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Abstract.  The reliability or the safety index is a measure of how far a structure is from the state of collapse. 

Also it defined as the probability that a structure will not fail in its lifetime. Having any increase in the 

reliability index is typically interpreted as increasing in the safety of structures. On the other hand most of 

researchers acknowledged that one of the most effective means of increasing both the reliability and the 

safety of structures is to increase the structural redundancy. They also acknowledged that increasing the 

number of vertical seismic framing will make structural system more reliable and safer against stochastic 

events such as earthquakes. In this paper the reliability index and the behavior factor of a numbers of three 

dimensional RC moment resisting frames with the same story area, equal lateral resistant as well as different 

redundancy has been evaluated numerically using both deterministic and probabilistic approaches. Study on 

the reliability index and the behavior factor in the case study models of this research illustrated that the 

changes of these two factors do not have always the same manner due to the increasing of the structural 

redundancy. In some cases, structures with larger reliability index have smaller behavior factor. Also 

assuming the same ultimate lateral resistance of structures which causes an increase to a certain level of 

redundancy can enhance behavior factor of structures. However any further increase in the redundancy of 

that certain level might decrease the behavior factor. Furthermore, the results of this study illustrate that 

concerning any increase in the structural redundancy will make the reliability index of structure to be larger. 
 

Keywords:  redundancy; the deterministic overstrength index; the probabilistic overstrength index; the 

reliability index; the behavior factor 

 

 

1. Introduction 
 

Although the importance of structural redundancy and reliability has long attracted the attention of 

researchers, structural redundancy became the focus of research in the structural engineering 

community especially after the 1994 Northridge and the 1995 Kobe earthquakes. Since that time many 

definitions and interpretations of redundancy and the redundancy factor in both scopes of quantity and 

quality have been suggested. Among which the following definitions may be mentioned. 
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1.1 Definitions of redundancy 
 

Redundancy is the ability of a structural system to redistribute the loads among its members 

which can no longer be carried by some other damaged parts (Biondini et al. 2008). The second 

definition which described by Hendavi and Frangopol (1994) is the ratio of the probability of any 

first member yielding which may occurs in the intact structure minus the probability of the 

collapse of the intact structure to the probability of collapse of the intact structure. Yet, another 

definition indicates that in order to prevent immediate collapse of structures and to achieve 

progressive collapse, the redundancy can create alternative load path to transfer damaged 

member’s load from minor members to major members of structure (Marhadi and Venkataraman 

2009). Yet, other definition denotes that the number of plastic hinges of the structural system that 

fails when structure collapses, can be used to investigate the redundancy of frame structures based 

on both static and dynamic analyses (Bertero and Bertero 1999). According to this research, degree 

of redundancy is actually the number of plastic hinges in a structural system which continues to 

yield until the structure exceeds the allowable limit leading to emergency disasters like plastic 

displacement or complete collapse. 
 

1.2 Redundancy factor 
 

Some researchers defined an analytical parameter as redundancy factor according to the lines of 

vertical seismic framing at any direction. Moses (1974) studied the effect of redundant wind 

framing systems in a quantitative way. The degree of indeterminacy of the structure was suggested 

to be a parameter to evaluate the degree of redundancy of the structure, e.g., a weakest-link system 

(serial systems or statically determinant structure) versus a parallel system (statically indeterminate 

structure). In ATC-19 and ATC-34 (1995), it was denoted that the reliability of the framing system 

against seismic load depends on the number of lateral load resistant components. Also it was 

proposed that a behavior factor of R can be divided into three factors, a period dependent strength 

factor (Rs), a period dependent ductility factor (Rμ), and a redundancy factor (RR). In all 

aforementioned references, for structures that consist of 4, 3 and 2 lines of vertical seismic framing 

in any principal direction, the amounts of the proposed redundancy factor are 1, 0.866 and 0.71 

respectively. Husain and Tsopelas (2004) attempted to measure the structural redundancy of 2D 

RC frames. They considered two factors as the redundancy strength and the redundancy variation 

coefficients. They studied on the relation between these two indexes and the plastic rotation 

ductility factor. The effects of number of stories and bays, length of bays and story height were 

studied as well as the effect of redundancy on the behavior factor (RR).  
 

1.3 Reliability factor 
 

It is noticeable that the reliability/redundancy factor, ρ, is added to NEHRP, UBC and IBC 

codes after 1997. This factor is applied to horizontal design earthquake load. The ρ factor is a 

function of the system configuration and number of seismic components and does not depend on 

the inherent structural parameters such as overstrength and ductility (Wen and song 2003, Liao and 

Wen 2004).The uncertainly in structural demands versus capacities of structural systems are 

evident in the most qualitative definitions that have been formulated for redundancy. Hence many 

researchers study the effects of redundancy on reliability index and behavior factor using both 

deterministic and probabilistic approaches. Wen et al. (2003) studied on the reliability/redundancy 
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of structural behavior under SAC ground motions. They notified that when more elements are 

involved in resistance against lateral load, the probability of collapse of all elements at the same 

time is lower than the case when elements with equal resistance are involved. 

In addition to the above definitions, other approaches have also been applied in the case of 

redundancy that the following can be noted. Okasha and Frangopol (2010) investigate the time-

variant redundancy of structural systems. They studied structural reliability and redundancy 

affected by deterioration in structural resistance and increase in applied loads are conducted by 

using numerical examples. Kanno and Ben-Haim (2011) developed a quantitative and widely 

applicable concept of strong redundancy and showed its relation to the info-gap robustness of the 

structure. 
The review of previous researches indicate that the general opinion in conjunction with the 

overstrength capacity of a structure which is explained by the process of first local yielding to total 

failure can be considered based on structural redundancy. Furthermore, results of some other 

researches indicate this part of overstrength capacity can be introduced as the redundancy factor. 

