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Abstract.  Recently, two energy-based response parameters, i.e., the absolute and the relative elastic input 

energy equivalent velocity, have been receiving a lot of research attention. Several studies, in fact, have 

demonstrated the potential of these intensity measures in the prediction of the seismic structural response. 

Although some ground motion prediction equations have been developed for these parameters, they only 

provide marginal distributions without information about the joint occurrence of the spectral values at 

different periods. In order to build new prediction models for the two equivalent velocities, a large set of 

ground motion records is used to calculate the correlation coefficients between the response spectral values 

corresponding to different periods and components of the ground motion. Then, functional forms adopted in 

models from the literature are calibrated to fit the obtained data. A new functional form is proposed to 

improve the predictions of the considered models from the literature. The components of the ground motion 

considered in this study are the two horizontal ones only. Potential uses of the proposed equations in addition 

to the prediction of the correlation coefficients of the equivalent velocity spectral values are shown, such as 

the prediction of derived intensity measures and the development of conditional mean spectra. 
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1. Introduction 
 

Since the study of Housner (1956) on seismic energy in structures was published, many efforts 

have been spent for defining and applying energy-based approaches in procedures for seismic 

design and seismic assessment of structures (e.g., Akiyama 1985, Krawinkler 1987, McCabe and 

Hall 1989, Fajfar and Vidic 1994, Chou and Uang 2000, Chou and Uang 2003). A variety of 

energy parameters has been studied. Among others, Uang and Bertero (1990) investigated two 

types of input energy demand parameters as measures of the earthquake intensity and potential 

predictors of seismic demand: the absolute and the relative input energy. Input energy demands 

have been shown to be good parameters for designing earthquake-resistant structures, especially 

for those cases in which duration-related cumulative damage below the maximum response (i.e., 

cyclic damage) is significant. These energy-based parameters, in fact, are related to the cycles of 

response of the system (e.g., see Fajfar and Fischinger 1990, Decanini and Mollaioli 1998,  
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Manfredi 2001), as opposed to parameters, such as the pseudo-acceleration, related to the peak 
value of the seismic demand. Therefore these energy-based parameters implicitly capture the effect 
of ground motion duration, which is not accounted for by the conventional spectral parameters. 
The good prediction capability of the energy parameters in general, is mainly due to the fact that 
their values do not only depend on the amplitude, frequency content, and duration of the ground 
motion, but also on the dynamic properties of the structure. 

Several types of elastic and inelastic energy-based spectra have been developed and applied for 
the evaluation of the seismic performance of structures (Decanini and Mollaioli 2001, Chai and 
Fajfar 2000, Benavent-Climent et al. 2010, López-Almansa et al. 2013). Among these proposals, 
inelastic input energy spectra have been shown to be very efficient tools for the evaluation of the 
seismic demand of multi-degree-of-freedom structures experiencing damage. Numerous studies 
(e.g., Bertero and Uang 1992, Teran-Gilmore 1996) highlighted the influence of ductility on 
inelastic input energy spectra, i.e., the differences between inelastic and elastic input energy 
spectra, in relation with the considered period of vibration, the ground motion properties, and the 
soil conditions. In particular, it was found that the influence is reduced in the short periods region, 
while is more significant at periods corresponding to the maximum input energy values (Mollaioli 
et al. 2011). Despite these differences, however, also the elastic input energy has been found to be 
well correlated to the seismic demand. This was observed, for example, in the investigations of 
Mollaioli et al. (2011) on the prediction of displacement-related demand parameters (e.g., the 
maximum inter-story drift ratio) of multistory buildings. 

Due to the above mentioned findings and to those of recent studies that proved the reduced 
predictive capabilities of commonly used intensity measures (IMs), such as, the pseudo-
acceleration (Sa), the peak ground acceleration (PGA), and the peak ground velocity (PGV) (e.g., 
see the works of Yakut and Yilmaz 2008, Jayaram et al. 2010, Lucchini et al. 2011, Mollaioli et al. 
2013), elastic input energy have received a renewed research attention in the performance-based 
earthquake engineering community. New alternative intensity measures derived from elastic input 
spectra have been proposed. Intensity measures obtained from spectral ordinates at different 
periods, consisting in vectors or combinations of spectral values, and from integration of the 
spectra over defined ranges of periods have been investigated (e.g., see the vector IMs studied in 
Luco et al. 2005, and the integral IMs considered in Mollaioli et al. 2013). By adopting this 
approach, higher modes contribution and elongation of the periods of vibration due to damage are 
explicitly accounted for, and consequently the prediction of the nonlinear response of MDOF 
structures can be improved. 

