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Abstract.  Vertical earthquake ground motion may magnify vertical dynamic responses of structures, and 

thus cause serious damage to bridges. As main support structures, piers and bearings play an important role 

in vertical seismic response analysis of girder bridges. In this study, the pier and bearing are simplified as a 

vertical series spring system without mass. Then, based on the assumption of small displacement, the 

equation of motion governing the simply-supported straight girder bridge under vertical ground motion is 

established including effects of vertical deformation of support structures. Considering boundary conditions, 

the differential quadrature method (DQM) is applied to discretize the above equation of motion into a 

MDOF (multi-degree-of-freedom) system. Then seismic responses of this MDOF system are calculated by a 

step-by-step integration method. Effects of support structures on vertical dynamic responses of girder 

bridges are studied under different vertical strong earthquake motions. Results indicate that support 

structures may remarkably increase or decrease vertical seismic responses of girder bridges. So it is of great 

importance to consider effects of support structures in structural seismic design of girder bridges in near-

fault region. Finally, optimization of support structures to resist vertical strong earthquake motions is 

discussed. 
 

Keywords:  vertical seismic response; girder bridge; support structure; pier; bearing; earthquake 
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1. Introduction 
 

In the past several decades, or even since the origin of structural seismic design, the vertical 

component of earthquake ground motion has almost always been neglected in design and analysis 

of aseismic structures, though the earthquake ground motion is actually three-dimensional. This 

routine is mainly driven by the common perception, established based on far-fault earthquake 

recordings, that vertical earthquake ground motion is too small to amplify vertical responses of 

structures, and that structures have sufficient overstrength against the vertical ground motion 
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because they have already been designed for the gravitational acceleration. However, in recent 

years, more and more near-fault recordings with prominent vertical ground motions were acquired, 

for example, a remarkable vertical peak ground acceleration (PGA) of more than 2 g was recorded 

during the aftershock of the 1985 Nahanni earthquake in Canada, with a ratio of at least 2 to 

horizontal peak ground acceleration (Weichert et al. 1986), and more recently a breath-taking 

vertical PGA of 38.66 m/s
2
 was captured in the 2008 Iwate-Miyagi Nairiku earthquake in Japan 

(Takabatake and Matsuoka 2012). Similar phenomenon with intense vertical ground motions was 

also observed in other earthquakes, such as the 1979 Imperial Valley, 1989 Loma Prieta, 1994 

Northridge, 1995 Kobe, 1999 Chi-Chi, 2011 Tohoku and 2011 Christchurch earthquake (Shrestha 

2014). Such near-fault data have eventually changed the misleading assumption that the vertical 

ground motion can be taken to be two thirds of the horizontal motion, as postulated by Newmark 

et al. (1973). At short periods and near-source distances, vertical component of the ground motion 

may be noticeably more severe than the horizontal component and cause serious damage to 

structures by magnifying vertical dynamic responses, such as bending moment, shear and axial 

force. Papazoglou and Elnashai (1996) collated a body of field evidence on damaging effects of 

vertical earthquake motion, including many compressive failures of bridge piers. In fact, as early 

as nearly half a century ago, Chopra (1966) addressed the importance of vertical earthquake 

ground motion in design and performance assessment of structures. Yet it didn’t receive more 

attention until after several earthquakes around 1990s mentioned ahead (Kalkan and Graizer 

2007). 

Vertical ground motion may magnify midspan bending moment and end shear of the girder, as 

well as compressive axial force of the pier, thus resulting in severe structural failures of girder 

bridges (Kunnath et al. 2008). Past earthquakes have provided plenty of field evidence on it (Han 

et al. 2009, Papazoglou and Elnashai 1996). Recently, especially in the years of this century, many 

studies have been devoted to investigate the effects of vertical ground motion on dynamic 

responses of girder bridges. Button et al. (2002) analyzed the responses of typical highway bridges 

subjected to a suite of vertical motions with different magnitudes, sites and fault distances, and 

compared results excluding and including vertical motions. Kunnath et al. (2008) numerically 

studied the responses of typical highway overcrossings subjected to combined effects of vertical 

and horizontal components of near-fault ground motions, and found that the vertical components 

of ground motions cause significant amplification in the axial force demand in the columns and 

moment demands in the girder both at the midspan and at the face of the bent cap. Meanwhile, 

