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Abstract.  A theoretical procedure to estimate spectral displacement of a hysteretic oscillator with bilinear 

stiffness excited by band-limited excitation is presented. The stochastic method of ground-motion simulation 

is combined with the random vibration theory to compute linear and nonlinear structural response. The 

response is obtained by computing the root-mean-square oscillator response using dissipation energy 

balancing by integrating over all energy levels of system weighting with the stationary probability density of 

the energy. The results are presented in a convenient form, and the accuracy of the procedure is assessed by 

comparison with results obtained with the time-domain method using the recorded data. The model shows 

little or no bias at the structural period of engineering interest. 
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1. Introduction 
 

The application of elastic response spectra is extensive in earthquake engineering as such 

spectra reflect both the response of the structures and the frequency content of the ground motion 

(Hudson 1962). In severe earthquake events, many types of structures exhibit inelastic behavior, 

represented by hysteretic characteristics. Therefore, an elastic response spectrum, although a very 

important concept with widespread applications, is limited in its ability to predict structural 

damage and some fundamental features of inelastic dynamic behavior (Bozorgnia et al. 2010).  

One of the challenging issues in civil engineering is stochastic structural analysis involving 

uncertainty or stochastic variables. The seismic demand of a structure due to uncertainties in 

ground motion and in structural properties needs to be properly characterized in earthquake 

engineering (Yazdani and Eftekhari 2012). In this case the structural response will also be a 

stochastic process and must be described in probabilistic terms. In the stochastic methods, the 

earthquake response spectra can be obtained using time-domain (TD) analysis by averaging the 

response of a suite of acceleration time series or by using random-vibration (RV) method, working 

directly with the spectra (Boore 2003). RV simulations are usually thousands of times faster than 

TD simulation (Boore and Thompson 2012) and shorter computational times are important in  
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stochastic structural analysis. 
Strong-motion seismology is concerned with the measurement and estimation of strong motion 

generated by potentially damaging earthquakes. The stochastic methods that assume the ground 

motion as band-limited finite-duration Gaussian white noise using seismological information are 

widely used for the simulation of Fourier spectra of ground motions for regions of the world in 

which recordings of motion from potentially damaging earthquakes are not available (Hanks and 

McGuire 1981, Boore 1983, 2003). In RV methods, the ground motion is characterized by the 

Fourier amplitude spectra (FAS) and a description of ground motion duration (Kuwamura et al. 

1994, Takewaki 2001, Yamamoto et al. 2011). Boore and Joyner (1984), Liu and Pezeshk (1999), 

Boore and Thompson (2012) modified the measure of duration of excitation in RV calculations 

based on comparisons of TD and RV simulations on the basis that the ground shaking includes not 

only a stationary part but also a nonstationary part. In dynamic reliability analysis, stochastic 

analysis based on the nonlinear random vibration theory is required. The bilinear hysteresis model 

is one of the most widely used inelastic models in structural engineering. The purpose of this study 

is to estimate elastic and inelastic displacement spectrum on the basis of FAS of ground motion 

using information on the seismic source, seismic wave propagation through the earth, and 

geological site conditions that affect ground motion. Estimation of response displacement 

spectrum is a great importance in displacement-based seismic design of structures. The presented 

procedure based on RV theory can be applied to regions where strong ground motion data are 

limited in availability regarding the magnitude and distance range of engineering interest. Also, in 

regions where there are sufficient strong ground motion data, by the fact that they are based on 

combined recorded data sets from different earthquakes recorded in different regions, stochastic-

based methods provide a conceptual framework for understanding some basis underlying physical 

parameters that control observed ground-motion amplitudes (Toro et al. 1997, Atkinson and Silva 

2000). The procedure is validated by comparison with ground motion data from the M 6.7 1994 

Northridge, California earthquake.  

 

 

2. Randomly excited hysteretic system 
 

In structural safety analysis, the stochastic seismic response of a nonlinear system based on the 

random vibration theory is rarely known, except for simple systems under idealized excitations 

(Koliopulos et al. 1994). With certain restrictive conditions, the state space vector is a Markov 

process, and the state space variable can be obtained as the solution to the corresponding Fokker-

Planck equation (Rudinger and Krenk 2003). Approximate solution techniques are typically 

needed because such restrictive conditions can rarely be met in practical cases. The most 

frequently used approximation scheme is the equivalent linearization procedure (Roberts and 

Spanos 1990). When the system is highly nonlinear, the equivalent linearization procedure is 

considered unsuitable because the probability distribution of the system response is usually far 

from being Gaussian. Lutes (1970) proposed the method of equivalent nonlinear systems to 

improve the accuracy of approximate solutions for highly nonlinear hysteretic systems. Cai and 

Lin (1988) developed another approximation procedure, dissipation energy balancing, as an 

application of the general scheme of weighted residuals that focuses directly on the unknown 

probability density rather than calculation of the approximate statistical moment.  