Yet, another notified criterion which has been obtained from the researches is a parameter 

according to the lines of vertical seismic framing and the theory of structural reliability which can 

be formulated as the redundancy factor. This new factor is independent of the overstrength 

reduction factor in the analytical definition of the behavior factor. Now, a general conceptual 

question is why structural redundancy has been regarded as a desirable property. Is it desirable that 

because of assigning an upper level of overstrength capacity to design process or just increasing 

the number of seismic resistant frames as well as increasing the reliability of the systems, would 

able to achieve to better level of structural performance. In this research upon to considering the 

strength factor as a random variable, both deterministic and probabilistic effects of redundancy on 

the reliability index and the behavior factor of structures with equal lateral resistance were 

evaluated. 

 

 

2. Components of the behavior factor 
 

The existence of some mechanical properties such as ductility, damping, overstrength and 

redundancy cause that structural systems have the ability of dissipation of earthquake input energy. 

It should be noted that the aforementioned characters would make structural systems able to 

dissipate all of the input design earthquake energy with an overall inelastic deformations and 

redistribution of the seismic forces. Having a review on early 1990s researchers show a 

comprehensive reformulation on accuracy and reliability of the behavior factor in which to analyze 

this factor into its constituent parameters. Most researchers and some seismic regulations agree on 

factors such as ductility capacity, overstrength, redundancy and structural damping. According to 

these studies a conceptual formula has been obtained to calculate the behavior factor (Yang 1991). 
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where Rw is the behavior factor using allowable stress design approach, Rs is total the overstrength 

reduction factor, Rμ is the ductility reduction factor, RR is the redundancy factor and Rξ is the 

damping factor. Assuming 5% damping ratio, the amount of Rξ should be considered as unit. The 

symbol of RR in some researches is defined as the overstrength capacity which is resulted from the 

process of first significant yielding until total failure. 
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Fig. 1 The capacity curve and components of the overstrength 

 
 
2.1 Total overstrength reduction factor 

 

The results of researches show that the overstrength capacity which is displayed by a framed 

structural system is composed of two parts according to Fig. 1. The first part of the overstrength 

capacity is obtained from the design requirement base shear coefficient until that base shear 

coefficient which first local yielding is formed. This part of the overstrength is arising from 

restricted choices for member sizes, rounding up of sizes and dimensions and differences between 

the nominal and the factored resistances. This part of the overstrength can be calculated according 

to Eq. (2) (Yang 1991, Massumi et al. 2004). 
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Ω                                  (2) 

The second part of the overstrength capacity of a structure should be explained by the process 

of first local yielding to total failure which is due to structural redundancy and steel strain 

hardening. When structural members yielding started, then the redistribution of internal force will 

happen. This process is related to structural redundancy and has obvious influences on failure 

mechanism. Hence the overstrength capacity that is created after first local yielding formed until 

total failure (i.e., state of instability) can be calculated according to Eq. (3) (Yang 1991, Massumi 

et al. 2004). 
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After determination of the two components of overstrength, the total value of the overstrength 

reduction factor is obtained according to Eq. (4). 
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It is evident that the main reason to cause overstrength in Eq. (3) is the structural redundancy. 

Hence in some researches this part of overstrength introduced as the redundancy factor (Husain 

and Tsopelas 2004, Fallah et al. 2009). Additionally, in the recent both aforementioned researches 

this part of overstrength introduced as the redundancy factor that included both deterministic and 

probabilistic effects of the redundancy in 2D resisting moment frames. In the present paper both 

deterministic and probabilistic effects of the redundancy in 3D resisting moment frames with equal 

lateral resistance has been evaluated as the overstrength due to the redundancy. 

 

2.2 Ductility reduction factor 
 

Based on idealizing the capacity curve to an ideal elastic - perfectly plastic curve as shown in 

Fig. 1, the overall ductility capacity can be expressed according to Eq. (5) (Yang 1991, Massumi 

and Tasnimi 2006). 

y
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Δ

Δ
μ                                        (5) 

The structural system is able to dissipate input seismic energy because of the structural 

ductility. Furthermore, based on the energy dissipation capacity of the structure the elastic design 

forces can be reduced to level of total failure (i.e., state of yielding). 

y

eu
μ

c

c
R                                   (6) 

Several researches in devising and establishing an analytical relation between μ and Rμ have 

been done. In the present paper, the results of research done by Miranda and Bertero (1994) are 

used. The equation for the ductility reduction factor introduced by Miranda and Bertero was 

obtained from a study of 124 ground motions recorded on a wide range of soil conditions. The soil 

conditions were classified as rock, alluvium and very soft sites which characterized by low shear 

wave velocity. A 5% of critical damping was assumed. The expressions for the period - dependent 

force reduction factors Rμ are given by 

  1
φ

1μ
μT,Rμ 


                             (7) 

where Φ is a function of total ductility, period of system and soil conditions which obtained from 

Eq. (8). The factor of Φ in Eq. (8) is for the alluvium soil condition. 
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3. Indices for evaluating the effects of redundancy 
 

For the sake of assessing both deterministic and probabilistic effects of the redundancy on the 

reliability index and the behavior factor, a couple of indices which named the deterministic 

overstrength index and the probabilistic overstrength index are introduced. The deterministic 

overstrength index Ωdet reflects the ability of a structural system to redistribute loads from failed or 
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yielded components towards more resistant components. This factor is a function of static 

indeterminacy, ductility of components, strain hardening, and average strength of elements of the 

structural system. The second index is a probabilistic overstrength index Ωpro. This index 

quantifies the effects of probabilistic variables of element strength on the structural system 

strength. This index is also a function of static indeterminacy of the structural system, and the 

correlation coefficient between elements strength. The overall effects of redundancy on the base 

shear coefficient of a structural system could be quantified through the subsequent ratio (Husain 

and Tsopelas 2004, Fallah et al. 2009). 

redunon,

redu

c

c                                   (9) 

where credu is the ultimate base shear coefficient of the redundant structure; and cnon-redu is the base 

shear coefficient of the same structural system as if it was non-redundant (statically determinate). 