In order to use these intensity measures derived from elastic input energy spectra in 
probabilistic seismic hazard and risk analyses, attenuation relationships and equations for the 
prediction of the correlation of spectral values are needed. In the literature, the absolute and 
relative input energies are frequently replaced with their equivalent velocities VEIa and VEIr. For 
these intensity measures several ground motion prediction equations (GMPE) can be found (i.e., 
see Chapman 1999, Gong and Xie 2005, Danciu and Tselentis 2007, Cheng et al. 2014).These 
GMPEs only consider the marginal distribution of individual spectral values without giving any 
information about the joint distribution of the spectral values at different periods. The correlation 
between the spectral values of other IMs, such as Sa, has been already investigated (e.g., see Baker 
and Cornell 2006b, Baker and Jayaram 2008, Abrahamson et al. 2003, Cimellaro 2013). However, 
works on the correlation of the VEIa and VEIr spectral values are still lacking.  

The main purpose of this study is to propose models for the prediction of the correlation 
coefficients of the VEIa and VEIr spectral values. In order to pursue this objective, firstly, a dataset of 
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correlation coefficients values will be derived from a database of ground motions records. Then, 
functional forms of equations adopted in the literature to predict other IMs will be calibrated to fit 
the VEIa and VEIr correlation coefficients data. Finally new predictive equations will be developed 
in order to improve the fitness between the observed data and the predicted values. For both VEIa 
and VEIr, the following correlations are investigated: the correlation between the two ordinates of 
the equivalent velocity spectrum of the single horizontal component of the ground motion; the 
correlation between the ordinates of the spectra of the two orthogonal horizontal components 
calculated at the same period value; the correlation between the ordinates of the spectra of the two 
orthogonal horizontal components calculated at two different periods. At the end of this study, 
some possible applications of the proposed equations will be shown. The prediction of VEI-derived 
IMs using the proposed equations will be described. In addition, the use of such equations for the 
development of conditional mean spectra (see, e.g., Haselton et al. 2009) will be discussed. 

 
 

2. Elastic input energy equivalent velocities 
 
For a damped linear elastic single-degree-of-freedom (SDOF) system subjected to a ground 

motion, the dynamic equilibrium can be described with one of the two following equations 

  0 kxxcxxm g                          (1) 

gxmkxxcxm                                (2) 

in which  

t gx x x   ; 

and where  
xg is the ground displacement;  
x is the relative displacement with respect to the ground; 
m is the mass of the oscillator; 
c is viscous damping coefficient; 
k is the stiffness of the oscillator.  

By integrating Eqs. (1) and (2) with respect to x, the following energy balance equations can be 
easily derived (Uang and Bertero 1990) 

EIa=EKa+E+ES                                              (3) 

EIr=EKr+E+ES                              (4) 

in which 

gtIa dxxmE    is the absolute input energy; 

dxxmE gIr    is the relative input energy; 

2

2

1
tKa xmE   is the absolute kinetic energy; 

2

2

1
xmEKr   is the relative kinetic energy; 
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dxxcE    is the damping energy; 

2

2

1
kxES   is the elastic strain energy. 

Eqs. (3) and (4) are usually called in the literature “absolute” and “relative” energy equation, 
respectively. The absolute input energy (EIa) can be explained as the work done by the total base 
shear force on the ground displacement, while the relative input energy (EIr) describes the work 
done by the static equivalent lateral force  gxm   on the relative displacement of the SDOF with 
respect to the ground.  

Analogously to what is done in Chou and Uang (2000) for the absorbed energy Ea, EIa and EIr 
can be converted into equivalent velocities as follows 

2 /EIa IaV E m                               (5) 

2 /EIr IrV E m                               (6) 

with the absolute input energy equivalent velocity (VEIa) and the relative input energy equivalent 
velocity (VEIr) being independent on mass. In the following of the work, the values of the 
equivalent velocities used in the correlation analyses will be calculated using a damping ratio 
equal to 5%. 

As shown in Fig. 1, the two equivalent velocities are very close in the intermediate periods 
range, and different at longer and shorter periods. In particular, VEIr reduces significantly with the 
decrease of the period value, while VEIa approaches to 0 at very long periods. These opposite 
trends can be easily explained with the two following considerations: for the limit case of a period 
value equal to 0, the relative displacement of the SDOF system (and therefore also EIr) tends to 0; 
on the contrary, for the limit case of an infinitely large period value, it is the total displacement 
(and therefore EIa) that tends to 0. The pseudo-velocity (Spv), which in the elastic case is equal to 
the equivalent velocity of the absorbed energy, is characterized by similar trends of that of VEIr and 

 
 

Fig. 1 Comparison between pseudo-velocity (Spv), absolute input energy equivalent velocity (VEIa) 
and relative input energy equivalent velocity (VEIr), calculated for Carroll College station record 
from Helena Montana earthquake on 31th Oct. 1935 
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VEIa at short and long periods, respectively. Thus, VEIa is asymptotic to Spv at long periods, while 
VEIr is asymptotic to Spv at short periods. 