Warn and Whittaker (2008) investigated the influence of vertical earthquake excitation on the 

response of a bridge isolated with low-damping rubber and lead-rubber bearings through 

earthquake simulation testing, and found significant amplification of vertical responses by 

comparison. Kim et al. (2011) analytically assessed the effects of vertical earthquake ground 

motions with different vertical-to-horizontal peak acceleration ratios on RC bridge piers, and 

compared the results with the case of horizontal-only excitation. They found that inclusion of the 

vertical components of ground motions has an important effect on the response at all levels and 

components. Gulerce et al. (2012) established seismic demand models for typical highway 

overcrossings by incorporating critical EDPs (Engineering Demand Parameters) and combined 

effects of horizontal and vertical ground motion IMs (Intensity Measures) depending on the type 

of the parameter and the period of the structure. Wang et al. (2013) explored the effects of vertical 

ground motions on the component fragility of a coupled bridge-soil-foundation system, and found 

that presence of vertical ground motions has a minor effect on the failure probabilities of piles and 

expansion bearings, while it has a great influence on fixed bearings. Fardis and Tsionis (2013) 
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developed close-form solutions for distributed-mass symmetric multi-span bridges with restrained 

ends, and studied systematically the effects of stiffness and number of piers on natural vibration of 

structures. More recently, Lee and Mosalam (2014) found by shaking table tests that vertical 

excitation has the potential to degrade the shear capacity of bridge columns. However, influence of 

vertical ground motion on seismic responses of girder bridges is still not understood very well, 

though so many efforts have been done. Thus there is still need to carry out more thorough studies. 

The majority of the above studies were carried out generally through shake table-based model 

tests or FEM-based numerical simulations. This paper tries another way. The equation of motion 

governing vertical seismic responses of the straight girder bridge is firstly established based on the 

principle of small displacement and considering axial deformation of support structures. Then the 

differential quadrature method (DQM) is applied to discretize the above equation of motion into a 

MDOF (multi-degree-of-freedom) system, considering all boundary conditions. Finally, vertical 

seismic responses of this MDOF system are calculated by a step-by-step integration method. In 

constructing the governing equation, the pier and bearing are simplified as a vertical series spring 

system without mass. Details on derivation of the governing equation are presented in Section 2. 

Section 3 shows the fundamental of DQM. Discretization of the governing equation using DQM is 

given in Section 4. Section 5 analyzes effects of support structures on dynamic responses of the 

girder bridge under different vertical strong ground motions, and discusses optimization of support 

structures to resist vertical strong motions. Finally, some conclusions are summarized in Section 6. 

 

 

2. Formulation of the governing equation 
 

In practice, the girder is usually supported on the ground via piers and bearings. As main 

support structures, piers and bearings play an important role in vertical seismic response analysis 

of girder bridges. Fig. 1 shows a single-span straight girder bridge to be considered in this study. 

Both support conditions are supposed to be simple supports for the purpose of only considering 

vertical motions, and the girder cannot jump up from the bearings. Generally, the girder is much 

heavier than the pier and bearing, so here the pier and bearing are simplified as a massless series 

spring system as shown in Fig. 2 for not considering the axil vibration of themselves. The 

slenderness ratio of the girder is usually large enough to avoid considering shear deformation and 

rotational inertia. And for simplicity, except for the above assumptions, we also suppose that the 

ground is rigid for not considering soil-structure interaction, and that all displacements are elastic 

and linear to satisfy the superposition principle, i.e., the assumption of small displacement. 

The coordinate system adopted is shown in Fig. 2, in which the x axis is defined as the central 

axis of the girder at its original (or static) position. y(x,t) is the absolute displacement relative to x 

 

 

 
Fig. 1 Sketch of a single-span simply-supported straight girder bridge 
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Fig. 2 Simplified analytical model of the girder bridge under vertical ground motion 

 

 
Fig. 3 Vertical displacement of the girder bridge 

 

 

axis, and u(x,t) is the displacement relative to the rigid central axis, i.e., the deformation from the 

broken line A'B' to the curve A'B' as shown in Fig. 3. Based on the principle of small 

displacement, y(x,t) and u(x,t) are both vertical. L, m(x) and EI(x) are the span, the mass per unit 

length and the flexural stiffness, respectively. gi(t) (i=1,2) is the vertical ground motion exerted at 

the ith pier, and ki (i=1,2) is the vertical stiffness of the ith series spring, which can be determined 

by 

p b

p b

i i

i

i i

k k
k

k k



, for i=1,2                          (1) 

where kpi and kbi are the vertical stiffness of the ith pier and bearing, respectively. 