A structural system composing of ideal elastic-brittle elements could be dependably used to model 

a non-redundant structural system. In such a determinate structure, initial yielding would cause the 

state of collapse if the strength reserves of the undamaged elements have been exhausted. 

Accordingly, assuming elastic brittle behavior of structural elements, the point of first yielding in a 

structural system can be considered as a reasonable approximation of the base shear coefficient for 

the determinate structure. Therefore cnon-redu in Eq. (9) can be substituted by cs, which is the base 

shear coefficient of the structural system at the point of the first yielding. The deterministic 

overstrength index Ωdet is defined as the ratio of average ultimate to average yield base shear 

coefficient, as follows (Husain and Tsopelas 2004, Fallah et al. 2009). 
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Ω                              (10) 

In Eq. (10) assuming the base shear coefficient as a random variable, to evaluate the 

deterministic overstrength index, the average ultimate base shear coefficient c̅y and the average 

base shear coefficient of structural system at the point of first yielding c̅s were used. In this paper 

c̅y and c̅s are calculated based on the base shear coefficient versus overall drift curve resulting 

from the nonlinear static pushover analysis (Fig. 2). Therefore Ωdet considered as a deterministic 

value of the overstrength due to both the structural configurations and the redundancy. Ωdet=1 

indicates a determinate (non-redundant) structure. Also values higher than 1 indicate redundant 

structures (Husain and Tsopelas 2004, Fallah et al. 2009). 

 

3.1 The probabilistic overstrength Index 

 

To obtain a formulation for the probabilistic overstrength index, a two dimensional plane frame 

which has particular failure mode is considered as a general structural system. The selection of the 

failure mode would be significant, since it could lead to non-accurate estimates of Ωpro but for 

simplicity in the current derivation, a sway type failure mode is assumed as shown in Fig. 3. This 

failure mode is based on the strong column and weak beam assumption which can achieve under 

some lateral loadings such as monotonic loadings. 

The relation between the structural system base shear coefficient and the local component 

strengths could be formulated using principles of plastic analysis. The frame ultimate base shear 

coefficient for selected failure mode could be represented by the following expression 

1000



 

 

 

 

 

 

Structural reliability index versus behavior factor in RC frames with equal lateral resistance 

 

 
Fig. 2 How to get c̅y and c̅s Fig. 3 Sway type failure mode of a general 2D frame 

 

 

ii

n

1i MΨΣc                                 (11) 

where c is frame ultimate base shear coefficient; n is the number of plastic hinges in the frame 

resulting from the sway failure mode; Mi is yield moment of the structural element where plastic 

hinge “i” is formed; and Ψi is coefficient with unit of radians/(length. Mass) that is a function of 

the plastic rotation and geometry of the structure. Eq. (11) is the form of the strength (i.e., base 

shear coefficient) equation of a parallel system that its total base shear coefficient is obtained from 

summations of elements strength. The average value of the frame ultimate base shear coefficient 

can be derived from the following formula (Husain and Tsopelas 2004, Fallah et al. 2009) 





n

1i

ii MΨc                               (12) 

where M̅i is average value of the strength of the structural element where plastic hinge “i” is 

formed. Accordingly the standard deviation of the frame base shear σf can be calculated from 

following Equation 
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n

1i

n

1j

MjMiijjif σσρΨΨσ                          (13) 

where ρij is the correlation coefficient between the strengths Mi and Mj. The parameter of σMi is the 

standard deviation of the yield moment Mi. Also ρij=1 for i=j. To simplify the above derivation, a 

regular multistory multi-bay frame with the following properties is considered. 

1. The frame is made up of components with exactly the same normally distributed strengths. 

eji MMM   

2. The correlation coefficient between the strength of any two pairs of components is the same. 

eij    

3. The bays of the frame have equal spans and the stories have same height which result in 

ΨΨΨ ji   
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Hence, both Eqs. (12) and (13) become 

eMn.Ψ.c                                (14) 

  eef ρ1nnnΨ.σσ                          (15) 

The following relationship between the coefficient of variation (COV) of the frame strength vf 

and the COV of the element strength ve is calculated through dividing Eq. (15) by Eq. (14) (Husain 

and Tsopelas 2004) 

   
n

ρ1n1
v

n

ρ1n1

M

σ

c

σ
v e

e

e

e

ef
f





              (16) 

The probabilistic overstrength index Ωpro is defined as the ratio between vf and ve 
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                         (17) 

For a parallel system with unequally correlated elements, ρe could be substituted with the 

average correlation coefficient 𝜌̅ which defined as 
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                             (18) 

Therefore, Eq. (17) can be modified using the average correlation coefficient of strengths of the 

structural elements, as follows 

 
n

ρ1n1
Ωpro


                           (19) 

Hence the probabilistic overstrength index, Ωpro, is a function of the number of plastic hinges, 

n, and the average correlation coefficient between their strengths, 𝜌̅, and presents a way for 

measuring probabilistic effects of the redundancy on the system strength. Its values range are 

between 0 and 1; for a framed structure where a single plastic hinge causes total failure (n=1), 

Ωpro=1 and the structure under consideration is non-redundant. The other extreme value Ωpro=0 

reveals an infinitely redundant structural system and is reached either when an infinite number of 

plastic hinges are required to cause total failure or when element strengths in a structure are 

uncorrelated. Ωpro can be estimated from a deterministic pushover analysis or an incremental 

dynamic analysis for a particular value of the average correlation coefficient of the structural 

member’s strength (Husain and Tsopelas 2004, Fallah et al. 2009). 