 
 

3. Calculation of correlations 
 
Given a dataset of ground motions, the input energy equivalent velocities of the two horizontal 

components of each record can be expressed in a logarithmic form as follows 

ln ( ) ( , , , ) ( ) ( )EI x xV T f M R T T T                        (7) 

ln ( ) ( , , , ) ( ) ( )EI y yV T f M R T T T                        (8) 

where 
VEI represents the observed spectral value of VEIa or VEIr for the single considered record; 
x and y denote the two orthogonal horizontal components of the record; 
f(M,R,T,θ) is the predicted median of the logarithm of VEIa or VEIr, calculated at a specific period T 
using a selected GMPE, as a function of magnitude (M), source to site distance (R), and other 
parameters (θ); 
σ is the standard deviation of the predicted VEIa or VEIr, which is provided by the GMPE; 

ε measures (in terms of number of standard deviations σ) the difference between the observed 
value lnVEI and the predicted median value f(M,R,T,θ). An ε value equal to 2, for example, denotes 
that the observed value corresponding to the considered record is two standard deviations larger 
than the median ground motion predicted based on the information on the causal earthquake event. 

Eqs. (7) and (8) can be used to express   in the following form 

ln ( ) ( , , , )
( )

( )
EI x

x

V T f M R T
T

T





                      (9) 

ln ( ) ( , , , )
( )

( )
EI y

y

V T f M R T
T

T







                     (10) 

Based on the above equations, and on the fact that f(M,R,T,θ) and σ(T) are defined as the 
median and standard deviation of lnVEI(T), it derives that εx(T) and εy(T), which account for the 
randomness of the observed data, are characterized by a zero mean and a unit standard deviation. 
By looking at Eqs. (9) and (10), it can be noted that ε(T) is linearly related to lnVEI(T). Based on 
this observation, ε(T) spectra can be calculated and used instead of those of lnVEI(T) in order to 
appropriately evaluate the correlation of the equivalent velocities spectral values. 

The correlation between the ε(T) values at different periods can be estimated using the Pearson 
product-moment correlation coefficient 

1 2

1 1 2 2
1

( ), ( )

2 2
1 1 2 2

1 1

( ( ) ( ))( ( ) ( ))

( ( ) ( )) ( ( ) ( ))

n

i i
i

T T n n

i i
i i

T T T T

T T T T
 

   


   



 

 


 



 
             (11) 

where  
εi(T1) and εi(T2) is the ith observation of ε at T1 and T2, respectively; 
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n is the number of observations; 

1( )T  and 
2( )T  are the sample means of all the n observations at T1 and T2, respectively.  

Depending on the considered horizontal component of the ground motion and the selected 
period value, three different correlation coefficients can be evaluated: the correlation coefficient 

1 2( ), ( )T T   between two ordinates of the ε(T) spectrum of the single horizontal component of the 
ground motion; the correlation coefficient ( ), ( )x yT T   between the ordinates of the spectra of the 
two orthogonal horizontal components calculated at the same period value; the correlation 
coefficient 1 2( ), ( )x yT T   between the ordinates of the spectra of the two orthogonal horizontal 
components calculated at two different periods.  

The records used to empirically calculate the ρ values (which are then used to derive the 
proposed predictive equations) were collected from the NGA database. Only records with the 
following properties were selected: records with both the two horizontal components available; 
records characterized by a corner frequency value of the high-pass filter lower than 0.2 Hz and a 
low-pass filter corner frequency value higher than 18 Hz; records from earthquakes with 
magnitudes larger than 5, and closest distances lower than 200 km; records corresponding only to 
soil conditions type B, C and D (as classified according to NEHRP). Even though records from 
sites classified as type A and E are of interest (especially the latter, which can be characterized by 
energy demands several times larger than those corresponding to firm sites), they were excluded 
from the database because their number was not statistically sufficient for carrying out correlation 
analyses. Based on the previous criteria, 740 ground motions recorded from 40 earthquakes were 
identified. More detailed information about these records is given in Appendix (see Table B). 

 
 

4. Empirical correlation coefficients and proposed predictive equations 
 
Four GMPEs, namely, Chapman (1999), Gong and Xie (2005), Danciu and Tselentis (2007), 

Cheng et al. (2014) are used to calculate the correlation coefficients. Chapman (1999) used a set of 
records from 20 earthquakes in Western North America to develop the GMPE. A set of 266 
records from 15 Californian earthquakes were considered in the study of Gong and Xie (2005). A 
dataset consisting of 335 records from 151 Greek earthquakes were used by Danciu and Tselentis 
(2007), while a dataset of 1550 records from 63 worldwide earthquakes (incuding many from 
Western North American) were considered in Cheng et al. (2014). Except for the case of Danciu 
and Tselentis (2007), the other GMPEs were developed on datasets of records that are consistent. 

