Shinozuka and Sato 1967). 

In constructing critical seismic inputs, the envelope function is assumed to be completely 
specified and iR and i  parameters need to be computed. Furthermore, the information on energy 
E, peak ground acceleration (PGA) 1M , peak ground velocity (PGV) 2M , upper bound Fourier 
amplitude spectra (UBFS) ( )3M  , and lower bound Fourier amplitude spectra (LBFS) 

( )4M  are also assumed to be available. Abbas and Manohar (2002), Abbas (2006), proposed the 
following constraints 
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Here *T  is duration of the earthquake and  gU (w) is Fourier transform of the ground 
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acceleration gu (t) . In Eq. (2), the proposed constraint on earthquake energy is related to Arias 
intensity (Arias 1970). The UBFAS and the LBFAS constraints show the frequency content and 
amplitude of past recorded accelerograms for the design earthquake (Moustafa 2011). In fact, the 
problem is to find the unknown amplitudes and phase angles which maximize the objective 
function. To proceed further, it is needed to express the constraints in terms of Fourier coefficients 

iR  and i . Constraints listed in Eq. (1) can be expressed in terms of the unknown variables as 
follows 
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(3)

where 1i   . It is clear that all constraints listed in Eq. (3) are nonlinear in nature. At first, a set 

of Nr earthquake records denoted by  
1

( )
rN

gi i
v t


 for the site under consideration are considered and 

then values of E, PGA and PGV are computed in each case. The largest of these values, across the 
ensemble of records, are taken to be the respective estimates for 1E,M  and 2M .  In addition,  the 

considered records are further normalized such that the Arias intensity of each record is set to 

unity (

1
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 . Therefore, the bounds ( )3M   and 

( )4M   are obtained as (Moustafa 2011) 
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computed using the Fast Fourier Transform (FFT) as follows 
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Fig. 1 Flowchart for deriving the maximum absolute value of internal shear force in design of 
important structures based on critical earthquake loads 
 
 
The objective function maximizes the absolute value for internal shear force of the columns at 

the base of the structure. For purpose of demonstrating this procedure, a building strengthened by 
belt truss system is modeled as a two dimensional shear building subjected to lateral loading. 
Using time history analysis, critical excitation based on the constraints on ground motion at 
different times between (0-T*) is computed so that the internal shear force is maximized. After 
performing the analysis, from the set of computed critical accelerations, one which produces the 
maximum internal shear force is selected. The solution to this nonlinear constrained optimization 
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problem is tackled by using the sequential quadratic programming method (Arora 2012) and 
sequential quadratic optimization algorithm ‘fmincon’ of the Matlab optimization toolbox 
(Caleman et al. 1999). In the numerical calculations, alternative initial starting solutions, within 
the feasible region, were examined and were found to yield the same optimal solution. This was 
done for checking the local/global optimization (Takewaki et al. 2013). In this method, the 
following convergence criteria proposed by Moustafa (2011) were adopted 

1 1 , , 1 2;            j j i j i jf f y y       (6)

Here jf  is the objective function at jth iteration, ,i jy  is the ith optimization variable at jth 
iteration and 1 2,  are tolerance values to be specified. Absolute value of internal shear force is 
estimated using the Newmark β-method which is built as a subroutine inside the optimization 
program. Details of the procedure involved in computation of the critical earthquake are shown in 
Fig. 1. 

It must be noted that the objective function can be defined as follows 

1 1j jf k u   (7)

where 1k and 1 ju are respectively the stiffness and displacement of the first storey at jth iteration,. 
Eq. (7) shows that to maximize internal shear force at the base of the structure, it is necessary to 
find an acceleration which maximizes the relative displacement of the first storey.  
 
 
3. Numerical example 

 
A set of 14 earthquake ground motions is used to quantify the constraint bounds for 

, , ( )1 2 3E,M M M  and ( )4M  [Consortium of Organizations for Strong Motion Observation 
Systems COSMOS (2009)]. Table 1 provides information on these records. It should be 
emphasized that the selection of past records is primarily based on local soil conditions. Any new 
record that brings in changes to the value of constraints will automatically alter the critical 
response (Moustafa 2011). Differences in characteristics of recorded ground motions can lead to 
substantial differences in the structural response. According to Chandler’s 1991 classification, 
accelerograms are divided into three sets based on their (PGA/PGV) ratios. Records with 
PGA/PGV<0.8 g/(m/sec) are classified in low PGA/PGV range, whereas those with PGA/PGV 
>1.2 g/(m/sec) are classified as having high (PGA/PGV) ratios. Records with (PGA/PGV) between 
0.8 and 1.2 g/(m/sec) are classified as the intermediate (PGA/PGV) range (Chandler et al. 1991).  