Eq. (19) represents the probabilistic overstrength index for 2D frames or in other words, for a 

single line of resistance within three-dimensional lateral load resisting systems. In real structures, 

which are composed of a number of 2D frames, the probabilistic effects of the redundancy due to 

plurality of the lateral lines of resistance on the structural strength have to be accounted in the 

probabilistic overstrength index Ωpro. Hence, it is considered a structural system with m parallel 

identical rigid plane frames. Assuming that 3D framed structures collapse after the demolition of 

m−1 plane frames, then the overall system completely loses its both lateral and torsional 
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resistances and becomes instable. The 3D frame now can be modeled as a parallel or a Daniel’s 

system (Gollwitzer and Rackwitz 1990). The mathematical representation of the coefficient of 

variation of its strength is given from the following equation (Husain and Tsopelas 2004). 

 
1m

ρ2m1
vV f

fs



                            (20) 

where vs is COV of the strength of the 3D structural system; vf is COV of the strength of the plane 

frames; and 𝜌̅𝑓is average correlation between the strengths of the plane frames. The probabilistic 

overstrength index Ωpro of a 3D structural system is defined as the ratio between vs and ve, which 

can be written as follows 
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Ω                             (21) 

where vs and vf are defined above and ve is COV of the strength of the elements comprising the 3D 

structure (beams, columns, etc.). By virtue of Eqs. (20) and (21) the probabilistic overstrength 

index of a 3D structural system can be expressed as 

   
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ρ1n1
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Ω f

e
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





                    (22) 

where n is number of plastic hinges formed in one frame (structure consists of identical 2D 

frames) of the structure at its ultimate state; and m is number of plane frames that contribute to the 

lateral resistance of the 3D structure (Husain and Tsopelas 2004). 

Fig. 4(a), (b) plots Eq. (22) for two values of the average correlation coefficient for the frame 

and element strengths, 0 (uncorrelated) and 0.8 (strongly correlated). In addition, it is considered 

that 3D structures with four and seven parallel plane frames. Fig. 4(a) plots Eq. (22) for system 

with low degree of indeterminacy. Also Fig. 4(b) plots Eq. (22) for system with high degree of 

indeterminacy. 

 

 

  
(a) Low degree of indeterminacy (b) High degree of indeterminacy 

Fig. 4 Variation of the probabilistic overstrength index versus the number of plastic hinge and the 

average correlation coefficient 
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Any changes of Ωpro in systems that fails with more plastic hinges (true-scale and more realistic 

structures) in comparison with those that fails with less plastic hinges (ideal systems with low 

degree of indeterminacy) are more dependent on the average correlation coefficient of resistance. 

Also it is evident from the figs that structures with correlated element strengths cannot claim the 

advantage of increased redundancy whereas structures with uncorrelated elements experience 

increased redundancy due to its probabilistic effect. 

 

3.2 Redundancy based overstrength using deterministic and probabilistic approaches  
 

The overall effects of redundancy on the structural strength can be completely described by the 

ratio of the ultimate base shear coefficient of a structural system over the base shear coefficient of 

the same, but determinate (non-redundant) structure. Thus in this study the formulation of the 

overstrength due to the redundancy, i.e., Ωredu using deterministic and probabilistic approach is 

based on the following expression 

redunon,

y

redu
c

c
Ω                             (23) 

where cy is the ultimate structural system base shear coefficient which includes all the effects of 

the redundancy and cnon-redu is base shear coefficient of the same but non-redundant structural 

system. Assuming that the strength of a structure is normally distributed, the characteristic or 

design strength of the structural system can be expressed as a function of its mean value, its 

standard deviation, and its standard form k. Therefore both cy and cnon,redu can be written as follows 

in Eqs. (24) and (25) 

fyy kσcc                              (24) 

redunon,redunon,redunon, kσcc                       (25) 

where σf is the standard deviation of the frame strength; σnon,redu is the standard deviation of the 

non-redundant frame strength; c̅y is average of the ultimate frames base shear coefficient; and 

c̅non,redu is average of the non-redundant base shear coefficient. An expression for σf could be 

obtained as follows 

redunon,edetprof cvΩΩσ                           (26) 

Substituting recent relation with the cy formula, the following equation is obtained 

  redunon,eprodetredunon,edetproredunon,dety cvΩ1ΩcvΩkΩcΩc          (27) 

and finally with placing the above relations in Eq. (23), then a conceptual relation for Ωredu is 

obtained. 
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where 
redunon,

redunon,

redunon,
c

σ
v   defined as the COV of the strength of the non-redundant frame. A non-
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redundant structure could be modeled as a parallel system consisting of ideal elastic brittle 

elements where failure of one element results in the system collapse and the safety index of the 

system is equal to the safety index of the element. For a non-redundant system (i.e., n=1) 

ve=vnon,redu. Therefore the overstrength due to the redundancy using deterministic and probabilistic 

approaches, i.e., Ωredu can be expressed as follows (Husain and Tsopelas 2004, Fallah et al. 2009) 




















e

epro

detredu
kv1

vkΩ1
ΩΩ                         (29) 

For normally distributed strength with the probability between 90% and 95%, k varies between 

1.5 and 2.5. Without any loss of generality, the following values of the COV of the element 

strength could be used, ve=0.08–0.14, which were derived for gravity load effects and not used for 

extreme load effects. Whence, an average value of 0.2, for the product of kve, could be used with 

reasonable accuracy in evaluating the effect of Ωdet and Ωpro on Ωredu. According to recent equation 

and amount intended to kve, Ωredu has been rewritten as follows (Fallah et al. 2009). 

 
prodetredu 0.2Ω11.25ΩΩ                        (30) 

Fig. 5 plots Ωredu versus Ωpro for different values of Ωdet. The probabilistic effect of redundancy 

on a structural system could be assessed from Fig. 5. The curve for Ωdet=1.0 corresponds to a “non-

redundant” system or a system consisting of ideal elastic-brittle elements. For kve=0.2 the 

probabilistic effect of redundancy on the strength of a system could not exceed 25%, that is for a 

system with Ωpro=0, and accordingly the highest value for Ωredu is 1.25. On the other hand, for a 

given structure with minimal probabilistic redundancy effect, Ωredu is proportional to Ωdet. 