Fig. 3 illustrates the vertical displacement of the girder. The solid line AB is the original (static) 

position of the girder, while the curve A'B' is the final position. The broken line A'B' is the 

position of the rigid girder due to spring distortion. The total displacement y(x,t) is equal to the 

rigid body displacement s(x,t) plus the flexure displacement u(x,t), i.e. 

( , ) ( , ) ( , )y x t s x t u x t                           (2) 

in which s(x,t) can be determined by linear interpolation, i.e. 
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L L
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   
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(3) 

According to the action and reaction principle, the end shear of the girder, i.e., QA(t) and QB(t) 

shown in Fig. 3, should equal the spring force, that is 
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where 

A 0( ) (0, ) (0, ) [ ( ) ( , )]xQ t Q t M t EI x u x t 
                     (6) 

B( ) ( , ) ( , ) [ ( ) ( , )]x LQ t Q L t M L t EI x u x t 
     

               
(7) 

in which the prime “' ” represents differentiation with respect to x. 

Substitute Eqs. (4)-(7) into Eq. (3) and the resulting equation into Eq. (2), then one gets 

1 0

1

1
( , ) ( , ) 1 ( ) 1 [ ( ) ( , )]x

x x
y x t u x t g t EI x u x t

L k L


   
        

     

2

2

( ) [ ( ) ( , )]x L

x x
g t EI x u x t

L k L


    

(8) 

Excluding the internal damping and assuming the external damping force proportional to the 

deformation velocity, the equation of motion governing the beam shown in Fig. 3 can be written as 

(Clough and Penzien 1995) 

E( ) ( , ) ( ) ( , ) [ ( ) ( , )] ( , )m x y x t c x u x t EI x u x t P x t   
             

(9) 

where the over dot “   ” represents differentiation with respect to the time t, cE(x) is the external 

damping factor, and P(x,t) is the external force. 

Substituting Eq. (8) into Eq. (9) yields 

   
0

1 2

( ) ( )
( ) ( , ) 1 ( ) ( , ) ( ) ( , )

x x L

m x x xm x
m x u x t EI x u x t EI x u x t

k L k L 

       
   

 E 1 2( ) ( , ) ( ) ( , ) ( , ) ( ) 1 ( )+ ( )
x x

c x u x t EI x u x t P x t m x g t g t
L L

        
  

 

(10) 

Eq. (10) is just the equation of motion governing vertical seismic responses of straight girder 

bridges considering axil deformation of support structures. And this equation can be reduced into 

the one without effects of support structures by setting 1/k1=1/k2=0.  

For convenience, m(x), EI(x) and cE(x) are all supposed to be constant in this study, i.e., 

m(x)=m, EI(x)=EI and cE(x)=c. Moreover, the span L is generally very small relative to the 

propagation velocity of the vertical earthquake motion, so the traveling wave effect of the 

earthquake motion is negligible, i.e., g1(t)=g2(t)=g(t). Then Eq. (10) becomes 

IV

1 2

( , ) 1 (0, ) ( , ) ( , ) ( , ) ( , ) ( )
mEI x mEIx

mu x t u t u L t cu x t EIu x t P x t mg t
k L k L

 
        

 
 (11) 

For simple supports, the boundary conditions of Eq. (11) or (10) are 

(0, )=0u t
                                 

(12) 

( , )=0u L t
                                 

(13) 
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(0, )=0u t
                               

(14) 

( , )=0u L t
                               

(15) 

And the initial conditions can be denoted as 

0( ,0)= ( )u x u x
                              

(16) 

0( ,0)= ( )u x u x
                             

(17) 

In Eq. (11), there are two terms with variable coefficient and mixed partial derivative at one 

point, which make it difficult (or impossible) to solve this equation analytically though it is linear. 

Numerical methods are better choice at present, such as the time-domain method (Law et al. 1997) 

and frequency-domain method (Wang et al. 2012). The former is relatively easier to be 

implemented for this problem than the latter. Besides, the earthquake data applied in the paper are 

essentially discrete or numerical, which makes it straightforward to use a step-by-step method. 

 

 

3. Differential quadrature method 
 

The DQM, proposed by Bellman and Casti (1971), is a high-efficiency numerical solution 

technique for the initial and/or boundary value problems of physical and engineering sciences. It is 

conceptually simple and the implementation is straightforward. Unlike conventional methods such 

as finite difference method (FDM) and finite element method (FEM), DQM can produce highly 

accurate solutions with minimal computational efforts. Many successful applications of DQM in 

mechanics have been reported (Bert et al. 1988, Shu and Richards 1992, Bert and Malic 1996, 

Liew et al. 2001, Malekzadeh and Farid 2007, Kaya 2010, Bozdogan 2012, Rajasekaran 2013). 

