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Abstract.   Development of flexural yielding and large rotation ductilities in the plastic hinge zones of frame 
members is synonymous with the spread of bar reinforcement yielding into the supporting anchorage.  
Yield penetration where it occurs, destroys interfacial bond between bar and concrete and reduces the strain 
development capacity of the reinforcement. This affects the plastic rotation capacity of the member by 
increasing the contribution of bar pullout. A side effect is increased strains in the compression zone within 
the plastic hinge region, which may be critical in displacement-based detailing procedures that are linked to 
concrete strains (e.g. in structural walls). To quantify the effects of yield penetration from first principles, 
closed form solutions of the field equations of bond over the anchorage are derived, considering bond 
plastification, cover debonding after bar yielding and spread of inelasticity in the anchorage. Strain 
development capacity is shown to be a totally different entity from stress development capacity and, in the 
framework of performance based design, bar slip and the length of debonding are calculated as functions of 
the bar strain at the loaded-end, to be used in calculations of pullout rotation at monolithic member 
connections. Analytical results are explored parametrically to lead to design charts for practical use of the 
paper’s findings but also to identify the implications of the phenomena studied on the detailing requirements 
in the plastic hinge regions of flexural members including post-earthquake retrofits. 
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1. Introduction 
 

Recent attempts to correlate analytical with experimental values of compressive strain in 
reinforced concrete members bent in flexure have shown that there is a consistent tendency for 
underestimation of the measured values.  Several studies involving a variety of tests that range 
from walls, to bridge column tests, to FRP-jacketed R.C. flexural members, point to a higher than 
estimated compressive strain in the compression zone (Thermou and Pantazopoulou 2009, 
Thermou et al. 2010, Goodnight et al. 2012, Hannewald et al. 2012, Wallace et al. 2012). This 
finding is consistent with reported compression crushing failures at the base corner of structural 
walls in the recent earthquakes in Chile raising particular anxiety since confinement detailing in  
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           (a) (b) 

Fig. 1 The compression zone at the beam-column critical cross section cannot penetrate into the 
support-column to undertake to lumped rotation due to slip of tension reinforcement; instead it 
experiences increased contraction strain. (a) Interaction between slip and compressive strain, and 
(b) definition of pullout rotation 

 
 
recent code revisions has been linked to the estimation of compressive strain at the extreme fiber of 
the wall cross section (Wallace and Moehle 2012). 

Strain increase in the compression zone has also been identified theoretically and has been 
attributed to pullout of the tension reinforcement which causes a lumped rotation at the critical 
cross section near the face of the support (Syntzirma et al. 2010). Because the compression zone 
cannot penetrate into the support as would be required by the end section rotation, it is forced to 
undergo increased contraction strain in order to counterbalance the effects of rotation (Fig. 1). A 
kinematic relationship has been proposed to account for this compression strain increase, which 
states that the compressive strain at the extreme fiber of the cross section, c, in the plastic hinge 
region of a flexural member, not only depends on the sectional curvature  and the depth of 
compression zone c, but also on the amount of reinforcement pullout, s, according with the 
following equation (Syntzirma et al. 2010) 
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where, so is the axial strain in the tension reinforcement at the critical section and d is the effective 
depth of the member.  Eq. (1) highlights a newly identified interaction between flexural action and 
pullout behavior of the reinforcement: evidently, bar slip affects cross sectional equilibrium 
through the effect it has on c. Given the cross sectional geometry and the material stress-strain 
laws, the resulting M- relationship is no longer unique for a given axial load value (where M is 
the imposed moment at the critical cross section), but it depends on the details and the state of 
stress in the reinforcement anchorage. (For example consider a column cross section having 
d=450mm, c=0.25d=112mm, and so =0.005; the corresponding value of c is 0.0016 if slip is 
ignored by taking s=0, but for as small a slip value as s=2mm the corresponding concrete strain c 
is increased to 0.003, i.e. the extreme fiber of the compression zone is at a state near crushing.) 
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Eq. (1) underlines the importance of dependably estimating bar slip, s, as a prerequisite to 
accurately evaluating the state of stress in the critical cross section of beams and columns adjacent 
to monolithic frame connections. Note that when the bar is strained beyond yielding, a large 
fraction of the slip measured in tests is owing to inelasticity spreading over the bar anchorage, a 
phenomenon known as yield penetration. Calculation of slip in yielding anchorages is essential for 
accurate interpretation of the reported failures described in the preceding. Objective of the paper is 
to identify the practical implications of yield penetration on rotation capacity of flexural members.  
This topic has particular importance in the field of seismic assessment which according with 
current standards, is carried out in a displacement-based framework (EC8-III 2005, ASCE/SEI 41 
2007). These implications concern a number of different aspects: (a) The excessive amount of 
reinforcement slip from the yielded anchorage increases the flexibility of the member connection 
to its support, where a large fraction of the rotation is owing to reinforcement pullout from the 
anchorage rather than flexural curvature over the member length. (b) The kinematics of rotation 
due to bar pullout causes increased strains in the compression zone of the member, particularly in 
the plastic hinge zone adjacent to the support. Performance based detailing of certain structural 
members is controlled by the amount of concrete compression strains (e.g. structural walls (EC8-I 
2004, ACI318 Chapter 21 2011)). In these cases, the effects of yield penetration may cancel the 
design objective. (c) It is shown that yield penetration may limit the strain development capacity of 
longitudinal reinforcement, an issue that is particularly important in existing construction where 
either the available anchorage is limited, or, the structural member has undergone yielding during 
previous seismic events thereby exhausting part of the dependable strain capacity of the anchorage 
of primary reinforcement.    

To address these issues it is necessary to solve the equations for bond of yielding rebars so as to 
explore the bar strain development capacity over yielded anchorages. From a mathematical 
perspective, the problem of yield penetration is particularly challenging to solve since the tangent 
stiffness in the yield plateau is zero or lightly hardening (Soroushian et al. 1991, ACI 408 2012).  
Numerical solutions using springs along the bar to represent bond action have been attempted 
using a secant formulation, but this approximation has been criticized as it ignores the localization 
of deformation (particularly when bond springs also enter a yielding plateau or post-peak softening 
(Bonacci 1994, Bonacci and Ustuner 1992). An alternative approach is possible by using plasticity 
theory in the context of finite elements (Cox and Herrmann 1992); but in both of these numerical 
approaches, results are obtained at the expense of not being able to establish closed form solutions 
where the role of each important design parameter could be identified and illustrated. To 
circumvent this difficulty, in the present paper the solution for yield penetration over bar 
anchorages was obtained from first principles, by deriving a closed form solution of the field 
equations of bond using for simplicity a bilinear approximation for the post-yielding bar 
stress-strain law. Design charts are formulated summarizing the results of this approach, in order to 
relate developed bar strain of an anchorage and corresponding pullout slip with important design 
variables such as development length, bar size and bond strength. 