Fig. 6 describes qualitatively overall effect of the redundancy on the structural strength in terms 

of the previously introduced redundancy indices. The deterministic effect captured by the 

deterministic overstrength index Ωdet (mainly effects due to structural indeterminacy) shifts the 

probability density function of the non-redundant system strength towards higher values to the 

right, without any shape changes. On the other hand, the probabilistic effects represented by Ωpro 

result in reduction of the strength uncertainty and accordingly change the shape of the probability 

density curve without changing its average value (Husain and Tsopelas 2004, Fallah et al. 2009). 

 

 

 
 

Fig. 5 Variation of Ωredu with respect to Ωdet and 

Ωpro for structural systems with kve=0.2 

Fig. 6 Effects of redundancy or the overstrength 

indices Ωdet and Ωpro on structural system strength 
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4. The reliability index 
 

An expression for the structural reliability index β as a function of the overstrength indices Ωdet 

and Ωpro is derived as bellows. The reliability or the safety index β is a measure of how far a 

structure is from the state of collapse. The reliability index is a function of both the structural 

strength and the loads which is given by the formula Eq. (31). 

2

L

2

f

y

σσ

Lc
β




                              (31) 

where 𝑐𝑦̅ and 𝜎𝑓 are the average and the standard deviation of the system ultimate base shear 

coefficient. 𝐿̅ and 𝜎𝐿 are the average and the standard deviation of the applied loads on weight 

of structure (load/weight). Substituting 𝑐𝑦̅ = Ω𝑑𝑒𝑡 c̅𝑛𝑜𝑛,𝑟𝑒𝑑𝑢  and 𝜎𝑓 = Ω𝑝𝑟𝑜Ω𝑑𝑒𝑡𝑣𝑒𝑐𝑛̅𝑜𝑛,𝑟𝑒𝑑𝑢  in 

Eq. (31) and using coefficient of variations for the strength and the loads, then the following 

expression is obtained (Husain and Tsopelas 2004, Fallah et al. 2009) 
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where vf and vL are COV of the base shear coefficient and the load per weight of structure of the 

frame. By virtue of vf=Ωpro·ve, Eq. (32) becomes 
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Assuming v =
vL

ve
 and l =

L̅

cnon,redu
 then reliability index is obtained as 
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
                            (34) 

Thus the reliability index β is a function of (a) The system redundancy, by virtue of its two 

measures Ωdet and Ωpro, (b) The COV of the elements of the structure, (c) The deterministic ratio of 

the average load to the average non redundant strength (l), and (d) The ratio of the COV of the 

load to the COV of the element strength (Husain and Tsopelas 2004, Fallah et al. 2009). 

 

 

5. Case study structures 
 

The performance criteria must be defined for structures or structural components to monitor 

response parameters during analyses as well as to estimate the reliability index and the behavior 

factor, too. In this research the interstory limitation were used to stop nonlinear static pushover 

analysis. The interstory drift ratio is limited to 2.5% in nonlinear analysis. This criterion varies 

between 2% and 3% in building codes. The Iranian standard 2800 edition 2 limited interstory drift 

to 3% and the Iranian standard 2800 edition 3 limited interstory drift to 2% for buildings that their 
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period are bigger than 0.7s. Previous researches illustrated that RC resisting moment frames have 

capacity to make more overstrength after reaching interstory drift to 2%. However RC frames 

cannot make more overstrength when interstory drift exceeds from 2.5% (Massumi and Tasnimi 

2006). It is worth mentioning that design methodology of structures based on the standard 2800 is 

according to force based criterion. Nevertheless, design methodology according to this code is 

complying with the life safety performance level approximately. On the other hand, some of codes 

such as IBC2000 cited that reaching interstory drift to 2.5% is comply with the collapse prevention 

performance level approximately. Therefore, the calculated reliability index and the behavior 

factor in this research are evaluated based on reaching interstory drift to 2.5%. 

To achieve the aim of this study, a number of three-dimensional reinforced concrete framed 

structures with the same story area and the same equal lateral resistance were designed. A 

parametric study was devised involving pushover analyses for RC 3D frames with different 

structural characteristics to reflect different levels of system redundancy. All of the RC frames with 

6 and 9 stories and 3, 4, 5, and 6 bays in any direction were analyzed. In order to compute the 

overstrength indices, 8 frame samples from 3 bays to 6 bays at each direction and with six and 

nine stories were designated. The SAP2000 software was used for nonlinear static analyses. 

