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Abstract.  In this paper we consider three different cases and we apply Variational Approach (VA) to solve 
the non-natural vibrations and oscillations. The method variational approach does not demand small 
perturbation and with only one iteration can lead to high accurate solution of the problem. Some patterns are 
presented for these three different cease to show the accuracy and effectiveness of the method. The results 
are compared with numerical solution using Runge-kutta’s algorithm and another approximate method using 
energy balance method. It has been established that the variational approach can be an effective 
mathematical tool for solving conservative nonlinear dynamical equations. 
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1. Introduction 
 

Nonlinear oscillation in engineering and applied mathematics has been a topic to intensive 
research for many years. Nonlinear oscillator models have been widely considered in physics and 
engineering. Many authors used various analytical methods for solving nonlinear oscillation 
systems. The traditional perturbation methods have many shortcomings, and they are not valid for 
strongly nonlinear equations. To handle the nonlinear problems, many new mathematical methods 
have appeared in open literatures recently, for example: ; Homotopy perturbation method (Shaban 
et al. 2010; Bayat 2013a),Hamiltonian approach (Bayat et al. 2011a; 2012a; 2013a, b; 2014a, b), 
energy balance method (He 2002; Bayat et al. 2011b, Pakar et al. 2011a, b; Mehdipour 2010), 
Variational iteration method (Dehghan 2010; Pakar et al. 2012), Amplitude frequency formulation 
(Bayat 2011c; 2012b; Pakar et al. 2013a; He2008), max-min approach (Shen et al. 2009; Zeng et 
al. 2009), Variational approach method (He2007; Bayat et al. 2012c; 2013c; 2014c; Pakar et al. 
2012b), and the other analytical and numerical (Xu2009; Alicia et al. 2010; Bor-Lih et al. 2009; 
Wu2011; Odibat et al. 2008). In this paper, we will show how to solve the problems of nonlinear 
oscillators by a new variational approach proposed by He (2007), which is an easy, effective and 
convenient mathematical tool and analytical formulas for the period and periodic solution. 

In this paper, at first, we describe basic idea of he’s variational approach method and then, the 
VA will be applied to the three strong dynamical equations. Finally, the frequency of the oscillator 
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obtained by He’s energy balance method is given to demonstrate the validity of the proposed 
method (VA). The comparison shows the efficiency of these methods. As we can see, the results 
are presented in this paper reveal that variational approachis very effective and convenient for 
nonlinear oscillators. Procedure of numerical solution is also presented in Appendix A. 
 

 
2. Basic idea of He’s variational approach 
 

He (2007) suggested a variational approach which is different from the known variational 

methods in open literature. Hereby we give a brief introduction of the method: 
 

                   0 u f u  (1) 

Its variational principle can be easily established using the semi-inverse method 

                        
/4

2

0

1

2

 
   

 


T

J u u F u dt  (2) 

where Tis period of the nonlinear oscillator, F f
u

 


. Assume that its solution can be expressed 

as 

                        cosu t A t  (3) 

where A  and   are the amplitude and frequency of the oscillator, respectively. Substituting Eq. (3) 

into Eq. (2) results in:  
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(4) 

Applying the Ritz method, we require: 
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(5) 

 

(6) 

But with a careful inspection, for most cases He find that 
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(7) 

Thus, He modify conditions Eq. (5) and Eq. (6) into a simpler form: 
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              0






J
 (8) 

From which the relationship between the amplitude and frequency of the oscillator can be 

obtained. 

 

 

3. Applications 
 

In this section, we will present three examples to illustrate the applicability, accuracy 

and effectiveness of the proposed approach. 
 

3.1 Example 1 
 

We consider the rigid frame (Fig. 1) is forced to rotate at the fixed rate while the frame rotate, 

the governing equation of the simple pendulum oscillates is (Nayfeh 1981); 

                 2 0
g

cos sin sin
r

       (9) 

with the boundary conditions of: 

              0 , 0 0A    (10) 

In order to apply the variational approach method to solve the above problem, the 

approximation 2 41 1
2 24

cos 1     and   31
6

sin     is used. 