 
 

2. Bar strain development capacity – problem definition 
 

The case of a beam bar anchorage through a beam-column joint is probably the most severe and 
characteristic example of the significance of strain development capacity of the primary 
reinforcement anchored in the joint region and its relationship to displacement ductility. To 

529



 
 
 
 
 
 

S.P. Tastani and S.J. Pantazopoulou 

establish this relationship the connection is considered under moment transfer as would occur 
during lateral sway. Beam and column moments owing to the sway action vary linearly along the 
deformable member lengths with a sign reversal occurring approximately at mid-span. Inelastic 
strains that exceed the onset of yielding occur in the longitudinal reinforcement at the face of the 
support where moments attain their peak values, attenuating gradually with distance from the 
critical section (Fig. 1). The length over which strains exceed yielding inside the support is referred 
to as length of yield penetration and is denoted by ℓr in the forthcoming derivations. The length of 
yield penetration on the opposite side towards the member length is referred to by convention as 
the plastic hinge and is denoted by ℓp (Fig. 1). In practice, the plastic hinge length is often 
calculated from statics as the length of the member over which beam moments exceed the yield 
value 

 usyup MLMM  )(                           (2) 

where Ls is the member shear span, My and Mu are the yield and ultimate flexural strengths of the 
member cross section. But this alternative definition is blind to the actual state of strain in the 
reinforcement, where, the higher the strain at the critical section, the greater the depth to which 
yielding is expected to penetrate both inside the support and over the member length (Bonacci and 
Marquez 1994). 

Consider an elastic-plastic reinforcing bar with a diameter Db, yielding at a stress of fsy. It is 
established in design practice to calculate the required development length of such a bar from 
equilibrium of forces, as Lb=Db/4(fsy/fb

ave), which is obtained assuming a uniform bond stress fb
ave 

over the contact length, Lb. In design calculations, fb
ave is set equal to the design bond strength 

which depends on casting position, concrete tensile strength, bar diameter and bar rib geometry (fib 
Model Code 2010). An issue that is never explicitly addressed in this, force-based design, is, what 
fraction of the total available strain capacity of the bar can actually be supported if the anchorage 
length is set equal to the value of Lb calculated according with the stress-development needs of the 
bar. This concern arises from the fact that by definition, bond is zero over the yielded length of a 
bar; thus, when yielding spreads over a part of the available anchorage length, it effectively 
reduces the portion that is available for load transfer through development. It may be shown from 
basic stress equilibrium that there exists a critical length of ℓr, which depends on the bar 
post-yielding strain at the critical section, beyond which equilibrium cannot be satisfied for the bar 
yield force leading to failure of the anchorage. The value of strain associated with this limit is 
referred to as bar strain-development capacity, so

maxx.    
In light of the fact that the nominal strain range of a bar after yielding is almost forty times 

greater than the strain at yielding (characteristic value: uk =0.075 for class C, (EC2 2004)), the 
strain-development capacity of a yielded anchorage - which is generally smaller than uk - may 
inadvertedly limit the available curvature and rotation capacity of the member; note that these 
properties are considered till now a cornerstone of displacement-based seismic design since 
displacement demand may be linked directly to local plastic hinge rotation, maximum curvature 
and peak bar strain demand thereof, at the critical section.  

Although yield penetration occurs on both sides of the critical section at the face of the support, 
it is interesting to note that it is not accounted for in a symmetric way in basic design. With regards 
to the spread of yielding inside the support, some codes assume a fixed value for ℓr (for example, ℓr 
is taken equal to 5Db in EC8-I 2004). In design, yield penetration is accounted for by simply 
considering this length of anchorage as inactive in force transfer. A consistent evaluation of yield  
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Fig. 2 (a) Force equilibrium of an elementary segment along the bar anchorage, (b) elasto-plastic 

stress-strain law with hardening for reinforcing steel, and (c) simplified elasto-perfectly plastic 
bond-slip law with a post-peak residual plateau 

 
 

penetration and its effects on the strain development capacity of reinforcement may be obtained by 
a systematic solution of the field equations of bond for anchorages of yielded rebar. The mechanics 
of this problem are described in detail in the following section. 

 
 

3. Bond assumptions for straight anchorages 
 

Bond is defined with reference to the force equilibrium of an elementary bar segment (Fig. 2(a)).  
An elastic –plastic stress strain curve with hardening is used to model the behavior of steel 
reinforcement in tension; Esh is the post-yield hardening modulus, (Fig. 2(b)). Local bond is 
modeled with a simplified elasto-perfectly plastic bond-slip law followed by a post-peak residual 
plateau (Fig. 2(c)).The initial ascending branch is modeled as a linear relationship up to the local 
bond strength fb

max and an associated slip, s1; the plateau extends up to a slip value s2, followed by a 
residual branch associated with pullout failure. The solution given below concerns the state of 
stress along a straight anchorage which is subjected to a specific strain magnitude, so, at the 
entrance point (i.e. at the loaded end of the anchorage, Figs. 3(a),(b)). The same solution is also 
valid for an anchorage with a hook, which is treated mathematically as a straight anchorage of an 
equivalent length Lb,equiv (Fig. 3(c)). This equivalent length may be calculated considering the 
force-anchorage capacity of an embedded hook, Fh. According to the fib Model Code (2010), Fh is 
equal to 50fb,dAb, where fb,d the design value of the average bond strength in the anchorage and Ab is 
the cross sectional area of the bar; thus the total equivalent bond force development capacity is 

4/50 2
,,, bdbstraightbdbbhstraightequiv DfLfDFFF                (3a) 

which corresponds to an equivalent straight development length of 

 bstraightbequivb DLL 5.12,,                           (3b)  
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Fig. 3 The attenuations of inelastic bar strain, slip and bond stress along the anchorage are presented at (a) 
an intermediate strain state after yielding and (b) at the anchorage strain capacity. (c) Anchorage 
with a hook is treated as a straight one of equivalent length 

 
 
For smooth reinforcing bars the latter equation is valid when the hook term of 12.5Db is multiplied 
by the ratio of design bond strength of ribbed to smooth bars (fb,rib/fb,sm). 

 
3.1 Governing equations of bond-slip 
 
Consider the case where the developed strain at the critical section of the bar, εso, exceeds the 

yield strain sy at the loaded-end of an anchorage. The general governing equations are 

  )(
4)(

;)()(
)(

xf
Ddx

xdf
xx

dx

xds
b

b

s
cs                     (4) 

Solution of Eq. (4) for bar strain so greater that sy results in the Eqs. (5)-(9) listed below which 
define the strain, slip and bond values at characteristic points of the corresponding distributions 
along the embedded length (Tastani and Pantazopoulou 2012). Bond assumes values ranging from 
the residual resistance fb

res at the loaded end, increasing to the local strength value fb
max further into 

the anchorage, and elastic attenuation towards the tail end of the anchorage as per the distributions 
shown in Fig. 3(a). Three different regions are identified over the anchorage length:  
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(i) the segment ℓr, adjacent to the loaded end, over which yielding has spread (strains of the 
segment ℓr range from so at the loaded end, to sy at the end of ℓr, Fig. 3(a)). Because the stress of a 
yielded bar is constant and equal to fsy, it follows from Eq. (4) that local bond stress along a yielded 
bar is theoretically equal to zero. In the mathematical solution a slight hardening slope is used to 
model the plateau of the stress-strain law of the reinforcement for positive definiteness of the 
solution; in this segment, bond attains its residual value, fb

res, thus, slip exceeds the limit value of s2 
depicted in the bond stress – slip law (Fig. 2(c)). 