The idea of DQM is essentially an extension of the integral quadrature method (Shu 2000). It 

approximates the derivative of a function at any sampling grid point as the weighted linear sum of 

all the functional values along a mesh line within domain under consideration. Without losing 

generality, one can consider a one-dimensional function f(x) defined in [a,b]. Using DQM, the rth-

order derivative of f(x) with respect to x at a point xi can be expressed as 

( ) ( )

1

( ) ( , ) ( )
n

r r

i k

k

f x w i k f x


 , for i=1,2,…,n and r=1,2,…,n-1          (18) 

where a=x1<x2<…<xn-1<xn=b are the discrete grid coordinates that can be arbitrarily distributed in 

space, n is the total grid number, and w
(r)

(i,k) is the corresponding weighting coefficient which can 

be calculated from various interpolation base functions. In this paper, the Lagrange interpolation 

polynomials are used to calculate these weighting coefficients. The weighting coefficients of the 

first-order derivative can be obtained by (Shu 2000) 

 
(1)

1 1
,

( , ) ( ) ( )
n n

i k j k

k k
k i j k j

w i j x x x x
 
 

    , for i≠j                 (19) 

(1) (1)

1

( , ) ( , )
n

k
k i

w i i w i k




                           

(20) 
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where “Π” is the continuous multiply symbol, and i, j=1,2,…,n.  

Then, the weighting coefficients for higher-order derivatives can be obtained directly by the 

matrix multiplication approach, i.e. 

( ) (1)[ ] [ ]r rw w                              
(21) 

where [w
(r)

] is the weighting coefficient matrix for the rth-order derivative. 

Choice of sampling points can notably affect the differential quadrature (DQ) solution. It has 

been demonstrated that non-uniform grids can enhance the accuracy of the DQ solution and can 

tackle the problem of deterioration of the quadrature solution (Bert and Malik 1996). So this study 

will adopt a non-uniform mesh defined in particular by 

( ) ( )
cos[( 1) ( 1)]

2 2
i

a b b a
x i n

 
    , for i=1,2,…,n           (22) 

 

 

4. Discretization of the governing equation 
 

The key process of using DQM to discretize the governing Eq. (11) is to appropriately apply 

the boundary conditions of Eqs. (12)-(15). Obviously, Eq. (11) is a fourth-order partial differential 

equation with respect to x, and accordingly has four boundary conditions, whereas there are only 

two boundary points, i.e., two boundary conditions (a Dirichlet and a Neumann) for one boundary 

point. How to apply two boundary conditions at one boundary point? Many efforts have been 

devoted to this problem (Jang et al. 1989, Wu and Liu 2000, Wang et al. 2005). In this study, a 

built-in method proposed by Wang et al. (2005) is adopted. It is to consider boundary conditions 

during formulation of the weighting coefficients for higher-order derivatives. Details are as 

follows. 

Firstly, x is divided in the domain [0,L] into n grid points defined by Eq. (22), i.e., 

0=x1<x2<…<xn-1<xn=L. Then, using DQM, one gets 

(1){ } [ ]{ }u w u                                
(23) 

where  

T

1 2{ } { ( , ),  ( , ), ,  ( , )}nu u x t u x t u x t
                    

(24) 

{u'} is the first-order derivative of {u} with respect to x, and [w
(1)

] is the corresponding weighting 

coefficient matrix which can be expanded as 

(1) (1)

(1)

(1) (1)

(1,1) (1, )

[ ]

( ,1) ( , )

w w n

w

w n w n n

 
 

  
 
                      

(25) 

Considering the Dirichlet boundary conditions of Eqs. (12)-(13), Eq. (23) becomes 

(1){ } [ ]{ }u w U                              
(26) 

where  
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(1) (1)

(1)

(1) (1)

(1,2) (1, 1)

[ ]

( ,2) ( , 1)

w w n

w

w n w n n

 
 

  
                       

(27) 

T

2 1{ } { ( , ), , ( , )}nU u x t u x t
                       

(28) 

By canceling u'(x1,t) and u'(xn,t) from {u'}, Eq. (26) becomes 

(1){ } [ ]{ }U W U                              (29) 

where {U'} is the first-order derivative of {U} with respect to x, and 

(1) (1)

(1)

(1) (1)

(2,2) (2, 1)

[ ]

( 1,2) ( 1, 1)

w w n

W

w n w n n

 
 

