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Abstract.  The problem of identification of multi-component and (or) spatially varying earthquake support 
motions based on measured responses in instrumented structures is considered. The governing equations of motion 
are cast in the state space form and a time domain solution to the input identification problem is developed based on 
the Kalman and particle filtering methods. The method allows for noise in measured responses, imperfections in 
mathematical model for the structure, and possible nonlinear behavior of the structure. The unknown support 
motions are treated as hypothetical additional system states and a prior model for these motions are taken to be given 
in terms of white noise processes. For linear systems, the solution is developed within the Kalman filtering 
framework while, for nonlinear systems, the Monte Carlo simulation based particle filtering tools are employed. In 
the latter case, the question of controlling sampling variance based on the idea of Rao-Blackwellization is also 
explored. Illustrative examples include identification of multi-component and spatially varying support motions in 
linear/nonlinear structures. 
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1. Introduction 
 

Dynamic state estimation tools provide powerful framework to reconcile mathematical and 
experimental models in engineering dynamics (see, for example, Maybeck 1979, 1982). Thus, for 
a Markovian discrete time system with n × 1 state vector xk at time tk, and a set of measurement 
time histories up to time tk, denoted by Dk, the dynamic state estimation method provides a 
framework to determine the conditional probability density function (pdf) p(xk|Dk ). In earthquake 
engineering problems, the equation governing system states can be derived based on the 
application of the finite element method and the set Dk typically could include measured structural 
displacements, velocities, accelerations, strains, reaction transferred, and (or) applied support 
motions. Prior to the availability of the measurements Dk, the unconditional pdf p(xk) can be 
determined by postulating a random process model for future excitations and by using random 
vibration principles or through Monte Carlo simulations. Once the structure comes into existence, 
and measurements Dk become available, it would be of interest to obtain the posterior pdf p(xk|Dk ). 
Currently, the dynamic state estimation tools are increasingly attracting the attention of structural 
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engineers given the recent advent of instrumented civil engineering structures (Ching et al. 2006, 
Yuen 2010, Nasarellah and Manohar 2011a, b). The well-known Kalman filter provides the exact 
solution to the problem of state estimation in linear state space models with additive Gaussian 
noises. For more general class of models involving nonlinear systems and (or) non-Gaussian 
noises, one could utilize either approximate analytical solutions (Jazwinski 1970) or Monte Carlo 
simulation based approaches (Doucet et al. 2001, Ristic et al. 2004, Cappé et al. 2005). It is 
important to note that the scope of the dynamic state estimation problem could be expanded to 
include problems of system parameter estimation and applied force identification. Some of the 
early applications of these tools in structural engineering can be found in the works of Yun and 
Shinozuka (1980) and Hoshiya and Saito (1984) who used these tools in problems of system 
parameter identification. More recently, several authors have explored the simulation based state 
estimation tools for structural system identification and model updating (Ching et al. 2006, 
Nasrellah and Manohar 2011a, b) and for reliability model updating (Ching and Beck 2007, 
Radhika and Manohar 2010). The present study belongs to this genre and we address the problem 
of identification of earthquake support motions based on a set of spatially incomplete response 
measurements from an existing instrumented structure. 