(ii) the segment ℓp
a further into the anchorage, over which strain attenuates from value sy to el, 

where the latter is a critical value of the bar elastic axial strain, which is associated with the onset 
of plastification of bond. Thus, is this segment, the bar is elastic, but the bond-slip mechanism is on 
its plastic plateau. Thus, the slip at the end of ℓp

a is equal to the limit value s1 of the bond law (Figs. 
2(c), 3(a)), and  

(iii) the tail end of the anchorage where strain attenuates from value el to zero (Fig. 3(a)).  
Solutions for these three stages have been derived by the authors (Tastani and Pantazopoulou 

2012); only expressions required to calculate the milestone points of the behavior are summarized 
in the following sections.   

 
3.2 Definition of the minimum bonded length 
 
Consider the instant when the bar attains its strain capacity so

max at the critical section of a 
member’s support, while at the opposite end of the anchorage the bar strain attenuates to zero.  
Bar slip at the bar free end approximates the characteristic value s1 of the bond – slip law (Fig. 
3(b)). At imminent failure of the bar by pullout, it is assumed that yielding has penetrated deep 
enough into the anchorage so that the remaining bonded length Lb,min barely suffices to support the 
bar force (Fig. 3(b)). In that extreme situation of maximum attainable yield penetration, the 
residual bonded length must mobilize the bond strength of the material (fb=fb

max), so that: 
Lb,min=Db/4(fsy/fb

max ); thus bond stress over Lb,min is constant and equal to the local strength.   
When considering the requirements of equilibrium over Lb,min for the point of imminent failure, 

for constant bond stress it is concluded that bar stresses attenuate linearly over the remaining 
bonded segment (since, according with Eq. (4), fb(x) is proportional to dfs(x)/dx)). With the bar 
being elastic over this bonded part, bar strains are also linearly varying over Lb,min. Strains over the 
yielded portion, ℓr, range from the value of sy at the end of the Lb,min, to the value of so

max at the 
critical section (Fig. 3(b)). For the assumed bond stress-slip model, bond stress is constant and 
equal to the residual resistance fb

res over ℓr, so a linear distribution of bar strain is assumed between 
sy and so

max. Clearly, higher strains than so
max (the value is limited by the maximum attainable 

length of yield penetration) cannot be sustained in the critical section, as incipient bond failure of 
the bar along its anchorage will occur. For lower strain values at the critical section, (sy<so<so

max) 
the corresponding length of yield penetration ℓr will be estimated below. 

 
3.3 Calculation of milestone values of bar strain and slip along the embedded length 
 

(i) The strain so and slip so at the critical cross section (loaded-end of the anchorage where 
fb=fb

res) are: 
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 sysoro ss   5.02                         (5b) 

where, ℓr the yield penetration length over the anchorage, measured from the loaded end, s2 is the 
slip at the end of the yielded segment ℓr  (point of reference for measurements is the loaded-end, 
Fig. 3(a)) and Db is the bar diameter. Through systematic calibration of the local bond - slip law it 
has been shown that the slip at the end of the horizontal branch, s2, is not an intrinsic property of 
the bar-concrete interface but mainly depends on the anchorage length, attaining in each case its 
maximum value for anchorage lengths exceeding Lb,min=Db/4·(fsy/fb

max ) when the anchorage attains 
its strain capacity value, so

max  (Tastani et al. 2012a). 
 
(ii)  With reference to Fig. 3(a) the strain el at the end of ℓp

a (this is the length of anchorage 
adjacent to ℓr, over which bond has attained the plasticity limit fb

max), and slip s2 at the end of ℓr and 
thereby at the start of ℓp

a are 

a
p

sb

b
syel ED

f


max4
                            (6a) 

 elsy
a
pss   5.012                          (6b) 

Parameter Es is the elastic modulus of steel. Value s1 in Eq. (6b) is a characteristic property of the 
local bond-slip law (Fig. 2c), independent of the available anchorage length. 
 
(iii)  Over the remaining length, Lb-(ℓr+ℓp

a) (Fig. 3(a)) the bar is elastic, and bond stress is also on 
the linear ascending branch; the strain el  at the entrance point of that segment is defined through 
the elastic solution (Tastani and Pantazopoulou 2012) and is given by Eq. (7) 
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where,  is a measure of the elastic stiffness (fb
max/s1) of bond as compared with that of steel, Es. 

Given the developed strain value at the loaded end, so, the system of Eqs. (5)–(7) is used to 
establish the unknown parameters (so, so, s2, el, ℓr and ℓp

a). Note that by combining Eqs. (6) a 
quadratic equation for ℓp is obtained as follows 
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The acceptable root of Eq. (8a) is the one that also satisfies the requirement of ℓp
a+ℓr≤Lb and is 
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Table 1 Definition of multiplier  (where =Lb,min/Db) for several steel and concrete qualities  

fc
’(MPa) 12 16 20 25 30 

fb
max(MPa) 8.74.3 105 11.25.6 12.56.3 13.76.8 

fsy (MPa) 

220 713 611 510 59 48 
400 1223 1020 918 816 815 
500 1529 1325 1223 1020 1019 

 
 
The slip so at the loaded end of the anchorage is rewritten by combining Eqs. (5b) and (8a). For 
simplification of several terms, the definition of minimum anchorage length required for the 
reinforcement to develop yielding, Lb,min=(Db/4)·(Essy/fb

max) is used. 
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3.4 Bar strain capacity and maximum sustainable yield penetration length 
 
The strain capacity of the bar so

max and the corresponding slip designated at the loaded end, 
so

max are derived from Eq. (5) to Eq. (7) by substituting where ℓp
a  the value Lb,min. The region of 

maximum sustainable yield penetration is denoted as ℓr=Lb-Lb,min (Fig. 3(b)). 
With reference to Fig. 3(b) the ultimate slip at the bar loaded end, so

max is the result of three 
contributions; (i) the slip of the anchorage tail at imminent anchorage failure, which is usually 
omitted by several investigators in calculating the ultimate contribution of slip to chord rotation of 
an R.C. column. Here, this is taken equal to the slip at the end of the ascending branch of the local 
bond-slip law, s1, (ii) the slip owing to integration of the linearly varying bar strains - from zero at  
the anchorage tail, to the yield strain sy along the minimum bonded length Lb,min and (iii) the slip 
due to yield penetration over the debonded length ℓr= (Lb-Lb,min). 

 
3.4.1 Application of the algorithm to estimation of strain development capacity 
For the calculations to be easier the minimum required bonded length, Lb,min, is expressed as a 

multiple of bar diameter, as Lb,min=·Db. The multiplier  accounts for several strength categories 
of steel and concrete as shown in Table 1. Note that according to the fib Model Code (2010) the 
local bond strength is taken equal to fb

max=1.252.5√fc
’, an expression that is valid for pullout 

failure and for developed bar strains lower to, or equal to sy. Note that the lower limit (i.e., 1.25) 
refers to favorable whereas the upper end value of 2.5 to improved bond conditions, whereas the   
values correspond to the straight segment of hooks and bent bars.  