  
                       

(30) 

Similarly, one gets 

(1) (1) (1) (2){ } [ ]{ } [ ][ ]{ } [ ]{ }u w u w w U w U                      
(31) 

(1) (1) (2){ } [ ][ ]{ } [ ]{ }U w w U W U                         
(32) 

where  

(1) (1)

(1)

(1) (1)

(2,1) (2, )

[ ]

( 1,1) ( 1, )

w w n

w

w n w n n

 
 

  
                       

(33) 

The Dirichlet boundary conditions of Eqs. (12)-(13) have been built in [W
(1)

] and [W
(2)

]. In the 

same way, consider the Neumann boundary conditions of Eqs. (14)-(15), then one obtains 

(1) (1) (1) (2) (3){ } [ ]{ } [ ]{ } [ ][ ]{ } [ ]{ }u w u w U w W U w U               
(34) 

(1) (2) (3){ } [ ][ ]{ } [ ]{ }U W W U W U                      
(35) 

and 

IV (1) (1) (3) (4){ } [ ]{ } [ ][ ]{ }=[ ]{ }u w u w w U w U                 
(36) 

IV (1) (3) (2) (2) (4){ } [ ][ ]{ }=[ ][ ]{ }=[ ]{ }U w w U W W U W U             
(37) 

From Eq. (34), one obtains 

(5)

1(0, ) ( , ) { }{ }u t u x t W U  
                    

(38) 

(6)( , ) ( , ) { }{ }nu L t u x t W U  
                    

(39) 
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in which 

(5) (1) (1) (1) (2){ } { (1,2), (1,3), , (1, 1)}[ ]W w w w n W                
(40) 

(6) (1) (1) (1) (2){ } { ( ,2), ( ,3), , ( , 1)}[ ]W w n w n w n n W               
(41) 

Clearly, the boundary conditions of Eqs. (12)-(15) have been built in [W
(3)

], [W
(4)

], {W
(5)

} and 

{W
(6)

}. Using Eqs. (37)-(39) to discretize Eq. (11) yields 

[ ]{ } [ ]{ } [ ]{ } { }M U C U K U F                       
(42) 

where  

m m v 5 v 6

1 2

[ ] [ ] ([ ] [ ]/ ){ }{ } [ ]{ }{ }
mEI mEI

M m I I X L I W X I W
k Lk

   

      

(43) 

m[ ] [ ]C c I
                              

(44) 

4[ ] [ ]K EI W
                             

(45) 

v{ } { } { } ( )F P m I g t 
                         

(46) 

in which [Im] is an (n-2)×(n-2) identity matrix, {Iv} is an (n-2)-dimensional column vector with 

unit elements, {P} is the external force vector, i.e.  

T

1 2{ } { ( , ), ( , ), , ( , )}nP P x t P x t P x t
                   

(47) 

and [X] is an (n-2)×(n-2) diagonal matrix, i.e. 

2 3 -1[ ] diag( , , , )nX x x x
                       

(48) 

Till now, the governing Eq. (11) has been discretized into a MDOF system of Eq. (42). The 

vertical bending deformation u(x,t) of the girder bridge can be obtained directly by using some 

step-by-step method to solve this MDOF system. Then other responses such as shear and bending 

moment can be calculated indirectly from the obtained u(x,t). Using the assumption of uniformity 

and substituting Eqs. (38)-(39) into Eqs. (6)-(7) yield calculation formulas for QA(t) and QB(t), i.e. 

(5)

A ( ) { }{ }Q t EI W U 
                        

(49) 

(6)

B( ) { }{ }Q t EI W U 
                        

(50) 

 

 

5. Calculations and discussions 
 

To investigate vertical seismic responses of girder bridges, Eq. (11) is discretized according to 

the process shown in Section 4, then the resulting Eq. (42) is solved by the Newmark-β method 

with β=1/4, i.e., the constant average acceleration method. A computer program is accomplished in 

MATLAB. While before starting the study, the compiled computer program is firstly verified by a 

relatively simple example. 
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Fig. 4 Comparison of numerical and analytical results 

 
Table 1 Errors of the calculated umid relative to the analytical result at t=1.82s with changing Δt and n 

Δt (s) 
Error (%) 

n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10 

0.020 211.03 -64.12 -123.09 -118.90 -118.59 -118.60 -118.61 -118.61 

0.010 252.50 -108.85 -48.18 -31.47 -30.48 -30.50 -30.51 -30.51 

0.005 237.41 -95.28 -20.96 -7.30 -6.49 -6.50 -6.51 -6.51 

0.002 231.37 -89.80 -14.01 -1.70 -0.96 -0.97 -0.98 -0.98 

 

 

5.1 Verification of compiled computer program 
 

Consider the forced vibration of a simply-supported Euler beam governed by 

IV( , ) ( , ) ( , )mu x t EIu x t P x t                        
(51) 

where all symbols are the same as those in Eq. (11). The above equation can be directly obtained 

from Eq. (11) by setting 1/k1=1/k2=0, c=0 and g(t)=0. And the boundary conditions are still Eqs. 