 
4.1 Correlation for the same component of spectral values at different periods  
 
The empirical correlation coefficients 1 2( ), ( )T T   calculated for both VEIa and VEIr are shown in 

Figs. 2 and 4 and Figs. 3 and 5, respectively. In particular, Figs. 2-3 report the contour lines of the 
1 2( ), ( )T T   surface as a function of T1 and T2, while in Figs. 4-5 the correlation coefficients are 

plotted as a function of T1 for different period values of T2. 
By looking at the results obtained for VEIa, it can be observed that the correlation coefficient is 

not significantly influenced by the choice of GMPE used to calculate it. The most evident 
difference is in the values obtained with Daciu and Tselentis (2007) compared to those obtained 
with the other GMPEs. The difference is probably due to the fact that in Danciu and Tselentis 
(2007) only records from Greece are used to derive the GMPE, while in the other studies the 
datasets of records are dominated by Califonian earthquakes. In addition, the GMPE of Danciu and 
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Tselentis (2007) was developed without explicitly taking into account the magnitude saturation 
phenomenon, as done on the contrary in the other studies, resulting in a different shape of the 
median input energy spectrum (see Cheng et al. 2014). As shown in Figs. 3 and 5, the same 
reduced influence on 1 2( ), ( )T T   of the used GMPE can be observed also for VEır. In this case only 
the results obtained with Gong and Xie (2005) and Cheng et al. (2014) are compared since in the 
other studies GMPEs for VEır were not developed. By comparing the plots of Figs. 2 and 3, and 
those of Figs. 4 and 5, it is interesting to note that, in general, the values of the correlation 
coefficient obtained for VEIa are larger than those obtained for VEIr. This trend may be in part 
explained by the fact that at very short periods the VEIr value tends to zero independently on the 
considered ground motion, while that of VEIa is sensitive to it. This property of VEIr, has been 
previosuly shown in the spectra of Fig. 1, and discussed at the end of section 2. As a direct 
consequence, correlation between the values of the equivalent velocities at short periods and those 
at medium and long periods is lower for VEır than for VEIa. 

 
 

(a) (b) 

(c) (d) 

Fig. 2 Empirical correlation coefficient 1 2( ), ( )T T  , as a function of the considered period values T1 and 
T2, calculated for VEIa using the following GMPEs: (a) Cheng et al. (2014), (b) Chapman (1999), (c) 
Gong and Xie (2005), (d) Danciu and Tselentis (2007); in each plot, a range of periods that is consistent 
with the used GMPE is considered 

 

963



 
 
 
 
 
 

Yin Cheng, Andrea Lucchini and Fabrizio Mollaioli 

(a) (b) 

Fig. 3 Empirical correlation coefficient 1 2( ), ( )T T  , as a function of the considered period values T1 and 
T2, calculated for VEIr using the following GMPEs: (a) Cheng et al. (2014), (b) Gong and Xie (2005) 

 

(a) (b) 

(c) (d) 

Fig. 4 Empirical correlation coefficient 1 2( ), ( )T T  , as a function of T1 for different fixed values of T2, 
calculated for VEIa using the following GMPEs: (a) Cheng et al. (2014), (b) Chapman (1999), (c) Gong 
and Xie (2005), (d) Danciu and Tselentis (2007) 
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(a)  (b) 

Fig. 5 Empirical correlation coefficient 1 2( ), ( )T T  , as a function of T1 for different fixed values of T2, 
calculated for VEIr using the following GMPEs: (a) Cheng et al. (2014), (b) Gong and Xie (2005) 

 
 
Based on the empirical values obtained for the correlation coefficients, the predictive equations 

can be derived by fitting the given data with a selected analytical equation (see for example Baker 
and Cornell 2006a, Baker and Jayaram 2008, Abrahamson et al. 2003, Cimellaro 2013). In this 
work, the same nonlinear regression process as that applied in Baker and Cornell (2006a) is used. 
First, a Fisher’s z-transformation (Neter et al. 1996) is applied to the correlation coefficients 
values (see Eq. (12)), and then the parameters of the predictive model are calibrated with a 
nonlinear least-squares regression, such that the squared prediction errors are minimized (see Eq. 
(13)). The Fisher’s ztransformation is applied before the nonlinear least-squares regression for 
obtaining an approximate constant error for all values of the population correlation coefficients, 
which otherwise would be dependent on the difference between fitted and observed values (see 
Baker and Cornell 2006a, Baker and Jayaram 2008). 

,
,

,

1
0.5ln( )

1
i j

i j
i j

z







                           (12) 

2
, ,

1 1

ˆmin ( )
n n

i j i j
i j

z z
 

                           (13) 

where  
ρi,j is the empirical correlation coefficient of ε for the Ti and Tj period values; 
zi,j is the transformed value of the empirical correlation coefficient; 

,ˆi jz  is the transformed value of the the predicted correlation coefficient. 
Several models for predicting the correlation between response spectra ordinates corresponding 

to different periods and components can be found in the literature (e.g., Abrahamson et al. 2003, 
Baker and Cornell 2006a, Baker and Jayaram 2008, Cimellaro 2013). In the present study, three 
different functional forms are used to develop the predictive equations: two are selected from the 
literature, namely, the widely used functional form of Baker and Cornell (2006a) and that based on 
Taylor series rationales of Cimellaro (2013); a new functional form is also proposed.  
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The predictive model for the correlation coefficients with the functional form proposed by 
Baker and Cornell (2006a) is  

1 2

maxmin
( ), ( ) ( min 2)

min

1 cos( ( 0 1 ln( )) ln( ))
2 2T T T A

TT
A A I

A T 
                    (14) 

where: Tmin=min(T1,T2); Tmax=max(T1,T2); I is an indicator that is equal to 1 if Tmin<A2 and equal to 
0 otherwise. In, Table 1, the values of the model parameters resulted from fitting the observed data 
are given. A comparison between empirical and predicted correlation coefficients for VEIa and VEIr 
is shown in Fig. 6(a) and 6(b), respectively. 