The problem of force identification based on measured structural response is relevant in several 
engineering contexts such as in problems of moving load identification on bridges, impact forces 
on structures, forces due to imbalance in machinery, drilling applications, and wave forces on 
offshore structures. In structural health monitoring studies, the problem of system identification 
becomes central and many of the methods proposed in this context can be extended to address the 
problem of force identification as well. The lack of information on system condition and applied 
forces often results in addressing these problems simultaneously (Wang and Haldar 1994, Shi et al. 
2000, Xu et al. 2012). The available methods for force identification can be broadly classified 
depending on three criteria: (1) time and frequency domain methods, (2) model based or 
measurement based or a combination of both, and (3) type of force being identified. The methods 
developed can belong to one or more of these classifications. A purely measurement based 
non-parametric identification procedure called sum of weighted acceleration technique was used 
by Kreitinger et al. (1992) in the context of linear systems where the forces are partially observed. 
Here each of the recorded accelerations was associated with a weight which is obtained by the 
method of least squares by minimizing the difference between the predicted force and the known 
applied force. Wang and Kreitinger (1994) extended the application of this method to nonlinear 
systems by formulating the identification problem in the frequency domain. Worden et al. (1994) 
proposed higher order frequency response function and time series representations for the 
identification of wave forces on slender cylinders. Shi et al. (2000) applied the Kalman filter 
algorithm in the frequency domain and proposed a strategy to identify the power spectral density 
function of the force by considering both parametric and non-parametric models for the unknown 
force. This method is valid for the study of linear systems. Within the context of linear systems an 
iterative scheme for force identification is proposed by Chen and Li (2004) where in the force 
identification involves a modification procedure which uses the prior information on spatial 
distribution of external forces acting on the structure. The next set of methods combine both model 
and measurement information within the Bayesian framework. As discussed above Shi et al. (2000) 
formulated the identification problem in the frequency domain and apply the Kalman filter to 
estimate the unknown force. Zhang et al. (2012) also adopt the frequency domain in their work 
and use the Markov Chain Monte Carlo based Gibbs’ sampler to identify the parameters of the 
forces. Lourens et al. (2012) utilize the Kalman filter by augmenting the unknown force as an 
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additional state and modeling it as a stochastic process whose covariance is determined using 
standard regularization parameter estimation techniques.  

From the review of literature it is observed that the application of dynamic state estimation 
methods for force identification has been limited to studies on linear systems. Moreover, even for 
linear systems, the problem of identification of multicomponent and spatially varying ground 
motions seem to have remained unaddressed. The importance of including spatial variability in 
seismic ground motions in earthquake engineering has been well recognized in the existing 
literature (see, for example, the works of Harichandran and Vanmarcke 1986, Der Kiureghian 
1995, Sugiyama et al. 1995, and Jankowski 2012). It is also of interest to note that methods based 
on conditional simulations have also been used in the existing literature to characterize earthquake 
ground motions based on measured ground responses (see, for example, the works of Vanmarcke 
and Fenton 1991, Zerva and Shinozuka 1991, Kameda and Morikawa 1994, and Jankowski et 
al.1997). In the present study we aim to develop Kalman and particle filtering based strategies for 
identification of earthquake induced support motions in instrumented structures by taking into 
account issues such as (a) transient nature of earthquake ground accelerations, (b) possible 
nonlinear behavior of the structure, (c) multicomponent and spatially varying support motions, and 
(d) imperfections in mathematical models for the structure and presence of noise in measurements. 
Illustrative examples include studies on a bending-torsion coupled building frame and a system 
with hereditary nonlinearities.  
 
 
2. Problem statement  
 

Consider an L-degree of freedom (dof) vibrating system with displacement vector U(t) 
governed by the equation  

  0 0( ), ( ), ( ) ( ); (0) ; (0)      
   

FMU t f U t U t t G F t w t U U U U    (1) 

Here a dot represents derivative with respect to time t; 0( ), , , and ( )U t U f w t are 1L  vectors; M  
is the L L  mass matrix; FG is a  FL L force co-efficient matrix;  F t is a 1FL  vector random 
process representing the ground motion, with one realization of ( )F t corresponding to one episode 
of loading. The quantity ( )w t , termed as the process noise, is a vector of Gaussian white noise 
processes with  E 0  w t and      E        c

t
ww t w t which accounts for modeling error in 

arriving at Eq. (1). Here  E  is the mathematical expectation operator. We take that the system 
represented by Eq. (1) is instrumented by a yN number of sensors and a set of measurements on 
system response denoted by  k ky y t with , 1,2, ,kt k N  being the time instants at which 
measurements are made. The measured response could include strains, displacements, velocities, 
accelerations, and (or) reactions transferred to supports. We take in this study that the applied 
seismic support motions F(t) are not measured. The measured responses are taken to be related to 
system states through a nonlinear model given by 

   , , ; 1,2, ,    
  k k k k ky H U t U t t k N          (2) 

Here H is a 1yN vector; k is a 1yN Gaussian noise vector with  E 0 k and E        k

t
k j kj . 