The strain development capacity of the reinforcement so
max and the corresponding slip 

designated at the loaded end of the anchorage so
max are derived from Eqs. (5)-(7) by substituting 

where ℓp
a=Lb,min. The results are given below 
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Combining Eqs. (10a-b) the ultimate slip may be rewritten as 

  max
min,1

max

2

1

2

1
sobbsybo LLLss                      (11) 

As previously noted, the slip at the end of the horizontal branch of the local bond-slip law s2 
assumes its maximum value for anchorage lengths greater than Lb,min and when the anchorage strain 
attains the strain development capacity of the bar, so

max; thus the s2 comprises the first two parts of 
Eq. (10b) as 

sybLss min,12 5.0                            (12) 

This point is also highlighted in Fig. 3(b) through the strain distribution plotted along the 
anchorage, where s2 is obtained from the sum of s1 and integral of bar strain over ℓp

a=Lb,min. 
 
3.4.2 Parametric Investigation of Eq. (10) 
Exploring the several variables included in Eq. (10a) it is inferred that the strain capacity of the 

anchorage apparently depends on how deep the yield penetration may proceed, as measured by the 
term (Lb-Lb,min) and it is inversely affected by the steel hardening modulus. A stiff stress-strain 
response of the reinforcement after yielding reduces the strain capacity of its anchorage for a given 
development length Lb. On the other hand good bond conditions (for example, in the presence of 
the confining action exerted by stirrups, which would result to a considerable increase in residual 
bond strength, fb

res), can support higher tensile strains in the reinforcement. Regarding the terms of 
Eq. (10b) it was shown mathematically that the accumulated ultimate slip at the bar loaded end, 
so

max, is the result of bar strain integration over the two segments identified in Fig. 3(b) increased 
by the amount of s1 of the local bond – slip law. 

An important issue of the algorithm is the definition of the characteristic points in the local 
bond – slip law as depicted in Fig. 2(c). The values given have been obtained through consistent 
evaluation of a large collection of experimental data by the authors (Tastani and Pantazopoulou 
2010) and are summarized for easy reference in the Appendix I. 

 
3.4.3 Development of design charts for strain development capacity 
The parametric sensitivities of the strain development capacity of steel bar anchorages, so

max as 
well as of the associated slip at the critical section are studied in this section using the results of 
Eqs. (10) and (11), respectively for a 14 mm diameter bar. Results are plotted in Fig. 4 considering 
the strain and slip distributions depicted in Fig. 3(b). In developing this chart three alternative 
values were considered for the strain hardening modulus of the reinforcement, Esh (5, 10 and 15% 
of steel’s elastic modulus, Es=200GPa) and two different values for the local bond strength fb

max (5 
and 10MPa). (Note that the average bond strength value reduced from experiments by dividing the 
bar force with the total nominal contact area of bar with concrete over the entire development 
length, is generally lower than the local bond strength value.) Other input variables required for  
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(a) (b) 

(c) (d) 

Fig. 4 Charts for the definition of (a) the slip at loaded-end of the bar anchorage and (b) the corresponding 
strain capacity of the anchored bar versus the embedded length for several values of steel hardening 
modulus (Esh: 5, 10, 15% Es) and two values of bond strength (fb

max=5, 10MPa). For a specific bar 
anchorage geometry and given the imposed strain at the loaded-end (c) the corresponding slip and 
(d) the debonded length are calculated 

 
 

development of the graphs were, fy=500MPa, fb
res=0.2fb

max and s1=0.5mm. Calculated slip values 
are normalized with respect to s1 (the end of the elastic range of the assumed local bond-slip law).  
Similarly, strains are normalized with respect to the bar’s yield strain value so that the plotted 
value is actually the estimated strain ductility capacity of the anchorage. Graphs 4a and 4b plot the 
variation of these response indices against the normalized bond length, defined by  or Lb/Db. It is 
seen that by increasing the available anchorage length proportionately greater post-yielding strains 
may be sustained by the anchorage. The associated slip values increase even faster with the 
available development length, suggesting that: (a) total drift capacity of the concerned member 
increases significantly - albeit a large portion is owing to pullout- prior to failure of the  
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 (a)  (b) 

 

(c) 

Fig. 5 Bar strain ductility capacity versus the required anchorage length for steel categories (S400 and 
S500), two values for hardening modulus (Esh=1% and 5%Es for S400 and 1%Es for S500), five 
concrete strengths (fc

’=12, 16, 20, 25, 30MPa) and two bond conditions 
 
 
reinforcement anchorage. (b) At large drift levels a non-negligible portion of concrete strain in the 
compression zone of the member would be owing to slip according with Eq. (1), with implications 
on design and detailing requirements.  

For a specific bar anchorage geometry (for example, consider the case of Lb/Db=30) the 
estimated relationship between maximum sustainable slip and bar axial strain prior to anchorage 
failure (where bar strain so is beyond the point of yielding: sy<so<so

max) is shown in Fig. 4(c).  
The length of sustained yield penetration, ℓr, normalized with respect to Lb, is plotted against bar 
axial strain capacity in Fig. 4(d). Note that local bond strength has a determining influence on bar 
axial strain capacity and yield penetration. (With reference to the example, common values in the 
range expected for lightly confined anchorages (fb

max=5MPa, where fb
ave=4.16MPa) for an 

anchorage length of 30Db will only enable development of a bar strain ductility less than the value 
of 2 and a spread of yielding over 18% of the available anchorage length. This is estimated as 
5.5Db, which is consistent with the empirical postulate of EC8-I 2004.)  
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Fig. 4(d) underlines the fact that the available strain ductility may be much lower than the 
nominal value attributed to the reinforcement by either EC2 (2004) and ACI 318 (2011) based on 
material classification; higher strain capacities can only be relied upon if the anchorage can 
develop bond stresses that are significantly higher than the design values (see example with 
fb

max=10MPa in Fig. 4(d)). 
 
3.4.4 Comparison with relevant design clauses  
The estimated strain ductility capacity of reinforcement s=so

max/sy, that can be supported by 
the anchorage, as calculated from Eq. (10a), is investigated below with regards to the important 
parameters through a sensitivity study. Fig. 5 plots term s against the normalized anchorage 
length  =Lb/Db for two steel categories (S400 and S500), five concrete types (fc

’ =30MPa, 25MPa, 
20MPa, 16MPa and 12MPa), two bond conditions (fb

max was taken equal to 2.5√fc
’ and 1.25√fc

’ for 
good and all other bond conditions respectively, values taken from Table 1) and two values for the 
hardening modulus of steel (1% and 5% of Es (=200GPa) for the S400 case study and only 1%Es 
for the case of S500). The curves in Fig. 5 are plotted with diminishing line thickness, where, the 
lower the concrete quality the thinner the corresponding curves. For the calculations needed to 
produce these plots, the residual bond strength fb

res (attained after bar yielding) was estimated 
according with the local bond model for so

max>sy, as prescribed by the fib Model Code (2010). 
Thus,  

2
maxmax

5max ]2[;;)]1(85.0[1;
sy

so

syuk

syso
yybbm

res
b f

f
befff

b





 