In dissipation energy balancing, a nonlinear system is replaced by another nonlinear system so 

that the average dissipated energy in the two systems remains the same (Lin and Cai 2004). An  
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Fig. 1 Bilinear hysteretic restoring force as a function of displacement 

 

 

important advantage of this procedure is that the form of the replacement system need not be 

preselected. The equation of motion for a bilinear hysteretic oscillator is expressed as follows 

)(),(2 tWxxgxx n                                                         (1) 

where x is the displacement and a dot indicates the derivative with respect to time. W(t) is an 

excitation and ),( xxg  is the stiffness function. In this equation, ωn, ζ, and α are the natural circular 

frequency, the damping ratio within the linear range and the post- to pre-yielding stiffness ratio, 

respectively. The bilinear restoring force is illustrated in Fig. 1. The yield and maximum 

displacements are represented by xy and xu, respectively. In this oscillator, the total energy for a 

hysteretic system is determined as the sum of the kinetic and potential energies as follows 

)(
2

1 2 xUx                                                              (2) 

The potential energy of the system, U(x) is the recoverable part of the total energy, obtained by 

integration of the stiffness function. For the hysteretic characteristics in which the unloading 

rigidity is equal to the initial rigidity (Suzuki and Minai 1988), the potential energy of the system 

can be expressed as follows 
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The approximate stationary probability density of total energy is given by the following 

equation (Caughey 1971) 

))(exp()(    dCp                                                    (4) 

where C is a normalization constant and ϕ(λ) is the stationary potential, which is assumed to be a 
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function of the total energy. For a bilinear hysteretic system, the probability potential function at 

level λ, ϕ’(λ), is derived as follows (Cai and Lin 1990) 
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where Ar is the area enclosed by a hysteresis loop and Sf is the power spectral density (PSD) of the 

excitation. By substituting Eq. (5) into Eq. (4), the probability density of energy at each energy 

level can be obtained. The mean square value of the displacement may be computed as follows 

 


 


0

2
2

))((2

2
)()(

u

u

x

x
dx

xU

x
dpXE


                                              (6) 

The PSD of the excitation, which is a more fundamental description of the frequency content of 

ground motion, is calculated in most practical methods of simulation of earthquake ground 

motions. 

 

 

3. Stochastic modeling of power spectral density of ground motions 
 

The main goals of engineering seismology in interpretation of ground motions are to improve 

the understanding of the physical processes that control ground motions and to develop reliable 

estimates of ground motions for use in engineering analyses. The stochastic methods that model 

ground motions as a random process and band-limited white noise are suitable for engineering 

applications for intermediate- to high-frequency structures. The well-known simple Kanai-Tajimi 

filter (Kanai 1957, Tajimi 1960) and a more recently developed seismological model (Brune 1970, 

1971, Hanks and McGuire 1981, Boore and Atkinson 1987, Boore 2003) apply a band-pass filter 

in the frequency domain to mold the FAS and the corresponding PSD of the earthquake ground 

motion.  

Seismological methods use stochastic models of the seismic source and wave propagation to 

simulate ground motions. The widely used point-source methods, which do not require 

information about the fault geometry, can predict high-frequency ground motions with acceptable 

accuracy (Boore 2003). To overcome the limitations of point-source models, stochastic finite-fault 

models should be used to simulate ground motions in the frequency range of engineering interest 

(Beresnev and Atkinson 1998, Motazedian and Atkinson 2005). In finite-fault simulations, the 

fault is subdivided into a number of subfaults, each of which is modeled using a point-source 

model. The point-source approach offers the advantages of simplicity and stability; the finite-fault 

model involves more parameters and requires average simulations over many azimuths and slip 

distributions. Atkinson and Silva (2000) postulated that the use of a point-source model with a 

two-corner source spectrum is equivalent to the use of a finite-fault model comprised of point-

source subfaults. They indicated that two-corner point-source and finite-fault stochastic models 

will generate similar median ground motions, when averaged over all azimuths. In a seismological 

model, the FAS can be expressed as the product of a number of functions (Boore 2003) 

)exp())(exp()()(),()( 0  fRffAfGfMEfY                                  
(7) 
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where f and M0 are the frequency and the seismic moment, respectively.  