The noise  k  represents the combined effects of sensor noise and uncertainties in relating ky  to 
the system states. We also take that  k is independent of the process noise ( )w t . We use the 
notation  1: 1 2 

t

k ky y y y to denote the measurement data available up to time .kt The 
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problem on hand consists of estimating the applied actions F(t) based on the postulated 
mathematical model for the structure [Eq. (1)] and measurement equation [Eq. (2)]. Given the 
presence of process and measurement noises in the above state space model, it follows that F(t) 
needs to be interpreted as a random process. The problem of identifying F(t) can thus be posed as 
determining the conditional probability density function  1:; | .F k kp f t y  
 
 
3. Solution strategy 
 

We pose the problem of determining  1:; |F k kp f t y as a problem in Bayesian filtering and the 

proposed solution strategy consists of three steps: 
(a) Declare ( )F t as a hypothetical system state and construct an augmented state vector
 x t given by             

 x t U t U t F t F t . A prior model for  F t is taken to be given by  

       0; 0 ~
FF t t F p F         (3) 

where  F t is taken to be a zero mean Gaussian white noise process with
     2E          FF Ft t . Note that the prior model could also include a modulating function to 

take into account nonstationary nature of the excitation. 
(b) We combine Eqs. (1) and (3)  and rewrite the governing equations in the form of an 

Ito’s stochastic differential equation (SDE) as 

          0, , ; 0         Idx t a x t t dt b x t t dB t x x     (4) 

Here  x t is a 1xN vector  2 2 x FN L L ,   ,  a x t t  is a 1xN drift vector,   ,  b x t t  is a 
xN m diffusion matrix, and  IdB t  is a 1m vector of increments of Brownian motion processes 

such that  E 0  IdB t and      E     c

t
I I wdB t dB t t dt . Furthermore, we discretize Eq. (4) using 

an explicit scheme based on application of the Ito-Taylor scheme (Kloeden and Platen 1992) and 
obtain a discretized map of the form 

   1 1 1 1 1 1; 1,2, ,         k k k k k k kx f x P G x w k N     (5) 

with specified initial condition 0x . Here  k kx x t  is a 1xN  state vector;  1 1 k kf x  is a 
1xN  vector of nonlinear functions of the states 1kx ; 1kP  is a 1xN  vector corresponding to 

deterministic input; 1kw  is a 1wN  vector of Gaussian distributed random variables with 
 E 0kw and E      k

t
k j w kjw w where  kj  is the Kronecker delta function, and  1 1 k kG x  is a 

x wN N  matrix relating kx  and 1kw . It may be noted that the deterministic input vector 1kP in 
the above equation is included assuming that the vector of applied actions  F t  may be only 
partially unknown. For the case when it is completely unknown, 1 0 1,2, ,    kP k N . We rewrite 
the measurement equation [Eq. (2)] in terms of the new state vector kx as 

           ; 1,2, ,   k k k ky H x k N       (6) 

(c)    Eqs. (5) and (6) are now in the standard state space form which enables the application 
of Bayesian filtering tools (Jazwinksi 1970 and Maybeck 1979). Specifically, this consists of 
determining the posterior pdf-s  1:| ; 1,2, , k kp x y k N based on which the desired expected 
values and measures of dispersion could be calculated. It must be noted that the determination of 
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 1:| ; 1,2, , k kp x y k N automatically leads to the determination of the estimates of the applied 
earthquake ground accelerations since the extended state vector kx contains the unknown 
excitations as components. It is well known that for linear state space models with additive 
Gaussian noises, the Kalman filter provides the exact solution to the problem of state estimation. 
For other general class of problems involving nonlinear systems, multiplicative noises, and (or) 
noises with non-Gaussian distributions one could employ either approximate solutions (like 
extended Kalman filter) or develop numerical solutions based on Monte Carlo simulations. When 
simulation based methods are employed, controlling the sampling variance of the estimates 
obtained becomes a crucial computational issue. One of the strategies to achieve this is to explore 
if the state space model admits a partitioning of the form  