    (13) 

where parameter y accounts for the deterioration of bond as a function of the attained inelastic 
strain, and fso

max the bar stress at the assumed inelastic bar strain, so
max. Note that the strain at 

rupture of steel reinforcement was taken as uk=0.08, whereas s1 was taken equal to 0.2mm.  
The procedure followed to obtain the charts of Fig. 5 begun with the estimation of coefficients 

α and b defined in the preceding paragraph, (from fso= fsy+Esh(so
max-sy)), for selected reference 

values of the strain ductility variable, i.e., for μes = 2, 5, 10, 15 and 20. Next, these are substituted 
in the expression for parameter , which according to fib Model Code (2010) multiplies the local 
bond strength in order to determine the residual bond strength, fb

res. This is subsequently introduced 
in Eq. (10) and (12) and through back-calculation the required anchorage length Lb is estimated 
which satisfies the additional requirement to be able to develop the required ultimate strain in the 
anchorage, so

max. 
Diagrams such as those plotted in Fig. 5 can be used to assess the reinforcement strain 

development capacity for a known anchorage length and thus, the rotation capacity at the critical 
sections of frame members. Note that in a structural member, the expected bar inelastic strain 
capacity so

max for a selected anchorage length may even be limited by other failure modes that 
precede anchorage failure. 

The implications of limited strain development capacity of yielding reinforcement in practical 
seismic assessment is only considered explicitly in EC8-III (2005) which is a Code of seismic 
assessment of existing structures. The relevant requirements are particularly restricted to the case 
of straight bars lapped at the critical cross section of a frame member. According with the EC8-III 
(2005) requirements, the bar is able to develop its full (nominal) strain capacity uk if the available 
lap length ℓo exceeds a lower bound value, which is independent of uk 
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 Fig. 6 Ductility s of a straight lap splice: correlation with the EC8-III (2005) 
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otherwise, the reinforcement strain capacity in the lap region is reduced by multiplying the nominal 
strain capacity of steel,uk, with the ratio ℓo/ℓou,min. Parameter l is the confinement effectiveness for 
prismatic members with a rectangular cross section, equal to 
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where nrest is the number of lapped bars laterally restrained by stirrup corner or cross-tie, ntot is the 
total number of lapped bars around the perimeter of the cross section and sx=Ast/(h·Sh) the ratio of 
transverse steel oriented parallel to the load, and sh the longitudinal spacing of successive stirrup 
layers.  

When setting the minimum anchorage length, Lb,min= Dbfsy/(4fb) equal to ℓou,min it follows that the 
required average bond strength for the bar to develop its nominal strain capacity would be 

'
'

, )5.1405.1[(25.0 c
c

ystsxl
b f

f

fa
f


                       (16) 

A comparative application of the proposed model and the code expression mentioned in the 
preceding is presented through an example also depicted in Fig. 6 and summarized in Appendix II.  
From the calculations it is shown that the proposed algorithm results in a more optimistic 
calculation of the required bonded length than the code expression for development of the bar’s 
nominal strain capacity.    
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 Fig. 7 Drift at yielding: correlation between analytical estimates calculated through Eq. (19) and 
experimental measures 

 
 
4. Drift components at yielding and beyond 

 
The local strain demand that develops in the critical section of a column experiencing relative 

lateral drift is interpreted through the kinematics of the deformed member. Thus, if u the total 
chord rotation of the member, then it may be shown from concrete mechanics that the inelastic 
curvature at the critical section and corresponding strain of tension reinforcement are proportional 
to u, comprising contributions from flexural as well as pullout (slip) components 
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where, ℓp is the plastic hinge length (in practice, ℓp is approximated by 0.5h for ribbed bars, and 
0.25h for smooth bars), φy, φu are the curvatures of the critical cross section at yielding and at the 
inelastic state considered (Priestley et al. 1996, fib Bull. 24 2003, EC8-III 2005) 

)/(;/14.2 cdh sousyy                        (18) 

where h the height of the column cross section. Similarly, the chord rotation at yielding is 
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Parameter ℓp
a,elastic is the length over the anchorage where bond has reached the state of 

plastification. Here, this is evaluated for the point of initiation of bar yielding at the critical section, 
i.e., for so=sy. To calculate ℓp

a,elastic the following boundary conditions are introduced in Eqs. 
(5)-(7): so=sy  and so=so,

elastic=su whereas ℓr=0.  
To examine the validity of Eq. (19), a database was assembled including lightly r.c. columns 

tested under reversed cyclic loading (Tastani et al. 2012b). These specimens (denoted by “as built” 
in Fig. 7) were subsequently repaired through FRP jacketing and retested to failure. The analytical 
estimation of the yield drift y (Eq. 19) as compared with the experimental estimate (point beyond 
which, a considerable reduction of secant flexural stiffness is observed) is shown in Fig. 7; failure 
was due to several reasons as reflected by the scatter, but as evidenced by Fig. 7, the rotations 
measured are even higher than what is estimated when accounting for slip. Obviously bond 
properties were even worse than assumed, and in any case values are way larger than the classical 
theoretical value of 0.5% for the drift at yielding, which is obtained when neglecting slip 
contribution. 

Because the products sy/(d-c)+(ℓp
a,elastic–(ℓp

a,elastic)2/(2Lb,min))·φy and sy/(d-c)+(ℓp
a-(ℓp

a)2/(2Lb,min))·φy 
(the second term corresponds to strain so) are of approximately equal magnitude, Eq. (17) is 
simplified when considering Eq. (19) as follows  

    yryurpyu .    50                       (20)
 

For the correlation of drift capacity u calculated by Eq. (20) with experimental evidence, the 
database presented in Tastani et al. (2012b) is recalled. For the definition of the analytical drift u 
using the database specimens (both the “as built” that were loaded up to failure and the 
FRP-repaired) the value of the ultimate anchorage strain so

max is compared with the rupture strain 
of the steel uk that is set equal to 20‰; if so

max <uk then for the calculation of u the so
max is used, 

else the limit of uk is used. Fig. 8 plots the analytical drift values against the experimental 
estimates; analyses for so

max ≤uk are plotted in Fig. 8(a) whereas Fig. 8(b) shows results from 
analyses using so

max without any limitation in the strain capacity of the anchorage. In case of Fig. 
8(a) the proposed model gives a satisfactory prediction for the “as built” specimens whereas the 
values for the FRP-repaired specimens are underestimated as compared with the experimental 
estimates. Ignoring any limitation in the strain capacity of the anchorage (i.e. using so

max) the 
resulting ultimate drift u of the FRP-repaired specimens presents a notable scatter. The strain 
hardening modulus Esh is also a variable that affects the analytical results; by only increasing the 
hardening modulus Esh from 5% to 10%Es the scatter is significantly reduced (Fig. 8(c)). Thus, the 
knowledge of the entire stress-strain law is very important because it impacts the accuracy of the 
analytical calculations of inelastic deformation capacity in r.c. members (repaired or in pristine 
condition). 