Furthermore, the defined FEMA356 hinges are also assigned to beams and columns of all 

models.The interacting P-M2-M3 and the moment M3 and shear V2 hinges were used for nonlinear 

behavior of columns and beams, respectively. For nonlinear static analysis, a set of eight designed 

frame structures with high ductility demand were selected. The reason of selecting these models is 

to consider the influence of the number of bays and stories in overall response of 3D bending 

frames with the same of both story area and equal lateral resistance. The bays lengths are 4, 4.8, 6 

and 8 meters respectively and the story height is 3 meters. The case study models were designed 

subjected to an incrementally increasing lateral loads with the pattern of inverted triangular 

distribution as well as constant set of gravity loads. It is noticeable that the ultimate base shear 

coefficient and ultimate lateral resistance of all models should be considered as equal when the 

level of overall drift could reach to 2.5%. For this purpose, an iterative process of trial and error 

was used for selecting sections, analysis, design and amount of sections reinforcement. The 

aforementioned parameters were selected so that the ultimate base shear coefficient and the 

ultimate lateral resistance of all case study models become identical. Considering these constraints 

of the design process, it can be seen that the behavior factors of all 3D frames with allowable stress 

design approach (without considering the probabilistic effects of redundancy), and the total 

overstrength factor (Rs) between the models are constant. Therefore, it is concluded that any 

changes in amount of the calculated behavior factors, would not be related to Rs, and could be due 

to different ductility reduction factors that influenced by the number of bays (redundancy). Equal 

lateral resistance and equal base shear coefficient in case study models clarify the role of 

redundancy and separate the role of redundancy from that of the total overstrength reduction 

factor. Lateral loading in the nonlinear static pushover analysis applied with an inverted triangular 

distribution according to code 2800. This process was done based on imposing a full part of 100% 

of the forces and displacements in x direction as well as a part of 30% of the forces along with the 

y direction, simultaneously. After obtaining the structural capacity curve, the process of bilinear 

idealization of the capacity curve was performed according to the following recommendations 

which denoted by Park (1989) for reinforced concrete members. Accordingly, the effective elastic 

stiffness is obtained as the slope of the line which connects the orient to either the point of first 

yielding or 75% of the ultimate load, whichever is the less. The capacity curve, the bilinear 

idealization, the geometry and reference code of case study models are shown in Fig. 7. 
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Fig. 7 The capacity curve, bilinear idealization, geometry and reference code of case study models 

 

 

6. Results of nonlinear static analysis 
 

The designed structures were analyzed under incrementally increasing lateral loads with 

inverted triangular distribution and constant gravity loads, to estimate essential parameters of the 

behavior factors under static inelastic load conditions. The parameters such as total overstrength 

reduction factors, overall ductility, ductility reduction factor, behavior factor with allowable design 

approach, behavior factor with ultimate strength design approach and ultimately the reliability 

index of structures were estimated numerically. The results are shown in Table 1. As it is shown, 

the total overstrength factors without considering the probabilistic effects of redundancy are 

approximately equal in both of the six floor and the nine floor structures. Although, assuming the 

same ultimate lateral resistance for all of the studied structures, which causes an increase in 

redundancy for up to 5 spans at each direction, can enhance both the overall ductility and the 

inelastic capacity, any further increase in the redundancy (6 spans at each direction) might have a 

negative effect on the overall ductility and behavior factor. It should be implicated that for the 

structures with equal lateral resistance, whatever the force level at which the first plastic hinge is 

formed to be less, then the overall ductility coefficient and the overstrength due to the redundancy 

will be larger. 
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Structural reliability index versus behavior factor in RC frames with equal lateral resistance 

Table 1 Results of static pushover analysis 

Ref. Code T Cw Cs Cy ∆s ∆y Ωs (redu,sth) Ωs (size,ф) Rs μ Rμ Rw 

6F-3@8m 1.13 0.0756 0.1261 0.2013 0.0035 0.0057 1.597 1.648 2.632 4.4 5.42 14.27 

6F-4@6m 1.09 0.0756 0.1111 0.2003 0.003 0.0054 1.803 1.456 2.625 4.6 5.73 15.04 

6F-5@4.8m 1.07 0.0756 0.1006 0.2004 0.0027 0.0054 1.992 1.315 2.620 4.6 5.73 15.01 

6F-6@4m 1.20 0.0756 0.1317 0.2008 0.0042 0.0065 1.525 1.722 2.625 3.8 4.70 12.34 

9F-3@8m 1.61 0.0624 0.0951 0.1472 0.0037 0.0058 1.548 1.524 2.358 4.3 4.82 11.37 

9F-4@6m 1.38 0.0624 0.0906 0.1468 0.0028 0.0044 1.587 1.486 2.358 5.7 6.62 15.61 

9F-5@4.8m 1.39 0.0624 0.0864 0.1470 0.0026 0.0044 1.701 1.385 2.356 5.7 6.60 15.55 

9F-6@4m 1.68 0.0624 0.1030 0.1479 0.0044 0.0063 1.437 1.641 2.359 4.0 4.39 10.36 

 

 
Fig. 8 Variation of Ωpro versus the average correlation coefficient and the number of plastic hinge 

 

 

7. Effects of redundancy on the overstrength and the behavior factor 
 

The Overstrength due to the redundancy which stated in Table 1 is equal to the deterministic 

overstrength index in section 3.1. If it is assumed that the average correlation coefficient of 

members of the 2D frames (𝜌̅) and the average correlation between the strength parameters of the 

plane frames (𝜌̅𝑓)are equal to unit, then it can be concluded that Ωredu values with values of 

Ωs(redu,sth) (Table 1) will be equal. Therefore, probabilistic effects of the redundancy on the 

overstrength of case study models are calculated. The parameter Ωpro in 3D frames is a function of 

four variables which are introduced as n that is the number of plastic hinges formed in one 2D 

frame of the structure at its ultimate state; and m that is the number of plane frames which 

contribute to the lateral resistance of the 3D structure; 𝜌̅ that is the average correlation coefficient 

of all members of the 2D frame, and 𝜌̅𝑓 which is the average correlation due to the strengths of 

plane frames. In this study, the extent of variation of the probabilistic overstrength index by 

changing the average correlation coefficients is much broader than that by changing the number of 

plastic hinges in the real scaled case study models. Assuming the same correlation coefficient of 

resistance for structural members of 2D frames increases the number of plastic hinges in which 

causes very slight decrease in the Ωpro index. Fig. 8 illustrates all changes in the probabilistic  
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(a) 6 floor models (b) 9 floor models 

Fig. 9 variation of Ωredu versus the average correlation coefficients in 6 and 9 floors models 

 

 

overstrength index for three dimensional models of this study based on the assumption of 𝜌̅ is 

equal to 𝜌̅𝑓. 