tl n
k k kx x x , where, the superscripts l 

and n denoting, respectively, linear and nonlinear states, such that a part of the problem can be 
solved exactly using the Kalman filter and the remaining using more elaborate Monte Carlo 
simulations (Gordon et al. 1993, Schön and Gustafsson 2005, Radhika and Manohar 2012). 
Specifically, one here writes      0: 1: 0: 1: 0: 1:, | | , |l n l n n

k k k k k k k kp x x y p x x y p x y and subsequently applies 
the Kalman filter to obtain  0: 1:| ,l n

k k kp x x y and particle filtering to estimate  0: 1:|n
k kp x y . For each of 

the linear and nonlinear states one would get prediction and updating steps; additionally, the 
determination of  0: 1:| ,l n

k k kp x x y requires the treatment of 0:
n

kx as though it were a measurement. 
We refer the reader to the recent paper by Radhika and Manohar (2012) who have outlined the 
details of this procedure in which the sequential importance sampling (SIS) filtering is combined 
with the Kalman filter and for the details of the demonstration that the proposed procedure indeed 
leads to reduced Monte Carlo variance. 
 
 
4. Numerical illustrations 
 

We illustrate the procedure outlined in the preceding section through a set of four examples 
covering linear/nonlinear systems, single degree of freedom (sdof) or multi-dof (mdof) systems, 
multi-component ground motions, and spatial variations in support motions. One of the 
computational parameters that need to be selected pertains to the noise variance associated with 
augmented states corresponding to the inputs to be identified [ 2

 F
in Eq. (3)] and this issue is 

examined in detail in the first example. It turns out that this choice plays a crucial role in 
successful implementation of the method. The subsequent examples bring out different facets of 
the proposed strategy. In all the examples considered it is assumed that the structural system 
identification step precedes the force identification step and all measurements are derived 
synthetically from numerical models. 

 
4.1 Linear sdof system subject to transient support motion 

 
The governing equation for the total displacement of a sdof mass-spring-dash pot system under 

support displacement  bx t can be written in the form 

         2
1 0 02 ; 0 ; 0           b bu u x u x w t u u u u     (7)  

We augment this equation with an additional equation modeling the prior estimate of the 
unknown support motion given by 
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                          2 0 0; 0 ; 0    b b b b bx w t x x x x                             (8)    

In the above equations is the system damping,  system natural frequency,  bx t and  bx t are 
the support displacement and velocity, respectively, and  ; 1,2iw t i are zero mean Gaussian 
white noise processes with      2E ; 1,2       i i iw t w t i  accounting for the modeling error. 
Eqs. (7) and (8)  are cast as an Ito’s stochastic differential equation with state vector
           .  

t

b bx t u t u t x t x t  The SDE is discretized using the order 1.5 strong Taylor 
scheme (Kloeden and Platen 1992) to obtain the map 

1 1 1 0 1 2 1 1 1 2 1 2
1 1 1 1 1

2 2 2 1 0 2 2 1 2 1 2 2 2
1 1 1 1 1 1

3 3 4 2
1 1 2

4 4 2
1 2

1

2
1

2






    

    

 



        

          

    

  

k k k k k k

k k k k k k

k k k

k k

x x a L a L a Z L a Z

x x a W L a L a Z L a Z

x x x Z

x x W

              (9) 

with 

         

1 2 2 2 2 1 4 2 3 0 1 2 1 1 2 1
1 1 1 1 1 1 1 1 1 1 1 1

0 2 1 2 2 3 2 1 2 2 2
1 1 1 1 1 1 1 2

; 2 2 ; ; ; 0;