Material strains at the critical cross section may be estimated from a first-order approximation 
assuming that for usual values of axial load (less than 0.4fc

’Ag) the depth of compression zone c 
extends over 20-30% of the cross section’s effective depth d. Considering, as a simplifying 
approximation that the depth of compression zone does not change significantly after yielding (so 
that c may be taken constant), it follows from Eq. (20) that 
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 (a)  (b) 

 

(c) 

Fig. 8 Estimation of drift at ultimate, u, for both the “as built” and FRP-repaired specimens: (a) for so
max 

≤r, (b) for so
max and Esh=5%Es and (c) for so

max and Esh=10%Es 
 
 
To appreciate the relative magnitude of the results a practical example is detailed below. 
(Given a frame member cross section with h=400mm, Db=14mm, Lb=30Db, sy=0.0025 

(fsy=500MPa), fb
max=10MPa, fb

res=2MPa, sy=0.5mm, Esh=5%Es, c=0.25d, d=370mm, ℓp=0.3d, the 
strain development capacity of the anchorage is obtained as follows: so is calculated so as to 
satisfy both Eqs. (5)-(7) and (21) for a given drift demand. For a drift of 1.25%, where y =0.5%, 
the plastic rotation demand is, pl=1.25%-0.5%=0.75%. The value of so is sought that satisfies Fig. 
4(d) while the difference s,pl =so - sy satisfies Eq. (21): it follows by trial and error that for the 
level of relative drift ratio considered, tension reinforcement at the critical section would sustain a 
bar axial strain so=0.011, undergoing a slip value of so=1.53mm. In this example, the front part of 
the reinforcement anchorage would be debonded over a length ℓr=148.8mm, followed by a 
segment ℓp

a=11mm where bond would attain peak value corresponding to full plastification of 
bond.) 

Eq. (21) practically states that the plastic strain, s,pl, that occurs in the tension reinforcement is 
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linearly related to the inelastic drift pl experienced by the member. Another conclusion from the 
above analysis is that the larger the length of yield penetration ℓr, the larger the fraction of the total 
rotation u that is owing to elastic curvature, φy, and the smaller the fraction that remains for 
inelastic rotation. The latter is also downsized with shorter lengths of plastic hinge in the shear 
span. So although the total rotation capacity may be high (i.e. in the order of 4-6%), in the presence 
of significant yield penetration response may be unacceptable owing to the very high compliance 
(flexibility) of the member to lateral displacement without toughness. 

Each cycle of response to a certain drift limit pushes yield penetration deeper into the anchorage.  
This has significant implications on the residual strength, stiffness and deformation capacity of the 
member for the subsequent cycles of response. Note that if the imposed drift has exceeded even 
once the yielding limit, then upon unloading the tension reinforcement has residual plastic strains 
at the critical section (i.e s

res in Fig. 2(b)), their magnitude obtained from the slope of the 
unloading branch 

pls
s

shres
s E

E
,)1(                               (22) 

But of far greater significance is that the residual strain capacity of the bar, which is available 
for future inelastic response either during subsequent cycles or in a following earthquake, is the 
difference of Δs,pl=εs,pl

max-εs,pl (or better (εso
max-εsy) -εs,pl in case where εso

max<εuk , Fig. 2(b)). 
Therefore, in each new phase of loading (for example, after retrofit), the peak inelastic drift that 
may be imposed on the specimen before deterioration due to anchorage failure is only 
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In the above, α=0.7 if hooks are present, else α=1 for straight anchorages. Alternatively, the 

same result may be obtained by combining the Eqs. (5) and (10) 
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Eq. (23) identify the effects of loading history on residual deformation capacity of flexural 

members. A striking example is the case of FRP-jacketing of damaged columns, which became 
very popular on the premise of observed member behavior improvement seen in laboratory test 
specimens jacketed in pristine condition and subsequently tested to repeated lateral displacement 
reversals: In the case of columns that have experienced excessive yielding prior to jacketing, the 
plastic rotation capacity after jacketing is limited by the dependable residual strain range of tension 
reinforcement, which depends on the extent of damage that has been sustained in the anchorage – 
i.e. over a part of the structure that lies outside the repaired region (Thermou et al. 2010). 

 
4.1 Practical implications of yield penetration 

 
4.1.1 Example (a): Plastic rotation capacity of a R.C. column 
To appreciate the significance of the above results consider the following numerical example on 

a column with a 400mm square cross section symmetrically reinforced with 5 spliced bars of  
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Table 2 Deformation and strength indices of the studied specimens (Syntzirma 2010, Thermou and 
Pantazopoulou 2009) 

Name # of layers ρfv (%) θy,exp (%) θu,exp (%) θ80%u (%) Py (kN) Pu (kN) 

Ls2-b No --- 1,10 1,76 3,50 27 34 

RcLs2-b 5-C 1,10 1,74 4,72 6,93 45 45 

Long. bars: Db=12mm, fsy=576MPa, fr=670MPa, stirrups: Dst=6mm, fst,y=335MPa,  fst,r=432MPa, concrete:  
fc

’=20MPa, CFRP: tf=0.11mm, Ef=230GPa, εf,u=0.015, Splice length: ℓo=300mm (ℓo/Db=25). 

 
 

Db=16mm on each side of its perimeter, with fsy=400MPa (Es=200GPa and Esh=10GPa), 
rectangular stirrups of Db,st=10mm spaced at Sh=100mm with fst,y=220MPa, and a deformable 
length of 3000mm (thus Ls=1500mm), concrete strength fc=16MPa, clear cover of c=30mm and 
anchorage length Lb=30Db=480mm. Assumed values for the characteristic points of the bond-slip 
law: sy=0.2mm, whereas for calculating fb

max (see Appendix I): μ=1.2 (or 0.6 for the fb
res), =2 and 

ft
’=0.5√fc. It is also assumed that the length of the plastic hinge ℓp is 0.5h in the shear span. The 

solution obtained using the proposed algorithm gives fb
max=6.82MPa, fb

res=3.41MPa, 
Lb,min=234.6mm, ℓp

elastic=83mm (at strain sy=0.002 and so
elastic=0.34mm), φy=sy/(0.7d) where 

d=350mm, so
max=0.023, so

max=3.5mm, φu
max = su

max/(0.7d) = 0.000094 mm-1 and finally pl
max=3% 

(ℓr=245.5mm, y=0.53% - Eq. (19)), u
max=3.52%. The corresponding concrete strain – neglecting 

the interaction between slip and flexural response - is equal to c
max=so

max·c/(d-c) =-0.023(0.3d/0.7d) 
=-0.023(0.3d/0.7d)=-0.0098, whereas when the interaction is considered, according with Eq. (1), 
this value is =-(0.023+(3.5/350))(0.3d/0.7d) =-0.014, i.e., a strain value 44% higher than what is 
obtained by the established approach used in practice. 
 