(12)-(15). Suppose the external force P(x,t)=Qsin(πx/L)sin(pt), in which Q=the maximum force, 

L=span, and p=the frequency of the dynamic force, and the initial state of the beam is static. Then 

the analytical solution for the displacement are obtained as (Rao 2011) 

 
2 2

sin ( / )sin
( , ) sin( / )

Q pt m t
u x t x L

m p

 








                (52) 

in which ω=π
2
(EI/mL

4
)

1/2
. 

The verification is carried out when L=10 m, m=420 kg/m, EI=4.7726×10
7 
N∙m

2
, Q=1×10

4 
N/m 

and p=2π/0.28335 rad/s. Fig. 4(a) shows 2-second time histories of the midspan displacement umid 

obtained at Δt=0.005s and n=3,5,7,9, and Fig. 4(b) shows 2-second time histories of umid obtained 

at n=7 and Δt=0.02s, 0.01s, 0.005s, 0.002s. Table 1 shows the errors of calculated umid relative to 

the analytical one at t=1.82s with changing Δt and n. It should be noted here that the results for 

even n are not the direct numerical results. They are obtained by using the Lagrange interpolation 

which will not change the accuracy of solution because the DQM used here is also based on the 

Lagrange interpolation. From Fig. 4, the numerical solutions converge quickly to the analytical 

0 1
-10

0

10

u
m

id
 (

c
m

)

t (s)

Exact
n=3 n=7
n=5 n=9
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0 1 2
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one with increasing n or with decreasing Δt, and similar conclusions can be obtained from Table 1. 

It can also be found from Table 1 that the numerical results will not change or only change a little 

when n>7, and that if Δt is too large, the calculated results cannot converge to the analytical 

solution with increasing n. Obviously, when Δt=0.002s, n=6 can yield sufficiently accurate results, 

which demonstrates the high efficiency of DQM. Validity of the compiled computer program in 

this study is efficiently verified by this example. 

 
5.2 Effects of support structures 

 
In the following study of the vertical seismic responses of the girder bridge, the external force 

P(x,t) in Eq. (11) is omitted according to the convention in seismic analysis of structures, and the 

initial state of the bridge is static. The basic parameters of the bridge are set as shown in Table 2, in 

which all parameters are determined according to a practical engineering except the factor c. It 

should be noted that the damping factor c is difficult to be determined, so an empirical valued is 

adopted here. Moreover, k1 and k2 are assumed to be identical in this study in order to facilitate 

analysis. Detailed analysis about k1 and k2 can be found subsequently. 

Vertical strong ground motion data considered in this study are chosen from the PEER Strong 

Motion Database, and are shown in Table 3, in which PGA and NPTS represent the peak ground 

acceleration and the total number of time samplings, respectively. All the seismic data are obtained 

from near-fault sites with remarkable PGAs. 

Mesh-dependence study is firstly conducted for input M1 with and without considering effects 

of support structures. Table 4 shows variation of the absolute maximum value of umid, noted as 

max|umid|, with changing n, in which “ES” means “Elastic Support”, i.e., k1=k2=4×10
9 

N/m, and 

“RS” means “Rigid Support”, i.e., 1/k1=1/k2=0. Similar to Table 1, results for even n are obtained 

indirectly by using the Lagrange interpolation. One can see from Table 4 that numerical results 

converge quickly to a steady state with increasing mesh number n, while the results will not 

change or only change a little when n>9. Similar conclusions can be obtained for other inputs 

which are omitted. So n=9 is set for all cases in the following study. 

