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Abstract.  In this study, the coupled effects of magnetic field, stress and thermal field on gravity waves 

propagating in a liquid layer over a solid surface are discussed. Due to change in temperature, initial 

hydrostatic stress and magnetic field, the gravity-sound Rayleigh waves can propagate in the liquid-solid 

interface. Dispersion properties of waves are derived by using classical dynamical theory of thermoelasticity. 

The phase velocity of gravity waves influenced quite remarkably in the presence of initial stress parameter, 

magneto-thermoelastic coupling parameter in the half space. Numerical solutions are also discussed for 

gravity-Rayleigh waves. In the absence of temperature, stress and magnetic field, the obtained results are in 

agreement with classical results. 
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1. Introduction 
 

Gravity waves are vertical waves which are generated at the interface between two mediums 

which has buoyancy. The example of such interface is ocean-earth interface. The examples of 

gravity waves are tsunamis, wind-generated waves on the water surface and ocean tides. The 

gravity waves which occur on air-sea interface of sea are called surface waves and those gravity 

waves which develop within the body of the liquid are called internal waves. Due to change in 

temperature, the gravity-sound Rayleigh waves can propagate in the liquid-solid interface.  

Many papers on the subject of surface waves such as Rayleigh, Love waves, torsional waves 

have been published in many journals, due to drastic capabilities during earthquake and practical 

applications in the field of geophysical prospecting; unfortunately little literature is available on 

gravity-Rayleigh waves. This paper has been proposed to study the effect of temperature, magnetic 

field and initial stress on gravity waves in a liquid layer lying on the solid half-space and Rayleigh 

waves in the system. Sridharan et al. (2008) studied the effect of gravity waves and tides on 

mesospheric temperature inversion layers. Kumar and Kansal (2008) discussed Rayleigh waves in 

an isotropic generalized thermoelastic diffusive half-space subjected to rotation. Rehman and  
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Khan (2009) derived a formula for the speed of Rayleigh wave speed in transversely isotropic 

medium. Sharma and Walia (2007) investigated Rayleigh waves in piezothermoelastic half space 

subjected to rotation. Sharma et al. (2009) studied Rayleigh waves in thermoelastic solids under 

the effect of micropolarity, microstretch and relaxation times. Kumar and Partap (2011) discussed 

vibration analysis of wave motion in micropolar thermoviscoelastic plate. Sharma and Kaur (2010) 

investigated Rayleigh surface waves in rotating thermo-elastic solids with voids. Sethi and Gupta 

(2011) studied influence of gravity and couple-stress on Rayleigh waves. Abd-Alla et al. (2011) 

studied the effect of initial stress and gravity field on Rayleigh surface waves in magneto-

thermoelastic orthotropic medium. Singh and Bala (2007) studied Rayleigh surface wave at a 

stress free thermally insulated surface. Gupta and Gupta (2013) analyzed wave motion in an 

anisotropic initially stressed fiber reinforced thermoelastic media. Kakar (2014) analyzed the 

effect of gravity and nonhomogeneity on Rayleigh waves in higher-order elastic-viscoelastic half-

space. Kakar and Gupta (2014) investigated the existence of Love waves in an intermediate 

heterogeneous layer placed in between homogeneous and inhomogeneous half-spaces using 

Green’s function technique. 

In this work, we have investigated the coupled gravity-Rayleigh waves in a liquid layer lying 

on the gravitating elastic, solid half-space. The effect of magnetic field, thermal field and initial 

hydrostatic stress on gravity waves in a compressible liquid layer over an incompressible solid is 

examined at a particular value of Rayleigh wave velocity at different coupling coefficients of 

temperature and magnetic field. Biot’s equations are modified in context of classical dynamical 

theory of thermoelasticity with uniform magnetic field. The frequency equation is approximated 

and analyzed numerically to study the phase velocity of gravity waves with the help of MATLAB 

software (Version 7.6.0.324 (R2008a), Trademark of Mathworks. Inc. U.S. Patent).  