4.1.2 Example (b): Yield penetration effects on CFRP jacketing of a damaged R.C. 
column 

Another illustration of the implications of yield penetration due to a previous loading history on 
the available deformation capacity of a reinforced concrete member is made with reference to an 
experimental example. The specimen modeled a column shear span and was tested as a cantilever 
having a clear height of 900mm, a 200mm square cross section, reinforced with 8 spliced pairs of 
bars placed uniformly on the perimeter of the cross section and clear cover of 20mm; rectangular 
stirrups were spaced at 70mm o.c. One bar of each pair was anchored in the footing having a 
straight length of 300mm and a U-shaped hook of total length 900mm; however the equivalent 
length was set to Lb,equiv=300+12.5Db=450mm. The splice length in the column was ℓo=300mm. 
The column had been originally loaded under a reversed cyclic displacement history with a 
combined constant axial load of 0.08fc

’Ag up to splitting failure along the splice length (specimen 
ID Ls2_b, (Syntzirma et al. 2006)). It was subsequently repaired by cover replacement using 
cementitious grout and 1 layer of CFRP wrap for jacketing and retested to the same displacement 
history up to failure which was marked by excessive pullout of reinforcement localized at the 
connection between the column and the footing (specimen ID RcLs2_b, outlined in Table 2 
(Thermou and Pantazopoulou 2009)).  

The values for the several variables needed for application of the proposed algorithm were 
taken as: fb

max=6.72MPa, fb
res=3.36MPa (Appendix I), ℓo,min=257mm, effective depth d=174mm and 

depth of compression zone c=50.5mm for an axial load ratio of 0.1. Based on Eq. (19) the initial  
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 Fig. 9 Comparative representation between the initial and the confining-repaired load versus drift 
response of a lightly reinforced column: definition of drift indices 

 
 

chord drift at yield (ℓp
elastic=149mm, y=sy/(d-c)=0.0000233mm-1, sy=576MPa/200GPa=0.00288) 

is y
init=1.07%, a magnitude very close to the experimental measurement y,exp=1.10%. Based on 

the drift value attained by the specimen at the termination of the initial loading phase (u,exp=1.76%) 
and using back-calculation (Eq. (17): u

init=u,exp=1.76%) the maximum curvature applied in the 
test was estimated: u

init=0.00021mm-1 (ℓr
init=26mm, ℓp

init=170mm, so=0.0265) and the consumed 
plastic strain (Eq. (21)) was established s,pl

init=0.0265-0.00288=0.0236, i.e., less than the 
dependable range of inelastic strain (Fig. 2(b)): s,pl

max=so
max-sy=0.039 (From Eq. (10a): 

so
max=0.042) <uk-sy=0.08-0.00288=0.077.  
Thus, if no other mode of failure would prevail, the splice would have a dependable strain 

capacity in the post-repair phase, equal to Δs,pl=εs,pl
max-εs,pl

init =0.039-0.0236=0.0154. In case where 
no anchorage repairs are implemented to mitigate the implications of yield penetration inside the 
footing, (as was the case in repair of the examined specimen despite the use of cover replacement 
and CFRP jacketing in the plastic hinge region), the maximum drift experienced in the initial 
loading phase,u,exp, becomes the apparent chord drift at yielding in the post-repair loading phase, 
y

R (Fig. 9). Thus, it would be expected that y
R =1.76%. This magnitude is very close to the 

experimentally measured drift at yielding of the repaired specimen y,exp=1.74% (Table 2, Fig. 9) 
suggesting that a significant share of slip comes from the anchorage in the footing, which did not 
undergo any form of repair intervention in the second loading phase. 
 

4.1.3 Example (c): Increased compression strain in the compression zone of structural 
walls 

The implications of yield penetration are most critical in design of structural walls, where a 
decisive criterion in detailing according with Performance Based Design principles is the 
magnitude of compressive strain at the extreme compression fiber of the wall cross section 
(Wallace and Moehle 1992, Wallace 1995). This is estimated from the ultimate drift ratio demand 
for the wall structure, u/hw, where hw is the wall height and u is the peak wall displacement 
demand at the top under the design earthquake (obtained from spectral displacement, Sd, as u = Sd 

·Cd, Sd is obtained from spectral acceleration Sa, according with, Sd=SaT
2/42, whereas Cd is a 

coefficient around 1.3 required to convert spectral displacement to displacement at the top of the 
multistory wall structure). In design, the ultimate drift ratio demand is set equal to the local plastic 
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hinge rotation at the wall base, pl. The extreme fiber compressive strain c, at the critical cross 
section is obtained from 
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where c is the depth of compression zone at the wall base and lw is the length of the wall cross 
section. If the compressive strain exceeds a limiting value, typically taken as 0.003, then special 
transverse reinforcement is required. This is converted to a check for the depth of compression 
zone, against a limiting value, climit associated with attainment of the compression strain of 0.003, 
so that when c>climit, confined boundary elements are required in order for the wall to provide the 
required deformation capacity 
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To better match observed failures of wall tests the above was further developed to account for 
the influence of the wall thickness (Orakcal and Wallace 2002); however the simpler expression 
listed above is used for the needs of the present demonstration study, for the sake of simplicity. 
Consider a wall structure 10m in height, with lw=2m, and a thickness of 200mm, reinforced in its 
end zones with Db=20mm, fsy=500MPa (sy=0.0025) longitudinal bars provided with ample 
anchorage inside the footing (Lb/Db=50). According with the above requirements, for an estimated 
value of plastic drift ratio, pl=0.75%, the limiting compression zone depth associated with the 
development of a maximum compression strain of 0.003 would be for this structure, 444mm (Eq. 
24b). The tension strain demand at the effective depth of the wall cross section, estimated as 
d≈1800mm, for the case considered is, so=0.003·(1800-444)/444=0.0092, i.e., corresponding to a 
strain ductility of reinforcement equal to 3.7 (=0.0092/0.0025).   

Solution of the anchorage equations for this strain value at the loaded end of the typical 20mm 
diameter bar for Lb=50Db leads to ℓr=167.5mm with an associated slip value of so=1.54mm. For 
pl=0.75%, ℓr=167.5mm and assuming a plastic hinge length ℓp=0.5d=900mm in Eq. (21) leads to a 
slightly higher value for the bar strain at the critical section, so=0.0122 the difference being 
practically the elastic component (sy=0.0025) consistent with the fact that this was neglected in 
the design expressions used to derive climit (Eq. 24a). Using this revised value for the bar strain, and 
the associated slip in Eq. (1) it follows that the maximum compressive strain in the wall toe is 
εc=-(0.0122+1.54/1800)·444/(1800-444)=-0.0043, a value that is well beyond the initial upper limit 
for this case, which was set equal to 0.003. Concrete cover would definitely crush at such a high 
strain value, leading to amplification of stresses in the confined part of the wall end; in the absence 
of confinement the wall cross section would experience extensive damage at this level of strain. 

The increased values at the wall base thus determined underscore the significance of pullout 
rotation owing to penetration of yielding on the likelihood of early crushing of the compression 
zone if this zone is left unconfined. Note that in applying Eq. (1) to the wall cross section, it was 
assumed that compression zone contraction owing to pullout rotation of tension steel affects a 
height of the wall equal to the depth of its cross section; this assumption was extended from 
common frame members but may be unconservative if deeper cross sections (i.e., walls) are 
considered. The effect would be accentuated significantly should this strain amplification be taken 
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to occur over the plastic hinge. Although many other phenomena may be also responsible for the 
observed crushing failures in structural walls during recent earthquakes (Wallace and Moehle 2012, 
Wallace et al. 2012) such as lateral buckling due to out of plane displacements and second order 
effects, the significance of flexure-slip interaction described by Eq. (1) should not be overlooked in 
light of the significant pullout slip values due to yield-penetration, particularly if shorter 
anchorages/lap-splices or less favorable bond conditions prevail in field examples. 