In order, to provide a consistent approach, the classification noted above was used in this paper 
and three different (PGA/PGV) ratios from each category were incorporated. 

The (PGA/PGV) ratios from 14 different earthquakes adopted in this paper are given in Table 
1.The Fourier amplitude spectra for normalized acceleration (having unit Arias intensity) listed in 
Table 1, are computed and modified by SeismoSignal program. Based on these results, the upper 
and lower Fourier amplitude spectra is plotted in Fig. 2. In addition, four constraint scenarios that 
were considered in deriving the optimal earthquake inputs are listed in Table 2.  

As an example, a twenty storey shear building (see Fig. 3) strengthened by a single belt truss 
system located in storey 18 is considered. A few studies exist which present optimum location of 
belt truss system under earthquake and wind loading to minimize the roof displacement (Raj Kiran 
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Fig. 2 Upper and lower bound of Fourier amplitude spectra for normalized acceleration 

 
 

Nanduri et al. 2013, Herath et al. 2009). Also, there are a few literatures which present the optimum 
location of belt truss system subjected to static loading (Jahanshahi and Rahgozar 2013, Rahgozar 
and Sharifi 2009). In these mentioned papers, the optimum location of belt truss system for 
earthquake loading is variable depending on the stiffness of building and the earthquake loading 
between 0.5 to 1.0 times of building’s height. In addition, in the mentioned literature, the optimum 
location of belt truss system subjected to static loading is variable between 0.4 to 0.7 times of 
building’s height too. In this paper, the mentioned building is subjected to accelerations listed in 
Table 1 and the belt truss system is placed at each storey from bottom to the top storey. Then for 
each earthquake, the position of belt truss which minimizes the roof displacement is determined. 
For this purpose, the belt truss system is placed in a specific storey and the building is analyzed by 
time history analysis (Newmark-β method) subjected to the specific earthquake. From this 
analysis, the maximum roof displacement is determined. Then this process is repeated for other 
remained stories and finally amongst the maximum roof displacement, one of them which has the 
minimum roof displacement is selected as an optimum location for belt truss system. The optimum 
location of belt truss is between storey17 to storey 19 for nearly all listed earthquake in Table 1. 
For example, in Northridge earthquake, the optimum location of belt truss is storey 17 for S16W 
component and storey 19 for S74E component. This is valid for Mammoth Lakes earthquake too. 
Also, for strong ground motion listed in Table 1 such as Loma Prieta, Westmorland the storey 18 
is the optimum location of belt truss system. Therefore, the storey 18 is selected as an optimum 
location for belt truss system to minimize the roof displacement.  

Dimensions of exterior and interior columns of the building are shown in Fig. 3. All members 
of the belt truss system are the same and have cross sectional area of 0.0040 (m2). Also, IPE 330 is 
used for all beam sections. Young’s modulus and specific weight of the material are 

10 219.906 10 ( / m )N  and 376977.1 ( / m )N , respectively. The stiffness and mass matrices are 
formed and the damping matrix is computed such that the damping ratio for all modes would be 
0.05. For this structure, the range of natural frequencies is from 2.12 to 138.16 (rad/sec). 
Fundamental natural period of the structure is 0.046 (sec) which renders the maximum t  to be 
0.0251 (sec) in order to ensure convergence and stability of the numerical time integration. In this 
example, the value of t  is considered to be 0.005 (sec). In computation of the mass matrix, in 
addition to mass of the members, dead and live loads are considered to be 15444.45 (N/m) and 
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588.36 (N/m) respectively for all stories except for the roof. For roof, dead load is 12502.65 (N/m) 
and live load is 441.27 (N/m). The lumped mass, stiffness matrices and the force vector are 
presented in the appendix section.  

Values of 2 and 1  are 0.50 and 0.13 respectively. This choice represents the earthquake 
duration (T*) to be about 30 second. To select the number of frequency terms ( fN ), a parametric 
study was carried out and 90fN  was found to be proper in order to obtain a better convergence 
for the critical acceleration and objective function (see Fig. 4). 

Stiffness value of the belt truss system is computed as follows 

2

1

cos
bN

belt
n

AE
k

L




  (8)

where A, E, L, Nb and   represent cross section, modulus of elasticity, length, number of members 
in the belt truss and angle of members for the belt truss as measured with respect to the horizontal 
line. It should be noted that only the stiffens of tensile members are computed. Also, since the belt 
truss system and storey are in parallel, stiffness of the belt truss is added to stiffness of the storey 
where belt truss is located at. For various types of belts used, the stiffness is taken from data given 
by Stafford Smith and Coull (1991). 