2 ; 2 ; 2

    

      
          

     

        

       
k k k k k k k k k k k

k k k k k k

a x a x x x x L a a L a L a

L a a a a L a L a
     (10) 

where q
pr  is used to denote the thq element of the vector  r t at the time instant  pt t  ,   is 

the time step, and  iW and ; 1,2 iZ i are Gaussian random variables; we refer the reader to 
Radhika (2012) for details on derivation of the above discrete map. Furthermore, it is assumed that 
the displacement of the mass is measured and the measurement equation is given by 

 yk = x1
k + v k ; k = 1,2,…,N                            (11) 

Here  k is the measurement noise which is taken to be a sequence of Gaussian distributed 
independent random variables with mean zero and standard deviation  k

; this noise is also taken 
to be independent of the process noise. It may be noted that the process equation [Eq. (9)] and 
measurement equation [Eq. (11)] constitute a linear state space model with additive Gaussian 
noises. The problem of state estimation thus can be tackled exactly using the Kalman filter. The 
problem of force identification lies in the determination of  3 4

1:, |k k kp x x y  for 1,2, , k N  and 
this is embedded as a marginal of the filtering density  1:|k kp x y . For the purpose of illustration 
we take that the support motion is given by the recorded ground motion during the 1940 El Centro 
earthquake (PEER Ground Motion Database 2000). We synthetically generate measurement data 
using this excitation.  

As has been already noted, the choice of the characteristics of noise  2w t  plays an important 
role in the development of the solution. It is important to note that the Kalman filter here provides 
an exact solution to the dynamic state estimation problem for any value of noise parameter 2 .This 
does not automatically mean that the problem of force identification gets solved in an acceptable 
manner. For this to happen, an appropriate choice for 2  needs to be made. One option here 
would be to treat 2 itself to be an additional state and identify this parameter by performing 
dynamic state estimation on the extended state vector. In the present study, however, we explore a  
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Fig. 1(a) Example in Section 4.1; Time history of the measurement with the time instants at which pdf of the 
estimated and measured response is compared, being marked. 

Fig. 1(b) Example in Section 4.1; comparison of the estimated and measured response for a range of values
of 2

2 ; the legends correspond to different values of 2
2 [in (m/s2)2]. 

 
 
heuristic alternative in which we examine the results of dynamic state estimation by varying 2
over a range of values, with an aim to arrive at the smallest possible value of 2  which leads to 
an acceptable solution. To illustrate this we consider a system with 2 rad/s,  0.05, 

2 2 2
1 0.01(m/s ) ,  0.0100s,  40sT and 0.0016m 

k
. Fig. 1(a) shows the trajectory of the 

measured displacement. For the purpose of illustration we select 7.79,8.09,21.99,27.99skt  [these 
time instants have been marked in Fig. 1(a)]. Fig. 1(b) shows the pdf  1

1:p |k kx y for the above four 
time instants and for 2

2 0.02,0.05, 0.10, 0.15  and  220.20 m/s . Also shown in these plots, through 
dotted vertical lines, are the measured values ky for the four time instants considered. It may be 
observed that, as 2 increases, 1

1:E |  k kx y converges to a constant value which depends on the 
value of kt . It may be discerned that the smallest value of 2 to which the converged value of 

1
1:E |  k kx y gets closest to the measured ky is  22 2

2 0.05 m/s  . In further work we thus employ 
2 2 2
2 0.05 (m/s )  . Fig. 2 shows the plots of posterior mean of the displacement and velocity 

responses. The measured data on displacement is also displayed in Fig. 2(a). The results on 
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support motion identification are shown in Fig. 3 along with details of the applied actions. To 
investigate the success of the method, the maximum of the Fourier amplitude spectrum of the 
estimated force time histories is compared with that of the applied support motions. An error of 1% 
(support displacement) and 0.01% (support velocity) was observed in these estimates thereby 
lending credence to the proposed method for force identification. 
 