The predictive model built with the functional form proposed by Cimellaro (2013) is 

1 2

2
min max min

( ), ( ) 2
max min max

ln( ) (ln( ))
1 ln

1 ln( ) (ln( ))T T

a b T c T T

d T e T T 
    

        
               (15) 

where again Tmin=min(T1,T2), and Tmax=max(T1, T2). The values of the model parameters obtained 
by fitting the empirical correlation coefficients are reported in Table 2. In Fig. 6(c) and 6(d) the 
empirical and predicted correlation coefficients for VEIa and VEIr are compared. 

In order to improve the result of the fitting, the following new predictive model, which mixed 
the functional form of Baker and Cornell (2006a) with that of Cimellaro (2013), is also considered 

1 2

maxmin
( ), ( ) ( min 2)

min

1 cos( ( 1 1 ln( )) ln( ))
2 2T T T A

TT
B A I

A T 
                    (16) 

with 

2
min max

2
max min

ln( ) (ln( ))
1

1 ln( ) (ln( ))

a b T c T
B

d T e T

 
 

 
                       (17) 

and where I is equal to 1 when Tmin<A2 and equal to 0 otherwise. The proposed model degenerates 
into the model of Cimellaro (2013) when Tmin>A2, and into that of Baker and Cornell (2006a) 
when Tmin<A2. The calibrated parameters of the proposed model are listed in Table 3, Empirical 
and predicted values of the correlation coefficient are compared in Fig. 7. 
 

 

Table 1 Calibration results for the predictive model of 1 2( ), ( )T T   built with the functional form of Baker 
and Cornell (2006a) 

Parameters A0 A1 A2 

VEIa 0.2665 0.1030 0.327 

VEIr 0.3535 0.1333 0.112 
 
Table 2 Calibration results for the predictive model of 1 2( ), ( )T T   built with the functional form of 
Cimellaro (2013) 

Parameters a b c d e 

VEIa -0.3741 -0.0628 0.0077 0.3854 0.0982

VEIr -0.4494 -0.0363 0.0393 0.1785 0.0287
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Table 3 Calibration results for the predictive model of 1 2( ), ( )T T   built with the proposed functional form 

Parameters A1 A2 a b c d e 

VEIa 0.0459 0.228 -0.3464 -0.0359 0.0077 0.2796 0.0569

VEIr 0.0801 0.1 -0.4368 -0.0215 0.0426 0.1109 0.0060

 
Table 4 AIC values for the three considered predictive models of 1 2( ), ( )T T   

AIC Baker and Cornell (2006a) Cimellaro (2013) Proposed in this study 

VEIa -6314.254 -8272.737 -9087.155 

VEIr -6599.84 -9053.089 -9069.951 

 

 
(a) (b)

 
(c) (d) 

Fig. 6 Comparison between empirical (dashed lines) and predicted (solid lines) values of 1 2( ), ( )T T   
obtained for VEIa (plots on the left) and VEIr (plots on the right) using the functional form of Baker and 
Cornell (2006a) (plots a and b) and that of Cimellaro (2013) (plots c and d) 

 
 

The relative quality of these three models in predicting the correlation coefficients can be 
evaluated with the Akaike’s Information Criterion (AIC, see Akaike 1974). According to this 
criterion, the preferred predictive model, among a set, is the one with the minimum AIC value, 
with the AIC being calculated as follows 

2 2lnAIC k L                            (18) 

in which k is the number of model parameters, and L is the maximized likelihood value for the  
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(a) (b) 

Fig. 7 Comparison between empirical (dashed lines) and predicted (solid lines) values of 1 2( ), ( )T T 
obtained for VEIa (left plot) and VEIr (right plot) using the proposed functional form 

 
 
model. 

AIC does not only measures the goodness of fit (the “-2lnL” term in Eq. (18) rewards the fit 
between the model and the data), but also includes a penalty for including extra parameters in the 
model (with the “2k” term). It is well known that the goodness of fit can always be improved by 
increasing the number of model parameters. However, this improvement may be due to overfitting 
problems. By selecting the predicitve model that minimizes the AIC value, the latter are avoided 
and a good fit is obtained. 

As shown from the results reported in Table 4, the model corresponding to the highest AIC 
value is the one which uses the functional form of Baker and Cornell (2006a), while the lowest 
AIC value is obtained with the proposed model. Based on these results and on those of Fig. 6 and 
Fig. 7, it can be concluded that: the best predictions are in general those obtained with the 
proposed equations; the empirical correlation coefficients obtained for both VEIa and VEIr are better 
fitted with the proposed model than the functional form of Baker and Cornell (2006a); for the case 
of VEIa the prediction improves by using the proposed model instead of the functional form of 
Cimellaro (2013). 
 