 

 
Table 2 Basic parameters of the girder bridge 

L (m) m (kg/m) c (N∙s/m
2
) EI (N∙m

2
) k1 (N/m) k2 (N/m) 

30 3×10
4 

1.2×10
4
 1×10

11
 4×10

9
 4×10

9
 

 
Table 3 Input of vertical earthquake motion 

No. Time Name
 

Station PGA (g) Δt (s) NPTS 

M1 1979/10/15 23:16 Imperial Valley 942 El Centro Array #6 1.655 0.005 7807 

M2 1987/10/01 14:42 Whittier Narrows 289 Whittier N. Dam upstream 0.505 0.005 5884 

M3 1989/10/18 00:05 Loma Prieta 16LGPC 0.890 0.005 4993 

M4 1992/04/25 18:06 Cape Mendocino 89005 Cape Mendocino 0.754 0.020 1500 

M5 1995/01/16 20:46 Kobe 0 Takarazuka 0.433 0.010 4096 

M6 1999/09/20 Chi-Chi, Taiwan CHY080 0.724 0.005 18000 
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Table 4 Mesh dependence of max|umid| for input M1 with and without considering support structures 

 
max|umid| (cm) 

n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10 n=11 

RS 4.68 3.64 5.09 5.03 5.00 5.06 5.04 5.04 5.04 

ES 4.30 3.90 5.48 5.43 5.35 5.37 5.35 5.35 5.35 

 

 

Fig. 5 shows time histories of umid with and without considering effects of support structures 

under six vertical strong excitations shown in Table 3. In order to give a clear show, only 20s of 

the time histories are presented in the figure. It can be found by comparison that support structures 

have distinct effects on umid, especially for the cases of M3 and M4. Considering support 

structures, vertical seismic responses may be increased such as Figs. 5(a) and 5(e)-(f), or decreased 

such as Figs. 5(b)-(d). Effects of support structures depend on characteristics of the vertical 

earthquake motion exerted on the structures. 

Corresponding to Fig. 5, Table 5 presents the absolute maximum value max|umid| with and 

without considering effects of support structures under different vertical excitations. Meanwhile, 

errors of case ES relative to case RS are also given for comparison. Considering support 

structures, max|umid| decreases by around 15% for the cases of M3 and M4, while increases by 

nearly 10% for the case of M5. Effects of support structures for the case of M6 are relatively 

small. 

 

 

 
Fig. 5 Time histories of umid with and without considering effects of support structures under different 

vertical excitations 
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Table 5 Comparison of max|umid| under different vertical excitations 

 M1 M2 M3 M4 M5 M6 

max|umid| (cm) 
RS 5.04 1.03 5.08 2.10 3.77 6.08 

ES 5.35 0.98 4.29 1.80 4.13 6.27 

Error (%)  6.17 -4.89 -15.68 -14.27 9.61 3.27 

 

 

Similar analysis can be made for end shears QA(t) and QB(t). In this study, QA and QB are 

identical according to the assumptions of uniformity, g1(t)=g2(t) and k1=k2. So, only results of QA 

are given in the following. Similar to Fig. 5, Fig. 6 compares time histories of QA with and without 

considering support structures under different vertical excitations, and correspondingly Table 6 

presents the absolute maximum value max|QA| with and without considering support structures 

under different vertical excitations. Compared with Fig. 5, similar conclusions can be obtained 

from Fig. 6 for the cases of M3, M5 and M6, while different ones for the cases of M1, M2 and M4, 

in which there are obviously high-frequency components. Compared with Table 5, similar 

conclusions are obtained from Table 6 for the cases of M4-M6, while different ones for the cases 

of M1-M2. For the case of M1, support structures decrease max|QA| by around 8%, while increase 
max|umid| by around 6%. And for the case of M2, support structures increase max|QA| by more than 

25%, while decrease max|umid| by around 5%. So influence of support structures on two different 

responses may be opposite. 

 

 

 

Fig. 6 Time histories of QA with and without considering effects of support structures under different 

vertical excitations 
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Table 6 Comparison of max|QA| under different vertical excitations 

 M1 M2 M3 M4 M5 M6 

max|QA| (MN) 
RS 7.37 1.75 6.08 2.60 4.59 7.26 

ES 6.78 2.20 5.19 2.40 4.98 7.58 

Error (%)  -8.01 25.46 -14.70 -7.72 8.52 4.31 

 

 

From the above, near-fault vertical strong earthquake motion may induce severe dynamic 

responses for girder bridges, and support structures play an important role in this process. So it is 

of great importance to consider effects of support structures in structural seismic design of girder 

bridges in near-fault region. 