 

 

2. Governing equations 
 
The governing equations of magneto-thermoelastic solid with hydrostatic initial stress are 

a. The stress-strain-temperature relation 

( ) e 2 ( ) ,ij ij ij PP ij ij ij

T

s P e T T
k


                                           (1) 

where, sij
 
are the components of stress tensor, P is initial pressure, δij is the Kronecker delta, ωij are 

the components of small rotation tensor,  ,  are the counterparts of Lame parameters, eij are the 

components of the strain tensor, α is the volume coefficient of thermal expansion, kT is the 

isothermal compressibility, 
0T T  is small temperature increment,   is the absolute 

temperature of the  solid half space, 
0T  is the reference uniform temperature of the body chosen 

such that 1
0


T

T
 

b. The displacement-strain relation 

. ,i

1
(u u ),

2
ij i j je                                                              (2) 
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where, ui.j are the components of the displacement vector  

c. The small rotation-displacement relation 

. ,i

1
(u u ),

2
ij i j j                                                            (3) 

where, ui.j are the components of the displacement vector  

d. The modified Fourier’s law 

* ,i i

i

T
h a h K

x


 


                                                         (4) 

where, K is the thermal conductivity, , * 0a a   are the thermal relaxation times 

e. The heat conduction equation 

2 2 2 2 2 3 3

0 02 2 2 2 2
γp ij

T T T T u v u v
K c T

x y t t x t y t x t y t
   

             
            

                 
        (5) 

where, K is the thermal conductivity, cp
 
is specific heat per unit mass at constant strain, τ0 is the 

first relaxation time, τ is second relaxation time, δij is the Kronecker delta, ρ
 
is density and T is the 

incremental change of temperature from the initial state of the solid half space. Moreover the use 

of the relaxation times τ, τ0 and a parameter δij marks the aforementioned fundamental equations 

possible for the three different theories: 

(1) Classical Dynamical theory: 0 0, 0.ij      

(2) Lord and Shulman’s theory: 00, 0,  1.ij      

(3) Green and Lindsay’s theory: 0 0,  0.ij      

f. Maxwell’s equations 

,0, 0, e e
t t

 


 
 

    
 

                              (6) 

where,  , B ,
e and

e are electric field, magnetic field, permeability and permittivity of the solid 

half space. 

g. The components of electric and magnetic field 

  00,0, h                                                      (7) 

where, h  is the perturbed magnetic field over 0 . 

h. Maxwell stress components 

 ij e i i j j k k ijT H e H e H e       (where i, j, k =1, 2,3)                    (8) 

where, Hi, Hj, Hk are the components of primary magnetic field, ei, ej, ek are the stress components 

acting along x-axis, y-axis, z-axis respectively and δij is the Kronecker delta. 

Using Eq. (8), we get 

113



 

 

 

 

 

 

Rajneesh Kakar and Shikha Kakar 

2
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T H
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Fig. 1 Geometry of ocean-earth system 

 

 

The dynamical equations of motion for the propagation of wave have been derived by Biot 

(1965) and in two dimensions these are given by 

2

2

xyxx
x

ss u
P B

x y y t




  
   

   
                                            (10) 

2

2

xy yy

y

s s v
P B

x y x t




   
   

   
                                           (11) 

where, sxx, syy and sxy are incremental thermal stress components. The first two are principal stress 

components along x- and y-axes, respectively and last one is shear stress component in the x-y 

plane, ρ is the density of the medium and u, v are the displacement components along x and y 

directions respectively, B is body force and its components along x and y axis are Bx 
and By 

respectively. ω is the rotational component i.e., 
1

2

v u

x y


  
  

  
 and yy xxP s s  . 

The body forces along x and y axis under constant primary magnetic field H0 parallel to z-axis 

are given by 

2 2
2

0 2x e

u v
B H

x x y


  
  

   
                                               (12) 

2 2
2

0 2y e

u v
B H

x y x


  
  

   
                                               (13) 

where, μe 
is permittivity of the medium. 

 y = -H 

  Ocean 
0  

x y = 0 

y 

Earth 
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Following Biot (1965), the stress-strain relations with incremental isotropy are 

( 2 ) ( ) 2xx xx yy xxs P e P e e
x

     
 

        
 

                         (14) 

( 2 )yy xx yys e e
x

    
 

     
 

                                        (15) 

2xy xys e                                                                (16) 

where 

1
, ,

2
xx yy xy

u v v u
e e e

x x x y

    
    
    

                                (17) 

where, exx and eyy are the principle strain components and exy is the shear strain component, 

γ=(3λ+2μ)αt, αt is the coefficient of linear expansion of the material, λ μ are Lame’s constants, T is 

the incremental change of temperature from the initial state and τ is second relaxation time.  
 