4.2 Correlation between spectral ordinates for orthogonal horizontal components  
 
The same approach adopted in Baker and Cornell (2006a) is used to fit the the empirical values 

of ( ), ( )x yT T   using a simple linear model. By looking at the plots of Fig. 8, it can be observed that 
the correlation coefficient obtained for VEIa does not significantly vary with period. The slope of 
the linear model, in fact, is very small. Because of that, the correlation can be approximately 
calculated as follows 

( ), ( ) 0.864
x yT T                                  (19) 

where x and y indicate the two orthogonal horizontal ground motion componennts.  
For the case of VEIr, instead, the dependency of the correlation coefficient on period is not 

negligible, and the following equation can be used for the prediction 

( ), ( ) 0.839 0.0288ln( )
x yT T T                               (20) 
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(a) (b) 

Fig. 8 Comparison between empirical (dashed red lines) and predicted (solid blue lines) values of 
( ), ( )x yT T   obtained for VEIa (left plot) and VEIr (right plot) using a linear model 

 

 
(a) (b) 

Fig. 9 Comparison between empirical (dashed lines) and predicted (solid lines) values of 
1 2( ), ( )x yT T 

obtained for VEIa (left plot) and VEIr (right plot) using Eq. (21) and Eq. (22), respectively 
 
 
Analogously to what is done in Baker and Cornell (2006a) and Baker and Jayaram (2008), the 

correlation coefficient 
1 2( ), ( )x yT T   for spectral values corresponding to different periods and 

components is estimated by multiplying )(),( TεTε yx
ρ (correlation coefficient for different components 

and same period value) with )(),( 21 TεTερ  (correlation coefficient for different periods and the same 
component). Therefore, for VEIa and VEIr 1 2( ), ( )x yT T   is respectively given by the two following 
equations 

1 2 1 2( ), ( ) ( ), ( )0.864
x yT T T T                             (21) 

1 2 1 2( ), ( ) 1 2 ( ), ( )(0.839 0.0288ln )
x yT T T TTT                      (22) 

where 
1 2( ), ( )x yT T   is calculated with Eq. (16). Note that ln(T) of Eq. (20) is replaced in Eq. (22) by 

the arithmetic mean of the logarith of the two periods of interest.  
In Fig. 9, a comparison between empirical and predicted values of 

1 2( ), ( )x yT T   is reported for 
both VEIa and VEIr. It can be observed that the predictive equations fit well the observed data. 
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5. Applications of the proposed predictive equations 
 
In this section of the paper, some possible applications of the proposed predictive equations are 

discussed. In particular, the use of the equations for predicting VEI-derived IMs and for calculating 
conditional mean spectra is shown. 

 
5.1 Prediction of VEI-derived IM 
 
The predictive equations for the correlation coefficients investigated in this study can be used 

to predict VEI-derived IMs such as VEIaSI, VEIrSI, MVEIaSI and MVEIrSI (see Table 5 for definitions), 
which have been shown to be good predictors for some types of structures and response 
parameters of interest (e.g., see Mollaioli et al. 2013). VEIaSI and VEIrSI are obtained by integrating 
from 0.1s to 3.0s VEIa and VEIr, respectively. MVEIaSI and MVEIrSI are modified versions of VEIaSI 
and VEIrSI, with the period range of integration determined based on the dynamic properties of the 
structure. By changing the period range of integration, in fact, the predictive performance of these 
IMs can be improved. In order to predict these VEI-derived by means of GMPEs, regression 
analyses as those reported in Cheng et al. (2014) could be carried out. This means that for the case 
of the structure-specific IMs MVEIaSI and MVEIrSI, regression analyses as many as the number of 
integration ranges of interests should be carried out. As an alternative, instead of a direct 
prediction the method proposed in Bradley et al. (2009) can be used. According to this method, 
which was developed for predicting the Housner intensity (Housner 1952) based on GMPE for the 
pseudo-velocity Spv, median and standard deviation of the generic integral energy-based IM VEISI 
can be calculated as follows 

1
EI EI

n

V SI i V i
i

T w 


                              (23) 

2
,

1 1

( ) ( )
EI EI EI EI EI

n n

V SI i j V i V j V i V j
i j

T w w   
 

                    (24) 

in which 
n is the number of period values where VEI is computed at; 
ΔT is the size of the vibration period discretization (the step-size used in the integration)); 
wi and wj are integration weights that depend on the used integration scheme. 