4.2 A bending-torsion coupled building model subjected to biaxial transient support 
motions 

 
A five storey building frame with planar asymmetry in mass and stiffness distribution subjected 

to a bi-axial ground motion is considered (Fig. 4). Three of the columns are taken to be made up of 
steel while one of aluminum. The system is modeled as a 15 dof system (5 translations each in x 
and y directions and 5 rotations about the vertical axis) as shown in Fig. 4. The governing equation 
is obtained as 
 
 

(a)  (b)

Fig. 2 Example in Section 4.1; conditional mean of the estimated system responses; (a)  u t ; (b)  u t . 

(a)  (b)

Fig. 3 Example in Section 4.1; conditional mean of the estimated support motion; (a)  bx t ; (b)  bx t  

366



 
 
 
 
 
 

Dynamic state estimation for identifying earthquake support motions 

     

         

 

 
 
 

 
 
 

   

 
 

0 0

1

1
11 11 1

1
22 22 2

31 31 32 32
5

12 1 15
5

5

; (0) ; (0)

0.5 0.5

0.5 0.5
; ;

0.5 0.5 0.5 0.5

0







     

 
 
                   
     
 
 

   






  

bx bx

by by

bx bx by by

MU t CU t KU t f t w t U U U U

x t

y t
C x k x w t

t
C x k x w t

U t f t w t
C x k x C x k x

x t
w

y t

t

 

 
 
 
 
 
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        (12) 

Here M is a 15x15 diagonal matrix with the mass at each floor level being the co-efficient of the 
translational dofs{xi(t),yi(t)}

5
i-1 and the rotational inertia being the co-efficient of the rotational 

dofs{θi(t)}
5

i-1.C and K are non-diagonal viscous damping and stiffness matrices, respectively. ijC
and ijK refer to the  thi, j element of the C and K matrices, respectively.  w t is a 15 1  vector of 
independent Gaussian white noise processes with  E 0; [1,15]   iw t i and 

     E ; [1,15]       i i iw t w t i . The 15 natural frequencies of the building model were 
obtained as 5.34, 5.53, 8.23, 15.40, 15.97, 23.52, 24.25, 24.72, 29.86, 30.86, 36.14, 39.35, 49.02 
and 55.35 rad/s. bxx and byx are the applied support displacement in the x and y direction, 
respectively. Similarly, bxx and byx are the applied support velocities. Assuming a Gaussian white 
noise as a prior model for the support motions, the governing equations for the augmented states 
are given by 

   16 17;  bx byx w t x w t               (13) 

Here  E 0; 16,17   iw t i and      2E ; 16,17       i i iw t w t i . Eqs. (12) and (13) can be 
recast in the Ito’s SDE form and further discretized to obtain a discrete map governing the 
evolution of the state vector. Furthermore, it is assumed that          1 1 2 3 5, , , ,x t y t y t t y t and  5 t
are measured, resulting in the measurement equation having the form 

yi
k = xi

k + vi
k ; k = 1,2,…,N;i = 1,2,5,9,10,14                                        (14) 

Here ; 1, 2,5,9,10,14 i
k i is a vector of Gaussian distributed random variables with zero mean 

and standard deviation 0.001 m, 0.007 m, 0.001 m, 0.0015rad/s, 0.0018 m and 0.0013 rad/s. The 
discretization time interval is taken to be 0.005s. Assuming classical damping a uniform damping 
of 5% has been assumed for all modes. The problem on hand consists of estimating
 1:, , , | bx bx by by kp x x x x y . As in the previous example, the governing state space model here is also 

linear with additive Gaussian noises and hence the problem of dynamic state estimation can be 
tackled exactly using the Kalman filter. By comparing the measurement with the estimated mean 
of the measured response the standard deviation of the excitation noises is taken to be

2
16 0.001m/s  and 2

17 0.002m/s  . Fig. 5 shows the measurement time histories used in the 
identification procedure. Figs. 6 and 7 show results of the identified support motions. In Fig. 6 the 
mean of the estimated support displacement  bxx t is shown and in Fig. 7 similar result for the mean 
of the estimated support velocity  byx t  is shown. The estimated time histories are compared with 
the applied forces and an error of 0.8% and 0.1% is obtained in the peak Fourier amplitude 
spectrum of support displacement (x-direction) and support velocity (y-direction) respectively, 
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implying a good match. 
 