 

3. Formulation of the problem 
 

Let us consider gravity and Rayleigh waves in a compressible liquid layer of uniform thickness 

H over a solid half-space (Fig. 1). We assume the following assumptions; 

a. Both media (compressible liquid layer and solid soil layer) under consideration are 

homogeneous in nature and gravity acts on them.  
b. In liquid layer pressure is proportional to the degree of compression and in the solid half 

space stress and deformation are related through Hooke’s law.  
c. Displacements in the compressible liquid are small as compared to the compressible liquid 

layer thickness and characteristic wavelengths. 
d. Deformations are small in the compressible liquid. 
The wave is propagating along the direction of x-axis, y-axis is taken vertically downward and 

y=0 is the surface of the half space. The half space is under an initial stress P, magnetic field H0 
and initial temperature T0. 

 

 

4. Solution of the problem  
 
4.1 For upper liquid surface 
 

The wave equation for liquid surface satisfying velocity potential 1  is given by (Ewing et al. 

1957) 

2
2 21 1
1 12

g
t t

 
 

 
  

 
                                                    (18) 

115



 

 

 

 

 

 

Rajneesh Kakar and Shikha Kakar 

where, 2 1
1

1

;





 λ1is Lame’s constant and ρ1 
is the density of the liquid. g

 
is acceleration due to 

gravity acting on the liquid. 

Eq. (1) can be solved by taking plane harmonic waves travelling along x-axis as 

( t kx)

1( , , ) ( )eix y t A y                                                  (19) 

From Eq. (18) and Eq. (19) 

2
2 2 2 21 1
1 1 12

( ) 0
d A dA

g k A
dy dy

                                          (20) 

The solution of Eq. (20) is 

 
2
12

1( )

gy

i y i yA y e Ae Be
  

 
 
                                              (21) 

where, 
1

1
2 2

2 2

4

14

g
k k



 
   
 

 and 
1

1

k



 . 

From Eq. (19) and Eq. (21) 

 
2
1

( )
2

1

gy
i t kx

i y i ye Ae Be

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  
    
                                           (22) 

The velocity components in the liquid along x-axis and y-axis are given by 

 
2
1

( )
21

gy
i t kx

i y i yike Ae Be
x


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  
    
     


 


                                  (23) 
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1 12 2
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i y i ygy gy
ike i Ae i Be

y


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 
 
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    
     

    
       

     
                (24) 

 
4.2 For lower half space 
 
From Eq. (12), Eq. (13), Eq. (14), Eq. (15), Eq. (16) and Eq. (17), we get 

2 2 2 2 2 2 2
22 2 2 2 2 2

2 2 2 2 2 0 22 2 2 2
( 2 ) ( ) e

u v u u v u T T
H

x x y y x x y t x t x
        

          
           

               

(25) 

2 2 2 2 2 2 2
22 2 2 2 2 2

2 2 2 2 0 22 2 2 2
( 2 ) ( ) e

v u v u v v T T
H

y x y x x y y t y t y
        

          
           

            
   (26) 

where, λ2, μ2 are Lame’s constants for the lower solid half space and ρ2 is its density. 
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From Eq. (25) and (26) by using classical dynamical theory we get 

2 2 2 2 2 2
22 2 2 2 2 2

2 2 2 2 2 0 22 2 2 2
( 2 ) ( ) ( )e

u v u u v u
H T

x x y y x x y t x
       
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     (27) 

2 2 2 2 2 2
22 2 2 2 2 2

2 2 2 2 0 22 2 2 2
( 2 ) ( ) ( )e

v u v u v v
H T

y x y x x y y t y
       
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        

         
      (28) 

Eq. (27) and Eq. (28) can be solved by choosing potential functions 
2  and

2  as 

2 2
2u

x y

  
 
 

 and 2 2
2v

x y

  
 
 

                                      (29) 

From Eq. (27), (28) and (29), we get 

2
2 2 2

2 2 2 2

2 2 0 2 2 0( 2 ) ( 2 )e e

T

H t H

  


     


  

    
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2
2 2 2

2 2

2 t

 