As can be seen, varying the amount of Ωpro in eight different models with the assumption of 

equality correlation coefficients (𝜌̅ and 𝜌̅𝑓). For a fixed value of them, it is very small and 

negligible. It is reasonable to expect that the values of correlation coefficient of moment frames 

structural systems with more redundancy that designed properly (Strict observance of the weak 

beam and strong column criterion) are lower than the values of correlation coefficient of structures 

with less redundancy. 𝜌̅𝑚𝑜𝑟𝑒,𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡 ≤ 𝜌̅𝑙𝑒𝑠𝑠,𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡 
Thus, the reasonable conclusion is that any increased redundancy causes a reduction in the 

amount of Ωpro index and ultimately causes that the index of Ωredu to be increased .Fig. 9(a), (b) 

illustrate the changes in the overstrength due to the redundancy in all three-dimensional 6 and 9 

story models of this study (𝜌̅=𝜌̅𝑓). 

Based on assuming that all values of the correlation coefficient are equal to unit; the values of 

Fig. 9(a), (b) should be equal to amounts of Ωs (redu,sth)as indicated in Table 1. As can be seen the 

increased redundancy is associated with lower correlation coefficients and causes an increase in 

Ωredu index. It should be noted that, increased redundancy until 5 spans in each direction has been 

able to increase the amount of Ωredu, although if this redundancy increases until 6 spans in each 

direction can reduce the amount of Ωredu. This event can be caused by not observing weak beam 

strong column criteria alike for case study models. Also it can reduce local ductility of beams in 

the models with 6 spans in each direction. Fig. 10 illustrates the changes in total overstrength 

reduction factor in 6 and 9 floor, three-dimensional models of this study (𝜌̅=𝜌̅𝑓). 

Assuming the values of the correlation coefficient is equal to unit; then the values of Fig. 10 

should be equal to the amounts of Rs in Table 1. It is evident that the total overstrength has some 

values in lieu of a certain coefficient in all 6 and 9 floors models individually. Hence, it would be 

notified that the values of correlation coefficients of moment frames with more redundancy which 

have designed properly (satisfying the strong column-weak beam criterion) are lower than 

corresponding values of correlation coefficient due to the structures with less redundancy. Thus it 

is concluded that an increased redundancy according to probabilistic effects would cause the more 

overstrength capacity in structural models which have more redundancy. Fig. 11(a), (b) illustrates 

the changes in the behavior factor based on the allowable stress design approach. 

1010



 

 

 

 

 

 

Structural reliability index versus behavior factor in RC frames with equal lateral resistance 

 
Fig. 10 Variation of total overstrength coefficient versus the average correlation coefficients 

 

 
(a) 6 floor models (b) 9 floor models 

Fig. 11 variation of the Behavior Factor versus the average correlation coefficients 

 

 

Based on assuming the values of the correlation coefficient to be equal to unit, then the values 

of Fig. 11 will be equal to the amounts of Rw which are given in Table 1. It is noted that an 

increased redundancy (i.e., increase in the number of earthquake resistant frames) is associated 

with reducing the mean correlation coefficient of resistance of frame members. Thus the behavior 

factor will be increased. But this increase in the behavior factor is not enough to cover the negative 

effect of excessive redundancy in local ductility of members. Therefore it should be noted that how 

the structural ductility changes with increasing of redundancy in structures. This is because of 

excessive redundancy which has influences upon local ductility of members. 

 

 

8. Evaluation of the reliability index 
 

The reliability index of structures was calculated in a comparative study and separately for 6 

and 9 floors structures. As previously mentioned, assuming an elastic brittle behavior for structural 
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elements, the point of first yielding in a structural system can be considered as a reasonable 

approximation of the base shear coefficient for a determinate structure. Therefore cnon-redu in Eq. 

(34) can be substituted by cs, which is the base shear coefficient of the structural system at the 

point of the first yielding. Therefore, the parameter of l in Eq. (34) is considered as follows for 6 

floors structures. 

If  (l =
L̅

c̅non−redu
)
6F−3@8m

= (l =
L̅

c̅s
)
6F−3@8m

= 1  then

{
 
 
 

 
 
 (l =

L̅

c̅s
)
6F−4@6m

= 1.135

(l =
L̅

c̅s
)
6F−5@4.8m

= 1.253

(l =
L̅

c̅s
)
6F−6@4m

= 0.957

 

and similarly for the 9 floors structures, the parameter of l in Eq. (34) is considered as bellow. 

If  (l =
L̅

c̅non−redu
)
9F−3@8m

= (l =
L̅

c̅s
)
9F−3@8m

= 1  then 

{
 
 
 

 
 
 (l =

L̅

c̅s
)
9F−4@6m

= 1.050

(l =
L̅

c̅s
)
9F−5@4.8m

= 1.101

(l =
L̅

c̅s
)
9F−6@4m

= 0.924

 

Therefore, based on assuming v=2, ve=0.1 and the values of l that obtained as above, the 

reliability index (β) can be calculated separately for 6 and 9 floors structures. Fig. 12(a), (b) 

present the reliability index β of case study models, which varies with Ωpro for various values of 

Ωdet. The reliability index is calculated for a different ratio of average load to average strength 

level. Therefore the values of l for each structure are different. 