 

 
Fig. 4 Example in Section 4.2; 5-storey shear frame building model 

 

 
Fig. 5 Example in Section 4.2; Time history of the measurements 
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Dynamic state estimation for identifying earthquake support motions 

 
Fig. 6 Example in Section 4.2; conditional mean of the estimated support motion  bxx t  

Fig. 7 Example in Section 4.2; conditional mean of the estimated support motion  byx t  

 
 

4.3 Euler Bernoulli beam subject to differential transient support excitations 

 
Here we consider a simply supported Euler Bernoulli beam of span l subject to transient 

support motions at its left [  L
bx t ] and right [  R

bx t ] supports. The governing equation of motion of 
the beam is given by  

     
           

   

'' ''

, , , 0

Boundary conditions: 0, ; 0, 0; , ; , 0

Initial conditions: , 0 0; , 0 0

  

   

 

 



iv

L R
b b

EIy s t my s t cy s t

y t x t EIy t y l t x t EIy l t

y s y s

  (15) 

Here a prime denotes derivative with respect to spatial variable s; EI, m, and c are the flexural 
rigidity, mass of beam per unit length and the co-efficient of viscous damping, respectively. In 
order to make the boundary conditions time invariant, we introduce the transformation (Meirovitch 
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2007)            1 2, ,  L R
b by s t z s t h s x t h s x t leading to the transformed equation 

                     
       

                   

1 2 1 2

'' ''

1 2 1 2

, , ,

Boundaryconditions: 0, 0; 0, 0; , 0; , 0

Initialconditions: ,0 0 0 ; ,0 0 0

            
   

     

    

  

iv L R L R
b b b b

L R L R
b b b b

EIz s t mz s t cz s t m h s x t h s x t c h s x t h s x t

z t EIz t z l t EIz l t

z s h s x h s x y s h s x h s x

 (16) 

Here we have taken 1 0ivh and 2 0ivh and it can be shown that the choice  1 1 
s

h s
l

and 

 2 
s

h s
l

 satisfy the boundary conditions. For the purpose of illustration, we assume that the 

solution is given by a 3-mode approximation    
3

1

, sin




   
 

 i
i

i s
z s t a t

l
. The governing equations 

for the generalized coordinates   3

1i i
a t is further obtained as  

          

           

                 

2

0

2 2

1 2 1 2 2

2 , ; 1, 2, ,3

,  and 

   



    

           

  

   

l

i i i i i i i i

L R L R
b b b b i

a t a t a t f s t s ds w t i

i EI
f s t m h s x t h s x t c h s x t h s x t

l m

 (17) 

Here the white noise processes  ; 1,2, ,3 iw t i  have been added to account for the error in 

modeling. Furthermore, we augment the above equations with the prior model for the support 
motions as  

   
   

4

5









L
b

R
b

x t w t

x t w t
                          (18) 

In Eqs. (17) and (18) we take    E 0; 1,5   iw t i and        2E ; 1,5       i i iw t w t i . 