 
 

Table 1 Information on past ground-motion records for firm soil site 

Earthquake 
date 

Magnitude Epic. Comp. PGA PGV PGD Energy* PGA/PGV Site 

   
Dist.×103 

(m) 
(m/s2) (m/s) (m) (m / s1.5) (g sec / m)  

Mammoth 
Lakes 

6.2 1.5 90 4.02 0.22 0.05 3.73 1.86 
Convict 
Greek 

05.25.1980   180 3.92 0.23 0.05 4.02 1.74  

Loma Prieta 7.0 9.7 90 3.91 0.31 0.07 3.85 1.29 Capitola 

10.18.1989   0 4.63 0.36 0.11 5.23 1.31  
San 

Fernando 
6.6 27.6 N21E 3.09 0.17 0.04 2.08 1.85 

Castaic Old 
Ridge 

02.09.1971   N69W 2.65 0.28 0.10 2.48 0.96  

Parkfield 5.0 9.1 90 2.89 0.10 0.01 1.33 2.95 
Parkfield 

fault 
12.20.1994   360 3.80 0.09 0.007 1.74 4.3  

Northridge 6.7 5.9 S16W 3.81 0.60 0.12 4.19 0.65 Canoga Park

01.17.1994   S74E 3.43 0.34 0.09 3.52 1.03  

Westmorland 5.0 6.6 180 4.66 0.36 0.11 3.44 1.32 
Westmorland 

fire 
04.26.1981   90 3.77 0.44 0.13 3.30 0.87  

Imperial 
Valley 

6.6 15.4 S45W 2.68 0.22 0.10 2.31 1.24 
Calexico fire

 
10.15.1979   N45W 1.98 0.19 0.15 2.16 1.06  
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*E=

1

2
2

0

( )dtgv t
 
 
 
  (similar to Arias 1970) 

 
Table 2 Nomenclature of constraint scenarios considered 

Case Constraint imposed 

1 Energy and PGA 

2 Energy, PGA and PGV 

3 Energy, PGA and UBFAS 

4 Energy, PGA, UBFAS and LBFAS 

 

 

 

Fig. 3 The column sizes 
Fig. 4 Convergence of the objective function in 
terms of frequency terms Nf , (a) Case 1; (b) Case 4

 
 

The internal shear force is distributed between columns based on their stiffness. Therefore, for 
different cases, maximum absolute value of the internal shear force and maximum absolute value 
of the internal moment at their respective exterior column; along with the properties of computed 
critical excitation such as PGA, PGV, Arias intensity and PGA/PGV ratio are listed in Table 3. 
Furthermore, acceleration and velocity time histories as well as the Fourier spectra for various 
cases are shown in Fig. 5. Since, for cases one and two, there are no constraints on lower and 
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upper bounds of the Fourier spectra, value of the Fourier spectra increases (see Fig. 5) till a 
frequency that coincides with natural elastic frequency of the structure is reached, thereby 
producing resonance.  

Duration of critical accelerations for all cases based on Trifunac and Brady (1975) are shown in 
Fig. 5. From this figure, the duration for all cases is more than 12.86 (sec), (13.04, 13.38, 13.1 and 
12.86 sec for all cases). Since the duration for strong ground motion, based on critical acceleration, 
are sufficiently large for all cases, these critical accelerations can be used for time history analysis 
of this structure based on UBC 97. It suggests that when appropriate recorded ground-motion time-
history is not available, simulated ground-motion time-history can be used. In addition, if a group 
of critical excitations are computed for a specific structure, the computed accelerations can be used 
to obtain the response spectrum for the site at which the structure is located. Furthermore, this 
response spectrum can be used in design of that structure. 
 
 
Table 3 Information on absolute value of internal shear force and absolute value of internal moment for one 
of the exterior columns under critical excitation for different cases 

Case Arias intensity PGA PGV Shear force ×103 Base moment 
×103 PGA/PGV 

 (m/sec1.5) (m/sec2) (m/sec) (N) (N. m) (g sec/m) 

1 5.23 4.1 3.4 433.52 233.09 0.123 

2 4.57 3.94 0.60 338.21 181.80 0.670 

3 3.66 3.98 0.38 227.11 122.08 1.068 

4 3.31 3.63 0.40 202 108.55 0.9254 
 

Fig. 5 Acceleration and velocity time histories, and Fourier spectra of critical excitation for different cases
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Fig. 5 Continued 
 
 

4. Discussion 
 

Based on numerical results, the following conclusions are reached: 
1- The frequency content and Fourier amplitude of the critical acceleration are strongly 

dependent on the constraints imposed. If available information on earthquake data is limited to the 
total energy and PGA, the output is narrow band (highly resonant) and the internal shear force is 