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
                                                   (31) 

where, 

2 2
2

2 2x y

 
  

 
  

By using classical dynamical theory: τ=τ0=0, δij=0 Eq. (5) reduces to 

2 2 2
2 0=  + γp

u vT
K T c T

t t x y


   
  

    
                                  (32) 

Introduce Eq. (29) in Eq. (32), we get 

22 20 0
p

p

c TT
T

K t c t

   
    

 
                                         (33) 

From Eq. (30) and Eq. (32), eliminating T, we get 

2
22 2 2 2

22 2

1

1
0

pc

C t K t t

 
 

      
          

     
                      (34) 

where, 

2
2 2 2 0
1 2

2 2 2 0

( 2 )
,

( 2 )

e

e

H
C

H

   


   

 
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 
 and 0T

K


    

From Eq. (31) and Eq. (32), eliminating T, we get 

2
2

22 2

2

1
0

C t


 
   
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                                                (35) 
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where, 2 2
2

2

C



  

Eq. (34) and Eq. (35) can further be solved by plane harmonic waves travelling along x-axis as 

( t kx)

2 2( , , ) ( )eix y t A y                                                 (36) 

( t kx)

2 2( , , ) ( )eix y t B y                                                 (37) 

where, k is wave number and   is frequency of oscillation of the harmonic wave. 

From Eq. (34) and Eq. (36), we get 

2 2
2 2

1 2 22 2
( ) 0A y

y y
 

   
    
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y


 
  

 
                                                (39) 

where, 
2 2 2 2 2 2

1 2,k k        and 
2 2 2k   .  

Here 
2

2

2

2C


   and α

2
, β

2
 are the roots of following biquadratic equation. 

4 2 2 2[ q(1 )] q 0                                               (40) 

where, 2 2    and the roots α
2
, β

2
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2

2
q 1
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q




 
  
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 and 

2 2

2
1

qm

q
 



 
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                             (41) 

Here, 
22

2

1

,
pi c

q
C K

 



  and

2

0

2

2 2 2 0( 2 )e

T
m

K H



   


 
 are magneto-thermoelastic 

coupling parameters. 

The requirement that the stresses and hence the functions ϕ2 and ψ2 vanish as (x
2
+y

2
)→∞ leads 

to the following solutions of Eq. (38) and Eq. (40)  

1 2

2( ) e ey yD E
A y

i i

 

 

                                                (42) 

2 ( ) e yF
B y

i





                                                      (43) 

Introducing Eq. (42) and Eq. (43) in Eq. (36) and Eq. (37), we get 

1 2 ( )

2 ( , , ) e e ey y i t kxD E
x y t

i i

  
 

   
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                                 (44) 
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( )

2 ( , , ) e ey i t kxF
x y t

i

 


  
  
 

                                              (45) 

From Eq. (29), Eq. (44) and Eq. (15) we get 

 1 2 ( )

2

1
( e e ) e ey y y i t kxu ik D E F

i

   


                                    (46) 

 1 2 ( )

2 1 2

1
e e e ey yy i t kxv ikF D E

i

   


                                  (47) 

From Eq. (40) and Eq. (47), we get the velocity components in lower half space, given by 

 1 2 ( )2 ( e e ) e ey y y i t kxu
ik D E F

t

      
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
                             (48) 

 1 2 ( )2
1 2e e e ey y y i t kxv
D E ikF

t

       
   


                             (49) 

From Eq. (30) 

2 2
22 2 0 2

2 2

1

( 2 ) 1eHT
C t

   




   
   

 
                                  (50) 

Eq. (44) and Eq. (50), we get 

1 2

2
2 2 2 2 ( )2 2 0

2

( 2 ) 1
( ) e ( ) e ey y i t kxeHT D E

k

    
   



   
               (51) 

 

 

5. Boundary conditions and dispersion equation 
 

The initial conditions are supplemented by the following boundary conditions. Since the 

vertical component together with the normal and tangential stresses is continuous at the surface 

y=0 also pressure is zero at the free surface, therefore conditions are 

i. 0P   at Hy  , 

ii. 2 2u v

t t

 


 
 at 0y , 

iii. 2
12 0x

v
f s P

x


   


 at 0y , 

iv. yf P    , where,
2

22 2 2 0( )y Y

u
f s P g v

x
 


   

 022
2

22 )( 



 yvgρ

x

u
Ps  

v. 0
T

hT
y


 


at 0y . 