 
4.2 Practical use of yield penetration in design 
 
The current Codes of Seismic Assessment (EC8-III 2005, ASCE-SEI/41 2007) require that 

seismic demand expressed in terms of chord rotation be compared with acceptance criteria for this 
variable in order to establish the performance limit state for the critical structural members. 
Existing acceptance criteria (nominal rotational capacity) do not consider the implications of yield 
penetration on pullout slip nor for the limited strain capacity of reinforcement. This is corrected 
based on the present work as follows:  

-  The relationship between available anchorage length and strain development capacity 
plotted in Fig. 6 defines the limit in the usable strain of longitudinal reinforcement, so

maxx. This is 
substituted in Eq. (18) to calculate curvatures at yield and ultimate, φy and φu. These values are 
substituted in Eqs. (17) and (19) to define the rotation capacity at yield and ultimate, which are 
proposed herein to be used as alternative acceptance criteria.   

-  Parameter so
max is substituted in Eq. 10(b) to obtain so

max. For detailing of the compression 
zone of walls the compression strain demand c is calculated from Eq. (1) after substitution of 
so

max for s, so
max for s. This is compared with the concrete compression spalling strain of 0.003 to 

determine whether boundary confining reinforcement is required.     
 
 

5. Conclusions  
 
The strain development capacity of standard reinforcement anchorages was evaluated by 

deriving closed form solutions for the state of strain and slip along the embedment length. The 
analytical algorithm accounts for several design and behavioral parameters known to influence this 
problem, such as yield penetration in the anchorage and reduction of the effective bonded length.  
It is shown that the farther the spread of yielding, the smaller the amount of usable strain of the 
reinforcement at the critical cross section of a flexural member. Phenomena such as bond 
plastification and debonding of the cover after bar yielding are accounted for in order to obtain 
closed form solutions for the strain development capacity of yielded anchorages. Design charts that 
relate slip at the critical section, strain development capacity and anchorage length are developed 
for practical use. It is shown from first principles that the accumulated damage in the anchorage 
and lap splice zones of such structural elements has several implications on their seismic behavior:  
for one, slip of tension reinforcement causes an increase in the compression strain of flexural 
members in the plastic hinge region. This interaction, in the absence of confinement could cause 
detrimental crushing of concrete at the extreme fiber of the compression zone at lower 
displacement ductility levels than otherwise estimated. In retrofitted r.c. members it reduces their 
available post-repair ductility and inelastic deformation capacity even after jacketing. The 
proposed expressions are also compared with the empirical expression for strain-capacity of 
anchored reinforcement proposed by EC8-III (2005). 
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Appendix I: Bond – slip relationship 
 
The ascending branch of the local bond – slip law is linearly elastic up to attainment of the bond 

strength fb
max associated with a slip s1=0.2-0.3mm for bars with a normal rib area in the order of 

fR=0.07. After this point bond enters a state of plastification where local bond-stress is constant and 
equal to the strength, fb

max, up to a slip magnitude s2 (Fig. 2(c)). The slip s2 is not an intrinsic 
property of the bar-concrete interface as it mainly depends on the anchorage length. It takes on its 
maximum value for anchorage lengths greater that the minimum length Lb,min and when the strain 
attains the capacity so

max. The local bond strength fb
max of anchorages confined with transverse 

reinforcement (stirrups or FRP jackets) is defined as (Tastani and Pantazopoulou 2007) 
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where μ is the coefficient of friction along the splitting plane (0.9-1.2 for ribbed, and 0.3 for 
smooth reinforcement),  accounts for the tensile behavior of the concrete cover (1 for fully elastic 
and 2 for  fully plastic), C is the clear cover thickness, ft

’ is concrete’s tensile strength 
(0.35~0.5√fc

’), Nb is the number of tension bars restrained by the stirrup legs included in Ast (Ast is 
the cross sectional area of stirrups crossing the splitting plane), Sh is the stirrup spacing, fst,y the 
stirrup yield stress. The third term in Eq. (A1) is omitted in rehabilitated cases in the absence of 
confining FRP jackets over laps (tj, Ef and f,eff are the FRP jacket thickness, the material modulus 
of elasticity and its effective strain as a mechanism of confinement for laps, f,eff  in the range of 
0.00150.002). In laps that have been split lengthwise prior to jacketing, the development capacity 
after the addition of the jacket is only marginally improved unless cover replacement has preceded 
the jacketing. Similarly, in damaged anchorages where spread of yielding has penetrated into the 
anchorage, bond is destroyed except for the clamping force exerted by transverse reinforcement at 
the discrete locations of contact between stirrups and the main bars (Timosidis and Pantazopoulou 
2009). This type of damage needs to be mitigated (e.g. by epoxy injections) in order to recover the 
original strength of the interface and member stiffness. Thus, the possibility of prior longitudinal 
cracking in the cover eliminates the first term in Eq. (A1), with commensurate implications on the 
strain development capacity of the anchorage. 

The residual bond strength fb
res developed over the yield penetration length of the anchorage 

may be calculated using Eq. (A1) by assuming that the frictional coefficient µ reduces to a residual 
value in the order of μres=0.4~0.6 as long as the ultimate slip so of the critical section does not 
exceed the rib spacing s3 (see also Fig. 2(c)); beyond this threshold μres is taken equal to zero. 
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Appendix II – Example: confined anchorage requirement 
 

Example:  According with EC 8-III (2005), a non-confined (no stirrups) lap-spliced bar with 
fsy=400MPa (Es=200GPa and Esh=1%Es=2GPa) and concrete strength fc

’=25MPa requires an 
average bond strength equal to fb=0.25·[(1.05+0)25].=1.3MPa in order for the bars to be able to 
develop their nominal strain capacity of uk=0.08 (i.e., a strain ductility s=so

max/sy of 40) over a 
length ℓou,min= Db·400/(4·1.3) 77Db (thicker dashed line, Fig. 6). For the problem of an anchorage 
of equal length, using the algorithm proposed in this paper, for the bars to be able to sustain 
yielding to the same nominal strain ductility, s=40, it follows that the required normalized lapped 
(or embedded) length is, Lb/Db=56 (mid-thick dashed line, Fig. 6). In this case, at the onset of 
failure, bond would reach the local bond strength, fb

max=6.25MPa for a length of 
ℓp

a/Db=Lb,min/Db=16, (for concrete fc
’=25MPa, black curve in Fig. 6, see also Table 1) along the last 

part of the anchorage whereas over the remaining yielded length, ℓr=(Lb-Lb,min)=40Db, bond stress 
would be equal to the residual bond strength, fb

res1MPa. The corresponding average bond strength 
for this calculation is fb

aveLb/Db=(ℓp
afb

max+ℓrfb
res)/Db, i.e., a value less than the local strength, but 

greater than the residual limit: fb
ave=2.5MPa>fb=1.3MPa. 
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