Based on Eq. (24), it is clear that in order to calculate the standard deviation of VEISI, the 
 
 

Table 5 Integral energy-based IMs derived from VEI 

Name Definition 

Absolute elastic input energy equivalent velocity spectrum intensity  dTTVSIV EIaEIa 
0.3

1.0
 

Relative elastic input energy equivalent velocity spectrum intensity  dTTVSIV EIrEIr 
0.3

1.0
 

Modified VEIaSI  dTTVSIMV
T

T EIaEIa 
5.1

2.0
 

Modified VEIrSI  dTTVSIMV
T

T EIrEIr 
5.1

2.0
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correlation coefficients ,EI EIV i V j  of VEI at different periods is needed. Thus, by using Eq. (23), Eq. 
(24) and the proposed equations, together with prediction equations for VEI, VEIaSI, VEIrSI, MVEIaSI 
and MVEIrSI (as well as similar integral energy-based IMs derived from VEI) can be simply 
predicted without the need of developing any other additional GMPE. 

 
5.2 Development of conditional mean spectrum 
 
A uniform hazard spectrum (UHS) is a response spectrum with ordinates characterized by the 

same probability of being exceeded. It is computed using probabilistic seismic hazard analysis, 
and in the case of assessment procedures requiring dynamic analyses for the seismic demand 
evaluation of structures used as a target for the selection of earthquake ground motions. A UHS 
does not look like observed spectra, and does not represent the expected spectrum for the causal 
earthquake event. Recently, studies showed that UHS is not appropriate for probabilistic seismic 
demand analysis, due to the fact that it conservatively assumes that a single ground motion may 
have extremely large amplitudes at all frequencies (e.g., see Baker and Cornell 2006a). Because of 
that, alternative target spectra have been proposed. Among them, a target spectrum which has been 
shown to be superior for obtaining unbiased estimates of structural response is the conditional 
mean spectrum (CMS) (Baker 2011). The CMS is defined as the expected response spectrum 
conditioned on occurrence of a target spectral value at the period of interest. In order to calculate 
it, the correlation of spectral values at different periods is needed (see Baker 2011). Thus, the 
predictive equations proposed in this study can be used for calculating the CMS of VEIa and VEIr. In 
particular, for the considered equivalent velocity VEI, the conditional mean value of EIVln  at 
period Ti conditioned on the value of lnVEI at period T* can be computed using the following 
equation 

               iVTTiTVTVTV
TTTRM

EIiiEIEIiEI
ln

*

,lnlnln ** ,,, 


          (25) 

where 

   ,,,ln iTV TRM
iEI

 and  iV T
EIln  are the predicted median and standard deviation of lnVEI(Ti) 

obtained with the GMPE (e.g., the one proposed in Cheng et al. 2014);  
 
 

(a) (b) 

Fig. 10 CMS of VEIa (a) and VEIr (b) conditioned on ε(1s)=2, compared with predicted median spectra 
obtained with the GMPE of Cheng et al. (2014) and with UHS 
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  denotes model parameters other than magnitude M and distance R, such as parameters 

related to soil condition and fault mechanism; 
( ) , ( *)iT T   is the correlation coefficient of epsilon at different periods for the same component, 

which can be calculated using Eq. (16) and Eq. (17). 
Fig. 10 shows CMS of VEIa and VEIr, obtained with the GMPE proposed in Cheng et al. (2014), 

along with their UHS and median spectra. In this example, the period of interest T* is equal to 1s, 
and the target spectral value is equal to the predicted median plus two standard deviations. It is 
interesting to observe that VEIa and VEIr are close to each other around T equal to 1s; at lower 
periods, instead, VEIr is lower than VEIa due to the relative lower correlation of the VEIr spectral 
values in this range of periods. 

 
 

6. Conclusions 
 
In this study, models for predicting the correlation between spectral values of two energy-based 

earthquake intensity measures, namely, the absolute and the relative elastic input energy 
equivalent velocity (VEIa and VEIr, respectively), were developed. For both VEIa and VEIr, three 
different correlations coefficients were investigated: the correlation coefficient between two 
ordinates of the equivalent velocity spectrum of the single horizontal component of the ground 
motion; the correlation coefficient between the ordinates of the spectra of the two orthogonal 
horizontal components calculated at the same period value; the correlation coefficient between the 
ordinates of the spectra of the two orthogonal horizontal components calculated at two different 
periods.  

Different functional forms for the predictive models were investigated. Among them, a 
proposed functional form and a functional form used in Cimellaro (2013) were found to better fit 
empirical correlation coefficients obtained from a dataset of ground motion records. In particular, 
for the case of VEIr a good fit was obtained for both functional forms, while for the case of VEIa 
improved prediction were obtained by using the proposed one. 

The proposed predictive equations can be applied in seismic hazard analysis problems and in 
ground motion selection and modification methods. For example, as shown in the previous section 
of the paper, they can be used to predict energy-based intensity measures derived from VEIa and 
VEIr, such as VEIaSI, VEIrSI, MVEIaSI and MVEIrSI, and also to calculate the conditional mean 
spectrum of VEIa and VEIr. The latter can be then used as target spectrum for ground motion 
selection and modification methods and used in assessment or design analysis where the 
evaluation of both the displacement and the energy demand in the structure is of interest. 