Its variational formulation can be readily obtained as follows: 

         2 2 2 2 4 2 6 2 8 2
4

4
/
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Choosing the trial function    cost A t   into Eq. (11) we obtain 
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The stationary condition with respect to A reads: 
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or 
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Fig. 1 Simple pendulum attached to rotating rigid frame 
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Then we have; 
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Solving Eq. (15), according to , we have: 

2 2 2 2 4 2 6 21
9216 4608 720 35 9216 1152

96
         VA

g g
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Hence, the approximate solution can be readily obtained: 
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For comparison of the approximate solution, frequency obtained from solution of nonlinear 

equation with the energy balance method is: 

         2 2 2 2 4 2 6 26

96
1536 768 112 5 1536 192         EBM

g g

r r
A A A A  (18) 

The numerical solution by with 4
th
 order Runge-Kutta method (Appendix A) for nonlinear 

equation is: 
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3.2 Example 2 
 
Nonlinear approximate equations for eccentrically reinforced cylindrical shell are obtained by 

considering a simplified boundary value problem by (Andrianov 2004) .The governing equation of 

simply supported shell can be expressed as: 

                    2 3 5 0u au u u u bu cu d u      (20) 

with the boundary conditions of: 

                       0 , 0 0u A u   (21) 

Its variational formulation can be readily obtained as follows: 
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/4
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Choosing the trial function    cost A t   into Eq. (22) we obtain 
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The stationary condition with respect to A reads: 
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Fig. 2 Rigid rod rocks on circular surface (Nayfeh 1995) 
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or 

 2 2 2 3 2 3 4 5 6
2

0
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J

dt
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cos t
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Then we have; 
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Solving Eq. (26), according to , we have: 
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Hence, the approximate solution can be readily obtained: 
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For comparison of the approximate solution, frequency obtained from solution of nonlinear 

equation with the energy balance method is: 
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The numerical solution by with 4
th
 order Runge-Kutta (Appendix A) method for nonlinear 

equation is: 
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3.3 Example 3 
 

The governing equation of the rigid rod (Fig. 2) rocks back and forth on the circular surface 

without slipping, is (Nayfeh1981): 
 

                        2 22 2 21

12
0   l r r r g cos      (31) 

with the boundary conditions of: 
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                  0 , 0 0A    (32) 

 

In order to apply the variational approach method to solve the above problem, the 

approximation 
2 41 1

2 24
cos 1      is used. Its variational formulation is: 
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Choosing the trial function    cost A t   into Eq. (33) we obtain  
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The stationary condition with respect to A reads: 
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Then we have; 
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Solving Eq. (37), according to , we have: 
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Hence, the approximate solution can be readily obtained: 
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For comparison of the approximate solution, frequency obtained from solution of nonlinear 

equation with the energy balance method is: 
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The numerical solution by with 4
th
 order Runge-Kutta (Appendix A) method for nonlinear 

equation is: 
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4. Result and discussion 
 

In this section we describe the figures and tables of the comparisons. Tables 1 to 3 are the 

nonlinear frequency comparisons between variational approach (VA) and energy balance method 

(EBM) for examples 1, 2 and 3. The frequencies are very close together for different parameters of 

the problems. 

Fig. 3 for example 1 and Fig. 7 for example 2 and figure 11 for example 3 are the displacement 

time history and velocity time history of the VA solution with the EBM and RKM solution. The 

problems are conservative and the motions of the systems are periodic and function of initial 

condition and amplitude. Figure 4 is the comparison of VA and EBM solution of nonlinear 

frequency corresponding to various parameters (a):  = 1, r = 5, g=10 (b):  = 1.5, A = 2, g = 

10 for example 1. 

For the second example we have figure 8 for the comparison of VA and EBM solution for 

nonlinear frequency corresponding to various parameters (i): a = 0.1, b = 0.2, c =0.3, d = 0.4   (ii): 

A = 1, a = 0.1, b = 0.2, c = 0.3. 

 
 

Table 1 Comparison of two approximate VA and EBM solution of nonlinear frequency corresponding to 

various parameters of system (example 1)  

  Constant parameter  Nonlinear frequency 

No  A   r g  VA EBM 

1  0.2 1 0.5 10  4.3497 4.3497 

2  0.4 1.5 2 10  1.6809 1.6810 

3  0.6 0.5 3 10  1.7251 1.7251 

4  0.8 1.5 1 10  2.7569 2.7577 

5  1 2 1.5 10  1.8804 1.8854 

6  1.2 1 2.5 10  1.6880 1.6907 

7  1.4 2 0.5 10  3.7328 3.7413 

8  1.6 2.5 1 10  2.3975 2.4300 

9  1.8 0.5 1.5 10  1.9872 1.9895 

10  2 1 2 10  1.5789 1.5943 
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Table 2 Comparison of two approximate VA and EBM solution of nonlinear frequency corresponding to 

various parameters of system (example 2)  