R is equal to 22 hdR  with d being closest distance to the fault plane and h is equivalent 

point-source depth is a function of fault size, and hence earthquake magnitude (Atkinson and Silva 

2000). The terms E(M0,f), G(f), and A(f) are the earthquake source spectrum, the geometric 

spreading function, and the upper crust amplification factor, respectively. The anelastic 

attenuation, γ(f), is determined from the regional wave transmission quality factor, namely, the Q 

factor. The high-frequency amplitudes are reduced by near-surface attenuation, which is assumed 

to be independent of distance, through the kappa factor. The two-corner source spectrum can be 

described using the following functional form (Atkinson 1993) 

]))/(1/[])/(1/[)1(()2(),( 22
0

2
0 ba ffffMfCfME                            

(8) 

The constant C indicates the effect of the radiation pattern, the partition of total shear wave 

energy into horizontal components, the effect of the free surface, and the density and shear-wave 

velocity in the vicinity of the earthquake source. In this equation, the lower corner frequency, fa, is 

related to the size of the finite fault and is determined by the source duration, and the higher corner 

frequency, fb, is related to the subfault size and is the frequency at which the spectrum attains 1/2 

of the high-frequency amplitude level (Atkinson 1993). The parameter ε is a relative weighting 

parameter whose value lies between 0 and 1. These two corner frequencies and ε can be derived by 

regression analysis using recorded data, after correcting for path and site effects in different 

regions. The PSD function can be calculated from the above-simulated FAS as follows 

w
TfYfS

2
)()(                                                               (9) 

where Tw is the earthquake ground motion duration. The time duration is related to the earthquake 

size and the propagation distance. A simplified form of the distance-dependent term (0.05R) is 

adopted in this study, and the rupture duration part is assumed to be predicted by 1/(2fa) 

(Boatwright and Choy 1992).  

 

 

4. Numerical results 
 

The stochastic procedure has been applied to the estimation of the root mean square 

displacement and displacement spectrum of bilinear systems with nonlinear restoring forces, as 

shown in Fig. 1. The accuracy of the procedure used to calculate the linear and nonlinear response 

is assessed by comparison with the results of conventional TD response analysis for recorded 

earthquakes. 

The multiple free-field stations that recorded strong motions from the Mw 6.7 1994 Northridge, 

California mainshock are considered (Chang et al. 1996, Beresnev and Atkinson 1998). The 

locations of the 16 rock stations used in the validation are shown in Fig. 2, surrounding the fault at 

various azimuths. The distribution of these stations provides reasonable coverage of the directivity 

effects from the mainshock rupture (Table 1). 

Raoof et al. (1999) determined that the California attenuation can be modeled by bilinear 

geometrical spreading of R
-1

 to a distance of 40 km, with R
-0.5

 spreading for distances greater than 

40 km. The anelastic attenuation associated with this spreading model is represented by a 

frequency-dependent regional quality factor given by Q=180f 
0.45

.  

Atkinson and Silva (2000) adopted the value of κ=0.03 to reduce the high-frequency 
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Table 1 The stations used in the validation 

Station 

name 
Lat. Long. Location Distance

(1) 
Agency 

BCY 34.204 -118.302 USC #59 16.88 USC
(2)

 

GPK 34.120 -118.300 Los Angeles~3riffith Observatory 23.77 USGS
(3)

 

L09 34.610 -118.560 Lake Hughes #9 25.36 CDMG
(4)

 

LF5 34.127 -118.405 USC #14 18.36 USC
 

LPK 34.109 -119.065 Point Mugu-Laguna Park 41.93 CDMG 

LUH 34,062 -118.198 Los Angeles-University Hospital Grounds 34.2 CDMG 

LV3 34.596 -118.243 Leona Valley #3 37.33 CDMG 

LWE 34.114 -118.380 USC #17 20.3 USC 

LWS 34.089 -118.435 USC #16 20.81 USC 

MCN 34.087 -118.693 Malibu Canyon-Monte Nido Fire Station 27.4 USGS 

MSM 34.086 -118.481 USC #15 20.45 USC 

MTW 34.224 -118.057 Mt. Wilson-Caltech Seismic Station 35.88 CDMG 

ORR 34.560 -118.640 Castaic-Old Ridge Route 20.72 CDMG 

RHE 33.787 -118.356 Rolling Hills Estates-Rancho Vista School 49.32 CSMIP 

SSA 34.231 -118.713 Santa Susana 16.74 DOE
(5)