It is important to note that these models are strictly empirical, and thus their use should not be 
extrapolated beyond the range over which the observed values were fit. This means that the 
proposed predictive models should be used only for period values ranging between 0.05 s and 5 s, 
earthquake magnitude range of 5-7.9, fault-to-site closest distance less than 200 km, and NEHRP 
soil conditions class B, C and D. 
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Appendix 
 

Table A Symbols and acronyms used in this article 

IM Intensity measure 

GMPE Ground motion prediction equation 

Sa pseudo-acceleration 

Spv pseudo-velocity 

PGA Peak ground acceleration 

PGV Peak ground velocity 

MIDR Maximum inter-story drift ratio 

VEIa Absolute elastic input energy equivalent velocity 

VEIr Relative elastic input energy equivalent velocity 

VEI Relative or absolute elastic input energy equivalent velocity 

SDOF Single-degree-of-freedom 

EIa Absolute elastic input energy 

EIr Relative elastic input energy 

Ea Absorbed energy 

NEHRP National earthquake hazards reduction program 

NGA Next generation attenuation 

AIC Akaike’s information criterion 

CMS Conditional mean spectrum 

EDP Engineering demand parameter 

VEIaSI Absolute elastic input energy equivalent velocity spectrum intensity 

VEIrSI Relative elastic input energy equivalent velocity spectrum intensity 

MVEIaSI Modified VEIaSI 

MVEIrSI Modified VEIrSI 

UHS Uniform hazard spectrum 
 

Table B Info about the earthquakes considered in this study 

Earthquake name Year Mag. 
Hyp. 
depth
(km) 

Mechanism 
No. of
records

Site B Site C Site D

San Fernando 1971 6.61 13 Reverse 7 1 3 3 

Friuli, Italy-01 1976 6.50 5.1 Reverse 4 0 3 1 

Gazli, USSR 1976 6.80 18.2 Reverse 1 0 1 0 

Coyote Lake 1979 5.74 9.6 Strike - Slip 4 0 1 3 

Imperial Valley-06 1979 6.53 9.96 Strike - Slip 24 0 1 23 

Livermore-01 1980 5.80 12 Strike - Slip 1 0 1 0 

Mammoth Lakes-01 1980 6.06 9 Normal 1 0 0 1 

Victoria, Mexico 1980 6.33 11 Strike - Slip 4 0 1 3 

Irpinia, Italy-01 1980 6.90 9.5 Normal 6 3 3 0 

Westmorland 1981 5.90 2.3 Strike - Slip 3 0 0 3 
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Table B Continued 

Earthquake name Year Mag. 
Hyp. 
depth
(km) 

Mechanism 
No. of
records

Site B Site C Site D

Coalinga-01 1983 6.36 4.6 Reverse 37 0 22 15 

Morgan Hill 1984 6.19 8.5 Strike - Slip 17 1 5 11 

Nahanni, Canada 1985 6.76 8 Reverse 2 0 2 0 

Hollister-04 1986 5.45 8.72 Strike - Slip 1 0 0 1 

N. Palm Springs 1986 6.06 11 Reverse 7 0 1 6 

Chalfant Valley-01 1986 5.77 6.7 Strike - Slip 9 0 0 9 

Whittier Narrows-01 1987 5.99 14.6 Reverse 2 0 0 2 

Superstition Hills-01 1987 6.22 10 Strike - Slip 1 0 0 1 

Superstition Hills-02 1987 6.54 9 Strike - Slip 3 0 0 3 

Loma Prieta 1989 6.93 17.48 Reverse 51 6 24 21 

Cape Mendocino 1992 7.01 9.6 Reverse 5 0 3 2 

Landers 1992 7.28 7 Strike - Slip 41 0 8 33 

Big Bear-01 1992 6.46 13 Strike - Slip 11 0 4 7 

Northridge-01 1994 6.69 17.5 Reverse 91 7 44 40 

Kobe, Japan 1995 6.90 17.9 Strike - Slip 2 0 1 1 

Dinar, Turkey 1995 6.40 5 Normal 1 0 0 1 

Kocaeli, Turkey 1999 7.51 15 Strike - Slip 7 1 1 5 

Chi-Chi, Taiwan 1999 7.62 6.76 Reverse 281 2 143 136 

Duzce, Turkey 1999 7.14 10 Strike - Slip 3 0 2 1 

St Elias, Alaska 1979 7.54 15.7 Reverse 2 0 0 2 

Sierra Madre 1991 5.61 12 Reverse 1 0 1 0 

Little Skull Mtn, NV 1992 5.65 12 Normal 8 0 3 5 

Hector Mine 1999 7.13 5 Strike - Slip 48 0 19 29 

Yountville 2000 5.00 10.12 Strike - Slip 18 0 4 14 

Mohawk Val, Portola 2001 5.17 3.95 Strike - Slip 3 0 0 3 

Gulf of California 2001 5.70 10 Strike - Slip 10 0 0 10 

CA/Baja Border Area 2002 5.31 7 Strike - Slip 9 0 0 9 

Nenana Mountain, Alaska 2002 6.70 4.2 Strike - Slip 5 0 4 1 

Denali, Alaska 2002 7.90 4.86 Strike - Slip 9 2 4 3 
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