 
 Constant parameter  Nonlinear frequency 

No  A a b c d  VA EBM 

1  0.2 0.1 0.3 0.4 0.5  0.558459 0.558429 

2  0.4 0.2 0.2 0.3 0.2  0.485214 0.484998 

3  0.6 0.4 1 0.5 1  1.065049 1.062681 

4  0.8 1.2 0.4 1 1.2  0.926177 0.918153 

5  1 0.5 0.6 0.1 0.7  0.943398 0.930949 

6  1.2 0.7 0.3 0.5 0.3  0.903892 0.894308 

7  1.4 0.8 0.8 0.6 0.6  1.323003 1.302498 

8  1.6 1 0.9 1 0.1  1.190164 1.185122 

9  1.8 0.9 0.2 0.3 0.3  1.08569 1.060819 

 
Table 3 Comparison of two approximate VA and EBM solution of nonlinear frequency corresponding to 

various parameters of system (example 3)  

No 

 Constant parameter  Nonlinear frequency 

 A r l g  VA EBM 

1  0.2 1 2 10  5.2800 5.2800 

2  0.4 0.5 1.5 10  4.7610 4.7608 

3  0.6 0.5 3 10  2.3370 2.3367 

4  0.8 1.5 5 10  2.0307 2.0297 

5  1 0.5 2.5 10  2.2451 2.2421 

6  1.2 2 2 10  1.7886 1.7823 

7  1.4 3 1 10  1.1091 1.0989 

8  1.6 0.5 4 10  0.7982 0.7763 

9  1.8 3 6 10  0.3156 0.2618 

 
(a) 

 

(b) 

 
Fig. 3 Comparison of (a) displacement (b) velocity  of the VA solution with the EBM and RKM 

solution for =1, r= 5, g=10,A=0.5 
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(a) 

 

(b) 

 
Fig. 4 Comparison between VA and EBM solution of nonlinear frequency corresponding to 

various parameters (a):  =1, r= 5,g=10 (b):  =1.5,  A= 2, g=10 

 

 

Fig. 5 Effect of parameter r on phase plane for   = 1.5,A = 2, g = 10   

 

 

Fig.6 Sensitivity analysis of various parameter of system on nonlinear frequency 
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(i) 

 

(ii) 

 

Fig. 7 Comparison of (i) displacement (ii) velocity of the VA solution with the EBM and 

RKM solution for A = 1, a = 0.1, b= 0.2, c = 0.3, d = 0.4,  

 

(i) 

 

(ii) 

 

Fig. 8 Comparison between VA and EBM solution of nonlinear frequency corresponding to 

various parameters (i): a = 0.1, b = 0.2, c = 0.3, d = 0.4   (ii): A = 1, a = 0.1, b = 0.2, c = 0.3  

 

 

Fig. 9  Effect of parameter d on phase plane for A = 1.5, a = 0.2, b = 1, c = 0.5 
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Fig. 10 Sensitivity analysis of various parameter of system on nonlinear frequency 

 

(I) 

 

(II) 

 

Fig. 11 Comparison of (I) displacement (II) velocity of the VA solution with the EBM and 

RKM solution for A = 1, l = 2.5, r = 0. 5, g = 10  

 

(I) 

 

(II) 

 
Fig. 12 Comparison between VA and EBM solution of nonlinear frequency corresponding to 

various parameters (I):l = 2.5, r = 0. 5, g = 10(II): A = 0.5, r = 0. 5, g = 10
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Fig. 13 Effect of parameter r on phase plane for A = 1.5, l = 2,g = 10 

 

 

Fig. 14 Sensitivity analysis of various parameter of system on nonlinear frequency 

 
 

In the third example the figure 12 is the same comparison with the following parameters: (I): l = 

2.5, r = 0. 5, g = 10 (II): A = 0.5, r = 0. 5, g = 10. 

Phase plans of the problems are shown in Figs. 5 for example 1, Fig. 9 for example 2 and figure 

13 for example 3. 

To have better understanding from the effects of important parameters on the nonlinear  

frequencies of the systems sensitive analyzes are done on the problems which are in figures 6,10 

and 14 for examples 1 to 3 . 

 In this paper, it has been shown that the results of variational approach are in good agreement 

with energy balance method and Runge-Kutta’s algorithm. The variational approach canbe easily 

extend to conservative nonlinear oscillations. 

 
 
Appendix A: Basic idea of Runge-Kutta’s Method (RKM) 
 

For such a boundary value problem given by boundary condition, some numerical methods 

have been developed. Here we apply the fourth-order Runge-Kutta’s  algorithm to solve governing 

equation subject to the given boundary conditions. RK iterative formulae for the second-order 

differential equation are: 
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  (A.1) 

where t is the increment of the time and 1 2 3, ,k k k and 4k  are determined from the following 

formula:  
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(A.2) 

The numerical solution starts from the boundary at the initial time, where the first value of the 

displacement function and its first-order derivative is determined from initial condition. Then, with 

a small time increment [Δt], the displacement function and its first-order derivative at the new 

position can be obtained using (A.1). This process continues to the end of time. 
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