Both parts of Fig. 12 illustrate the changes of the reliability index due to 6 and 9 story modeled 

structures based on application of the same values of probabilistic overstrength index. This means 

 

 

 
(a) 6 floor models (b) 9 floor models 

Fig. 12 Variation of the reliability index (β) of structure with respect to Ωdet and Ωpro for ve=0.1, v=2 
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that considered changes in the reliability index of structures which have the same ultimate lateral 

resistance, is only due to the probabilistic effects of redundancy. As previously mentioned the 

index of Ωpro in the more redundant structures takes smaller amounts in comparison with less 

redundant structures. Then the general conclusion is that more redundant structures due to the 

probabilistic effects of redundancy would be corresponded to a more reliability index. 

 

 

9. Conclusions 
 

In this study, both deterministic and probabilistic effects of the redundancy on the behavior 

factor and the reliability index of a number of studied structures with the same ultimate resistance 

were assessed. The general results are as follows: 

• Considering an increased redundancy in moment resisting frame (regular in plan and height) 

with a specific plan (same story area) can reduce the amount of Ωpro and increase the amount of 

Ωredu. 

• Based on assuming the same ultimate lateral resistance for structures which would cause an 

increase to a certain level of redundancy (i.e., an increase in the number of resistant frames up to 5 

spans in each direction) is associated with enhancing both the ductility capacity and the inelastic 

capacity indeed. However any further increase in the redundancy of that certain level might have a 

negative effect on the ductility capacity. 

• Increased redundancy (i.e., an increase in the number of earthquake resistant frames) is 

associated with reducing the average correlation coefficient related to the resistance of frame 

members. Thus the behavior factor can be increased but this increase is not enough to cover 

negative effect of excessive redundancy on local ductility of members. Therefore it is important to 

notify that how the structural ductility changes in regards to increasing the redundancy in 

structures. It is because of probable excessive redundancy which is able to change the local 

ductility demands. Furthermore, it can reduce the positive effects of increased redundancy. 

• If having more redundancy for a group of structures with the same story area, would reduce 

the level of formation of first plastic hinge (i.e., cs), then the increased redundancy would be an 

ideal property which will increase the behavior factor. 

• Based on the assumption of considering same ultimate lateral resistance, hence those 

structures which are more redundant, have a greater reliability index. However, this outcome is not 

observed for the behavior factor. In general, any criteria in conjunction with the reliability index 

which does not cover the structural inherent parameters such as the ductility demand, cannot able 

to explain the real mode of behavior of structure and would be misleading the real situation of the 

structures. 
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Notation 
 

𝑐 : Ultimate base shear coefficient 

𝑐𝑒𝑢 : Elastic base shear coefficient 

𝑐𝑛𝑜𝑛,𝑟𝑒𝑑𝑢 : Ultimate base shear coefficient of non-redundant structure 

𝑐𝑟𝑒𝑑𝑢 : Ultimate base shear coefficient of redundant structure 

𝑐𝑠 : First local yielding base shear coefficient 

𝑐𝑤 : Design base shear coefficient 

𝑐𝑦 : Ultimate base shear coefficient 

𝑐𝑛̅𝑜𝑛,𝑟𝑒𝑑𝑢 : The average of ultimate base shear coefficient of non-redundant structure 

𝑐𝑟̅𝑒𝑑𝑢 : The average of ultimate base shear coefficient of redundant structure 

𝑐𝑠̅ : The average of first local yielding base shear coefficient 

𝑐𝑦̅ : The average of ultimate base shear coefficient 

𝑐̅ : The average of frame ultimate base shear coefficient 

𝑘 : The standard form of normal distribution 

𝐿̅ : The average ratio of applied loads to weight of structure 

m : The number of plane frames that contribute to the lateral resistance of 3D structure 

𝑀𝑖 : Yield moment of structural element when plastic hinge “i” is formed 

𝑀̅𝑖 : The average value of yield moment of the structural element when plastic hinge “i” 

is formed 

𝑛 : The number of plastic hinges in the frame resulting from the sway failure mode 

𝑅𝑅 : Redundancy factor 

𝑅𝑠 : Total overstrength reduction factor 

𝑅𝑤 : Allowable stress design behavior factor 

𝑅𝜇 : Ductility reduction factor 

𝑅𝜉 : Damping factor 

𝑇 : Fundamental period of structure 

𝑣𝑒 : The coefficient of variation of the element strength 

𝑣𝑓 : The coefficient of variation of the strength of the plane frames 

𝑣𝑛𝑜𝑛,𝑟𝑒𝑑𝑢 : The coefficient of variation of lateral strength of the non-redundant frame 

𝑣𝑠 : The coefficient of variation of the strength of 3D structural system 

𝛽 : Structural reliability index 

∆max : Maximum overall drift 

∆𝑦 : Overall drift at yield 

𝜇 : Overall ductility 

𝜌̅ : The average correlation coefficient 

𝜌̅𝑓 : The average correlation between lateral strength of the plane frames 

𝜌𝑖𝑗 : The correlation coefficient between 𝑀𝑖 and 𝑀𝑗 

𝜎𝑓 : The standard deviation of the frame base shear 

𝜎𝐿 : The standard deviation of ratios of applied loads to weight of structure 

𝜎𝑀𝑖 : The standard deviation of 𝑀𝑖 
𝜎𝑀𝑗 : The standard deviation of 𝑀𝑗 

Φ : A function of total ductility, period of system and soil conditions 

𝛹𝑖 : A coefficient with unit of radians/(length
.
 mass) 
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Ω𝑑𝑒𝑡 : Deterministic overstrength index 

Ω𝑝𝑟𝑜 : Probabilistic overstrength index 

Ω𝑠(𝑟𝑒𝑑𝑢,𝑠𝑡ℎ) : Overstrength arising from redundancy (until a collapse mechanism is formed) and 

steel strain hardening 

Ω𝑠(𝑠𝑖𝑧𝑒,𝜙) : Overstrength arising from restricted choices for member sizes, rounding up of sizes 

and dimensions, and differences between nominal and factored resistances 
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