885



 
 
 
 
 
 

Reza Kamgar and Reza Rahgozar 

conservative (see Fig. 5 and Table 3). Furthermore, for cases 1 and 2, as shown in Fig. 5, largest 
Fourier amplitude is at a frequency close to natural frequency of the elastic structure when the belt 
truss system is located at storey 18 ( 0.337( )f Hz ) while the Fourier amplitudes at other 
frequencies are low. In addition, by applying additional constraints on the Fourier amplitude 
spectra in cases 3 and 4, the Fourier amplitude of the critical acceleration will be distributed across 
other frequencies. The critical acceleration possesses a dominant frequency that is close to the 
average dominant frequency observed in past records (see Fig. 5). This result matches well with 
earlier work reported by Moustafa (2011). 

2- The absolute value of internal shear force for case 4 is 202×103 (N) which is substantially 
smaller than 433.52×103 (N) for case 1 (Table 3). The constraints on UBFAS and LBFAS were 
found to be significant in producing realistic critical inputs. Also, validity of the desired 
acceleration for case 4 can be examined by comparing the Fourier amplitude spectra and frequency 
content of the design acceleration (Fig. 5) with the Fourier amplitude spectra of recorded 
earthquakes. 

3- Constraint scenarios 1 and 2 lead to pulse like ground motion which has been observed 
during some recent earthquakes (e.g., 1971 San Fernando and 1985 Mexico). These earthquakes 
are observable in near-field ground motion with directivity focusing (forward- and backward 
directivity) which have fault-parallel and fault-normal components (Kalkan and Kunnath 2006, He 
and Agrawal 2008, Moustafa 2011). Realism of optimal earthquake loads and hence the optimum 
internal shear force can also be examined by comparing maximum response from optimal 
accelerations with those from past recorded ground motions (see Table 3). Thus, maximum 
internal shear force of the structure based on design earthquake is about 2.78 (case 1) and 1.29 
(case 4) times the San Fernando earthquake. 

4- As shown in Table 3, the PGA/PGV ratio of the critical earthquake in cases 1-4 are 0.123, 
0.670, 1.068 and 0.9254. These values place critical accelerations at low Chandler’s classification, 
low Chandler’s classification, intermediate Chandler’s classification and intermediate Chandler’s 
classification, respectively. As shown in this table, for case 1 that produces the maximum internal 
shear force and a pulse like ground motion, the PGA/PGV ratio is very low and places in low 
Chandler’s classification. Nevertheless, for cases 3 and 4 with the highest PGA/PGV ratio, the 
minimum internal shear force is produced. Since the highest value of PGV from past ground 
motion is selected as the constraint value, the denominator of PGA/PGV is increased leading to 
decrease in value of PGA/PGV. This result is also valid for internal moments. 

5- As shown in Table 3 and Fig. 5, frequency content and Fourier amplitude of the design 
earthquake are more important factors than PGA and PGV. In cases (1) and (2), Fourier amplitude 
of the critical earthquake is concentrated at a frequency close to natural frequency of the elastic 
structure and leads to pulse like ground motion. 

6- As mentioned earlier, the duration of computed critical excitation is large enough, hence, a 
group of critical excitations can be used to build the response spectrum in design of special 
structures. 

In fact, the critical excitation method is a robustness tool that can be used to produce the 
resonant or critical acceleration in designing important structures. If there is no recorded 
acceleration for a given site, this method can be used to construct a group of acceleration in 
designing of important building which are going to be design in this region. In addition, the critical 
excitation method produces the critical excitation that can only be used for the structures that has 
been used in the formulation and accelerations have produced for it based on the properties such as 
mass, damping and stiffness matrices. These accelerations can be utilized approximately for a 
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similar building with analogous first natural frequency with the analyzed building by critical 
excitation method. As a disadvantage of this method, the critical excitation method is time 
consuming and it is better to be used for important structures with high safety conditions under 
severe earthquake.  
 