 

5.3 Optimization of support structures 
 

It has been found in Section 5.2 that support structures can remarkably change vertical seismic 

responses of girder bridges in near-fault region. In this subsection, how to optimize support 

structures to resist vertical strong earthquake motions will be discussed. The example of the girder 

bridge shown in Section 5.2 is still used here, while the difference is that the values of k1 and k2 

can be changed with keeping k1=k2 unchanged. In order to conveniently express the effects of 

support structures, a non-dimensional amplification factor is defined,  

 ES

RS

max | |
( )

max | |

R
R

R
   (53) 

in which R can be any concerned response such as umid and QA, and the subscriptions “ES” and 

“RS” have the same meanings as those in Table 4.  

Fig. 7 presents variations of α(umid) and α(QA) with k1 and k2 under six vertical strong ground 

excitations shown in Table 2. Besides, the mean value of these lines is also given. Clearly, the six 

variation lines of α(umid) or α(QA) are all fairly uneven, especially in the region of k1, k2=1×10
8
-

1×10
10 

N/m, while have a similar trend that α(umid) or α(QA) rises concussively with increasing k1 

and k2, and arrives at a maximum value in the region of 1×10
8
-1×10

10 
N/m, and finally approaches 

the horizontal line of the value 1. It is easy to understand from the dynamic perspective that 

characteristics of the variation lines of α(umid) or α(QA) depend on the spectral characteristics of the 

corresponding earthquake motion. It can also be found by comparison that the variation lines of 

α(umid) are almost the same as those of α(QA) except for the case of M2. In Fig. 7(b), there is a 

peak of more than 2.6 at k1, k2=5×10
9 
N/m for the case of M2, while in Fig. 7(a) the corresponding 

value is less than 1.1. However, the two mean variation lines are relatively smooth. Generally it 

can be concluded from the mean variation lines that effects of support structures can be neglected 

for the considered girder bridge when k1, k2>7×10
10 

N/m, and benefit structures to resist 

earthquakes when k1, k2<9×10
7 

N/m. Whereas in the region of 9×10
7 

N/m<k1, k2<7×10
10 

N/m, 

support structures mostly increase and occasionally decrease responses of structures.  

From the above, one can optimize stiffness of support structures to resist vertical strong ground 

motions. However, the stiffness of support structures should obviously be determined according to 

engineering practice. The support structures must firstly meet the requirements of the vertical 

bearing capacity, so their stiffness cannot be too small in practice. 
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Fig. 7 Variations of max|umid| and max|QA| with k1 and k2 under different vertical excitations 

 

 

6. Conclusions 
 

Based on the assumption of small displacement, the equation of motion governing vertical 

seismic responses of simply-supported straight girder bridges is established considering vertical 

deformation of support structures which are simplified as massless springs. DQM is applied to 

discretize the governing equation into a MDOF system. Then, the Newmark-β method with β=1/4 

is adopted to solve this MDOF system to obtain vertical seismic responses of the girder bridge. Six 

near-fault vertical ground motions with remarkable PGAs chosen from the PEER Strong Motion 

Database are considered. Numerical results indicate that support structures play an important role 

in vertical seismic response analysis of girder bridges. Considering effects of support structures, 

the absolute maximum midspan vertical deformation and end shear of the girder may increase or 

decrease remarkably, perhaps by more than 25%. Besides, support structures may have opposite 

effects on different responses of structures, for example, they may decrease the absolute maximum 

midspan vertical deformation and increase the absolute maximum end shear at the same time. 

Finally optimization of support structures to reduce vertical seismic responses of the bridge is 

0

1

2

3

M1

M3

M5

M2

M4

M6


(u

m
id

)

(a) max|umid|

Mean of M1-M6

106 107 108 109 1010 1011 1012
0

1

2

3

M1

M3

M5

M2

M4

M6


(Q

A
)

k1, k2 (N/m)

(b) max|QA|

Mean of M1-M6

1495



 

 

 

 

 

 

Tong Wang, Hongjing Li and Yaojun Ge 

studied through changing stiffness of support structures. It is found that support structures can be 

neglected when their stiffness exceeding a maximum value (7×10
10 

N/m for the considered bridge 

in this paper), and benefit structures to resist earthquakes when their stiffness under a minimum 

value (9×10
7 

N/m for the considered bridge in this paper), while may increase or decrease 

responses between the above two values. However, the stiffness of support structures should be 

determined according to engineering practice. 

This paper presents a simple method to investigate the vertical seismic responses of girder 

bridges. It can also be applied to continuous girder bridges though only single-span ones are 

considered here. Whereas, with increasing length of considered girder bridges, the traveling wave 

effect of earthquake motion may need to be considered. Further study on vertical seismic response 

analysis of girder bridges will be continued. 
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