(52) 
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where xf  and yf are incremental boundary forces per unit initial area and h is the ratio of heat 

transfer coefficient and thermal conductivity. 

By considering the deformation of the free surface and representing the vertical displacement 

by v1, the first boundary condition of Eq. (52) gives 

1
1 0gv

t


 


                                                          (53) 

Using Eq. (23), (24) and 1
1i v

y








 at y = −H, Eq. (53) becomes 

2 2

2 2

1 1

0
2 2

gy gy
A i g B i g   

 

   
          
   

                        (54) 

Using Eq. (24) and Eq. (40), the second boundary condition of Eq. (52) becomes 

 1 22 2

1 1

0
2 2

gy gy
A i g B i g D E F ik   

 

   
          
   

                 (55) 

Using Eqs. (14), (15), (16), (17), (29) and Eq. (47), the third boundary condition of Eq. (52) 

becomes 

2
2

1 2(1 S) (1 S) (1 S) 0
2

D ik E ik F k


 
 

       
 

                       (56) 

where, 

22

P
S


  is dimensionless initial stress parameter. 

The tangential stress on the side of the liquid is given by (Ewing et al. 1957) 

011
1

1 )( 











 yvρ

t

φ
ρP                                               (57) 

i.e. 

2 2
( t )

12 2

1 1

0
2 2

i kxg g g g
P A i B i e

i i

 
  

     
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           
    

             (58) 

Using Eqs. (14), (15), (16) and Eq. (47), the fourth boundary condition of Eq. (52) becomes 

2 2 2 2 2

1
1 1 22 2 2

1 1 2

2 2 2
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               

      
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 (59) 
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Using Eq. (51), the fifth boundary condition of Eq. (52) becomes 

2 2 2 2

1 2( )( ) ( )( ) 0h D h E                                         (60) 

Now eliminating A, B, D, E and F from Eq. (54), Eq. (55), Eq. (56), Eq. (59) and Eq. (60), we 

get fifth order determinant 

0ija    (i,j =1,2,3,4,5)                                                 (61) 

where 
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 (62) 

Expanding Eq. (62), we get 
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(63) 

where, 
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For naturally occurring waves 1
2

1


αk

g
, therefore Eq. (63) reduces to 
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With the help of Eq. (65) and Eq. (66), Eq. (64) reduces to 
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           (67) 

From Eq. (40), we get 

2 2 2 q(1 )m       and 
2 2 2 q                                   (68) 

From Eq. (65) and Eq. (68), we get 
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where, 
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,
p
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



  is reduced frequency. 

Introducing Eq. (69) into Eq. (67), expanding the quantities β1 and β2 in the series of ϖ and 

neglecting the terms of the order 
1

2 , we get expression for complex frequency equation of 

gravity-Rayleigh waves, the real part are 
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6. Numerical analysis 
 

We have taken magnetic field of earth equal to 50 µT and 1

2

1327

5337
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

 

i.e., ρ1 density of sea 

water and ρ2 density of earth, 
2

2

2

p

C
v

C
 =0.906 at 0.5 kH, various curves are plotted to study the 
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variation of gravity waves in the system. The curves indicate that as the temperature increases, the 

phase velocity of gravity wave also increases in non-linear form. On the increase of magnetic field 

the phase velocity increases provided the initial stress is not changed. 

Fig. 2: Variation of G (the phase velocity of gravity waves) with S (initial stress parameter) for 

different values of N and vp=.906 (phase velocity) of Rayleigh waves. 

Fig. 3: Variation of 
2

gK
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

 
  
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 (the phase velocity of gravity waves) with 
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stress parameter) for different values of 
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Fig. 4: Variation of 
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 (the phase velocity of gravity waves) with 
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Fig. 4 

 
 

7. Conclusions  
 

It can be concluded that the magnetic field, temperature as well as initial compressive 

hydrostatic stress have significant influence on the phase velocity of gravity waves as well as 

Rayleigh waves in the system. This study also shows that the magnitude of phase velocity 

increases as the temperature increases. The gravity wave phase velocity is higher for higher 

magnetic stress parameter.  
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