 
5. Conclusions 

 
In this paper, critical excitation method was used to find maximum absolute value of internal 

shear force and moment, required in design of important structures which must remain without 
damage or with a little damage after a severe earthquake. Critical acceleration is estimated on the 
basis of available information using inverse dynamic analysis and nonlinear optimization methods. 
To demonstrate the process, a building which was strengthened by a system of belt truss was 
considered and modeled as a two dimensional shear building. The belt truss system is placed at 
18th storey and using time history analysis, the critical excitation based on the constraints on 
ground motion at different times between (0-T*) is computed so that the internal shear force is 
maximized. From the set of computed critical accelerations, one of them which produces the 
maximum internal shear force is selected. It is found that if available information is limited to the 
energy and PGA (case 1) or energy, PGA and PGV (case 2), the resulting earthquake is highly 
resonant and produces conservative internal shear force. Since in cases (3) and (4), the amplitude 
Fourier spectra is constrained, the resulting earthquakes have low value for internal shear force. 
These two scenarios (cases 3 and 4) can be used for less important structures or for regions that the 
resonant earthquake cannot occur. The proposed method is simple and efficient in determining the 
maximum internal shear force for design of important structures. In addition, since these types of 
acceleration have important effect on important structures, one can use a group of them to build a 
response spectrum to be used for design of important buildings. The numerical example shows the 
efficiency of the proposed method.  
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Appendix: Mass, stiffness matrices and the force vector 
 

The lumped mass, stiffness matrices and the force vector for mentioned building in the 
numerical example are as follows: 

 
a) Lumped mass matrix: 
 
[M]=[M]20×20 
Mi,j=0    If    i≠j 
M1,1=M2,2=M3,3=5.1992 * 104 (N sec2/m); M4,4=5.1914 * 104 (N sec2/m) 
M5,5=M6,6=M7,7=M8,8=5.1837 * 104 (N sec2/m); M9,9=5.1691 * 104 (N sec2/m) 
M10,10=5.1480 * 104 (N sec2/m); 
M11,11=M12,12=M13,13=5.1412 * 104 (N sec2/m); 
M14,14=5.1378 * 104 (N sec2/m); 
M15,15=M16,16=M17,17=M19,19=5.1343 * 104 (N sec2/m); 
M18,18=5.3426 * 104 (N sec2/m); M20,20=4.1459 * 104(N sec2/m) 
 
b) Stiffness matrix: 
 
[K]=[K]20×20 
Ki,j=Ki,j 
K1,1=K2,2=K3,3=1.1460 * 108 (N/m); 
K4,4=1.074 * 108 (N/m); K5,5=K6,6=K7,7=K8,8=1.002 * 108 (N/m); 
K9,9=0.7444 * 108 (N/m); K10,10=0.4584 * 108 (N/m); 
K11,11=K12,12=K13,13=0.4299 * 108 (N/m); 
K14,14=0.4157 * 108 (N/m); 
K15,15=K16,16=K19,19=0.4015 *108 (N/m); 
K17,17=K18,18=5.0958 * 108 (N/m); 
K20,20=0.2007 * 108 (N/m); 
K1,2=K2,3=K3,4=-0.5730 * 108 (N/m); 
K4,5=K5,6=K6,7=K7,8=K8,9=-0.501 * 108 (N/m); 
K9,10=-0.2434 * 108 (N/m); 
K10,11=K11,12=K12,13=K13,14=-0.2150 * 108 (N/m); 
K14,15=K15,16=K16,17=K18,19=K19,20=-0.2007 * 108 (N/m); 
K17,18=-4.8950 * 108 (N/m); 
K1,3=K1,4=…=K1,20=0 (N/m); K2,4=K2,5=K2,20=0 (N/m); 
K3,5=K3,6=…=K3,20=0 (N/m); K4,6=K4,7=…=K4,20=0 (N/m); 
K5,7=K5,8=…=K5,20=0 (N/m); K6,8=K6,9=…=K6,20=0 (N/m); 
K7,9=K7,10=…=K7,20=0 (N/m); K8,10=K8,11=…=K8,20=0 (N/m); 
K9,11=K9,12=…=K9,20=0 (N/m); K10,12=K10,13=…=K10,20=0 (N/m); 
K11,13=K11,14=…=K11,20=0 (N/m); K12,14=K12,15=…=K12,20=0 (N/m); 
K13,15=K13,16=…=K13,20=0 (N/m); K14,16=K14,17=…=K14,20=0 (N/m); 
K15,17=K15,18=…=K15,20=0 (N/m); K16,18=K16,19=…=K16,20=0 (N/m); 
K17,19=K17,20=0 (N/m); K18,20=0 (N/m) 
 
c) Force vector: 
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The equation of motion for structure subjected to critical excitation is 

           1 gM x C x K x M u (t)       (A-1)

where  M ,  C and  K are the mass, damping and stiffness matrices, respectively;  x , 

 x and  x are the acceleration, velocity and displacement vectors of the structure respectively 

and  1 is a vector with each element equal to unity. gu (t)  shows the ground acceleration that is 

defined in Eq. (1). Therefore in Eq. (A-1),   1 gM u (t)  represents the force vector that applied 

to the structure in time t. 
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