 

SCT 34.106 -118.454 Stone Canyon Reservoir Dam 19.5 SCEC
(6) 

(1)
Closest distance to fault in kilometers,

 (2)
University of Southern California, 

(3)
United States Geological 

Survey,
 (4)

California Division of Mines and Geology, 
(5)

DOE: Department of Energy, 
(6)

Southern California 

Earthquake Center 

 

 
Fig. 2 The locations of the stations used in the validation, surrounding the fault at various azimuths. The 

trace-by-trace simulations are presented in Figs. 3 and 4. The dark triangles mark the rock stations, 

surrounding the fault plane at different azimuths. The epicenter is marked with a star 

 

 

amplitudes. In building codes, the lack of information concerning actual amplification factors can 

be overcome by the use of mean amplification factors based on the average 30-m shear wave 
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velocity to characterize local site conditions. As Lee and Trifunac (2010) have mentioned, the 

average 30-m shear wave velocity may be an inadequate and hugely uncertain parameter by which 

to characterize local site conditions, but its effect is considered in this study in light of its 

widespread usage in building codes. Thus, the crustal amplification is modeled by multiplying the 

spectrum by the frequency-dependent crustal amplification factors of Boore and Joyner (1997) for 

California sites. The values of the regional physical constants of crustal density and shear wave 

velocity in the source region are taken to be 2.8 gm/cm
3
 and 3.5 km/sec, respectively (Boore and 

Joyner 1997). The linear functions to predict the magnitudes of the dependent corner frequencies fa 

and fb and the relative weighting factor ε, derived from California data, are listed as follows 

(Atkinson and Silva 1997) 

w

wb

wa

M

Mf

Mf

623.0764.2log

302.0778.1log

496.0181.2log









 (10)
 

 

 

 
Fig. 3 Recorded and simulated 5%-damped linear displacement spectra (ductility ratio equal to one) at the 

stations surrounding the fault plane. The station locations are shown in Fig. 2. The observed spectra 

computed by the TD method and simulated spectra computed by RV procedure are shown by the solid 

and dashed lines, respectively 
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where Mw is the moment magnitude. The seismic moment M0 is often expressed in terms of the 

moment magnitude Mw, according to the following equation (Kanamori 1977) 

05.165.1log 0  wMM                                                          (11) 

The values of the damping ratio and the post- to pre-yielding stiffness ratio are assumed to be 

0.05 and 0.03, respectively.  

To assess the accuracy of the proposed procedure, the displacement response spectra for 

constant ductility ratios equal to 1 and 4 at the different stations were computed by the RV 

method, using the simulated FAS based on given seismological parameters, and by the TD 

method, using the recorded ground motions shown in Figs. 3 and 4. For comparison, the geometric 

average of the spectra of the two horizontal components of recorded data is used. On average, the 

mach is satisfactory but not necessarily accurate. Taking into account the simplicity of the model 

and the effect of variability of ground motion variables, the fit can be considered satisfactory at the  

 

 

 
Fig. 4 Recorded and simulated 5%-damped nonlinear displacement spectra (ductility ratio equal to 4) at 

the stations surrounding the fault plane. The station locations are shown in Fig. 2. The observed spectra 

computed by the TD method and simulated spectra computed by RV procedure are shown by the solid 

and dashed lines, respectively 
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Fig. 5 The mean ratio between inelastic and elastic displacement spectra averaged over all stations. The 

ratios of inelastic-to-elastic observed spectra computed by the TD method and simulated spectra 

computed by RV procedure are shown by the solid and dashed lines, respectively 

 

 
(a) µ=1 

 
(b) µ=4 

Fig. 6 Model bias showing the ratio of the observed to simulated response spectrum, averaged over all 

stations shown in Fig. 2. The observed spectrum at each site is calculated as the geometric average of 

the spectra of two horizontal components. The dashed lines indicate a band ±1 standard deviation 

wide. The hatched bands indicate the 95% confidence limits of the mean 
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structural period of engineering interest. The scatter in these figures does not necessarily indicate 

the weakness of the used RV procedure, since the input parameters to the seismological model 

only define the average conditions and do not provide information on their variability.  

The stochastic seismic response based on seismological information of the excitation is 

particularly useful for prediction of response for regions of the world in which recordings of 

motion from potentially damaging earthquakes are not available. The stochastic method is useful 

for estimating mean response of systems expected for a suite of earthquakes having a specified 

magnitude and fault station distance.  

Fig. 5 indicate the mean ratio between inelastic-to-elastic displacements tend to be equal to 1 in 

the period range from 0.3 s up to 2 s, as already observed in previous studies (Miranda 2000, Borzi 

et al. 2001, Ruiz-Garcia and Miranda 2003). The results confirm the established observation that 

elastic and inelastic systems in structural period of engineering interest reach similar maximum 

displacements. 

Fig. 6 presents the mean modeling bias for the all stations shown in Fig. 2. The bias is defined 

as the ratio of the observed to the simulated (Abrahamson et al. 1990, Atkinson and Boore 1998) 

response spectra, averaged over all stations. The traces of this figure present the model bias 

calculated for different ductility ratios. The standard deviation provides a measure of the 

prediction uncertainty for individual stations, while the confidence band of the mean provides a 

measure of the uncertainty of the mean bias of the model. The dashed lines indicate a band ±1 

standard deviation wide. The hatched bands indicate the 95% confidence limits of the mean, 

calculated on the basis of the t distribution. The modeling bias for the event is not significantly 

different from zero, considering the width of the confidence interval. From Fig. 6, it is concluded 

that the (logarithm base 10 of) the mean ratio of the simulated to the observed spectra is close to 

zero at the structural period of engineering interest. This means that the stochastic procedure 

employed adequately predicts the linear and nonlinear response on average, although the 

uncertainties in predictions at individual sites may be relatively large. 

 
 
5. Conclusions 
 

The earthquake response spectra can be simulated using either TD method or RV theory 

simulations. In the estimation of dynamic responses, a suite of ground motion time histories needs 

to be utilized in linear and nonlinear TD analysis. These ground motions are limited by the amount 

of available strong motion data and by the fact that they are based on combined recorded data sets 

from different earthquakes recorded in different regions. In some locations for which there is a 

lack of sufficient recorded data, well-known stochastic models are customarily used to simulate 

strong motions for the purpose of structural analysis. Stochastic simulations of ground motion can 

be used for generic or region-specific applications rather than path-specific applications, for which 

the average motions from a suite of earthquakes rather than a scenario earthquake are desired 

(Boore 2009). On the other hand, many researchers introduced the critical ground motion inputs to 

determine the worst case scenario in structural analysis (Takewaki 2002a, 2002b, 2005, 2006, 

Moustafa et al. 2010). The stochastic point-source model with a two-corner source spectrum, 

which was used in this study, despite possessing some theoretical deficiencies, yields results 

similar to those obtained using finite-fault methods for the ground motion frequencies at moderate 

and large distances from the fault that are of most interest to engineers (Beresnev and Atkinson 

1999, Atkinson and Sillva 2000, Boore 2009). 
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The uncertainty in basic variables depends on the circumstances and can be categorized as 

aleatory or epistemic. The uncertainty due to inherent variability in structural variables or the 

earthquake source and path and site condition variables is aleatory in nature and cannot be reduced 

by acquiring additional data or information. Model uncertainty may arise from missing variables in 

the mathematic model, perhaps due to our lack of knowledge about these missing variables or our 

desire to exclude them from the model for the sake of simplicity. Model uncertainty, often called 

statistical uncertainty, is epistemic in nature. Insufficient knowledge of the mean values of 

structural and seismological variables, which can be classified as epistemic uncertainty, plays an 

important role in the bias of the model. Yazdani and Takada (2011) showed analytically that 

earthquake source and soil condition variables are the main sources of uncertainty in predicting 

spectral response. Thus, the aleatory uncertainty of the earthquake variables and the epistemic 

uncertainty of the used procedure are responsible for the uncertainty in the prediction of nonlinear 

spectral response. 

This study presents a procedure based on RV theory for estimation of the stochastic seismic 

response of hysteretic systems based on seismological information for the site of interest. Despite 

the uncertainties mentioned, formulating a response spectrum using RV simulation on the basis of 

information on the frequency excitation opens the door for wider use of seismological theory in 

understanding the relationship between the linear and nonlinear response spectra and the 

seismological variables of interest. The approximate solution for the bilinear hysteretic oscillator 

considered in this study provides a basis for obtaining exact solutions for realistic and non-

stationary excitations, such as earthquake ground motions. Due to the simplicity and 

computational efficiency of the method, it provides an accurate prediction of the observed 

nonlinear response spectra on average for structural periods of engineering interest. 
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