These equations can now be interpreted as a set of Ito’s SDE-s and after discretization can be 
recast in the form of a linear map with additive Gaussian noise. It is assumed that the 

displacements at 2 3
, , , ,

4 3 2 3 4


l l l l l
s are measured and the measurement equation is given by  

 

 

 

3 3 1
sin sin sin 0 0 0 0 0

4 2 4 4 4

2 2 1
sin sin sin 0 0 0 0 0

3 3 3 3

3 1 1
sin sin sin 0 0 0 0 0

2 2 2 2

2 4 1 2
sin sin sin 2 0 0 0 0 0

3 3 3 3

3 3 9 1 3
sin sin sin 0 0 0 0

4 2 4 4 4

  

  

 

  

  

     
     
     
   
   
   
       
   
   
   
   
     
     
     

ky

0



 
 
 
 
 
 
 

 
 
 
 
 
 
 
  

k kx
  (19) 
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Fig. 8 Example in Section 4.3; Time history of the measurements 

 

 
Fig. 9 Example in Section 4.3; conditional mean of the estimated left support displacement  L

bx t  

 
 

Here  k is a 5 1  vector of independent Gaussian random variables with zero mean and 
standard deviations 0.0028m, 0.0030m, 0.0036m, 0.0026m and 0.0028m. In the numerical work it 
is assumed that the discretization step size 0.005s,  = 6m, l 2EI = 152.67KNm , 6.1kg/m,m

1 0.02,  2 0.03  and 3 0.05  . 
The problem of identifying the support excitations require evaluation of 

        1:, , , |   bx k bx k by k by k kp x t x t x t x t y which is carried out using the Kalman filter. By comparing 
the measurement with the estimated mean of the measured response the standard deviation of the 
excitation processes is obtained as 2

4 5 0.004m/s   . Fig. 8 shows the measurement time 
histories of the beam displacements along the span. Figs. 9 and 10 show the estimates of mean of 
left and right support displacements, respectively, obtained using the Kalman filter. Also shown in 
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these plots are the time histories of the applied support motions. An error of 2.1% and 2.8% was 
observed in the peak Fourier amplitude spectrum of support displacements, thus validating the 
proposed method for force identification. 

 
4.4 Cubic-hysteretic nonlinear system subject to transient support motion 

 
This example serves to illustrate the input identification procedure when the instrumented 

structure is modeled as an inelastic system. For this purpose we consider the nonlinear system 
shown in Fig. 11. The system has two dof-s and consists of both memoryless and hereditary 
nonlinear elements. The hysteretic element is represented based on the Bouc-Wen model (Wen 
1989). In this figure,  1,2im i  are point masses,  1,2,3ic i  are viscous dampers, 
 1,2,3ik i  are linear stiffness parameters,   is the parameter associated with cubic springs, and 

h  is the hysteretic element. The hysteretic element h , is characterized by pre-yield stiffness bk , 
and post yield stiffness  bk , and parameters , , and n A  which control the shape of hysteresis 
loops. The governing equation of the dynamical system is given by 

     

             
         

     
     

3

1 1 1 1 2 1 2 1 1 2 1 2 1

2 2 2 2 1 3 2 2 2 1 3 2 2

1
1 1 1 3

1

| | | | | |

0 0, 0 0; 1,2; 0 0

  

 

            

        

       

   

    

    

     



b b b b b

b b

n n
b b b

i i

m u c u x c u u u x k u x k z k u u w t

m u c u u c u x k u u k u x w t

z u x z z u x z A u x w t

u u i z  

(20) 

Here bx  and bx  are, respectively, the velocity and displacement of the supports and
       2E 0;E ; 1,2,3            i i i iw t w t w t i . The objective here is to obtain the estimates of 

the support displacement and velocity conditioned on the measurements on the displacement  1u t . 
The equation    4bx t w t is taken to be the prior model for the forcing function. Eq. (20), along 
with this forcing model, is recast into a SDE with the state vector defined by 
                1 1 2 2   

t

b bx t u t u t u t u t z t x t x t . Using the order 1.5 strong Taylor scheme 
the SDE is discretized to obtain. 

 

 
Fig. 10 Example in Section 4.3; conditional mean of the estimatedright support displacement  R

bx t  
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 (21) 
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 1 2 5 6 7
tn

k k k k k kx x x x x x  so  that conditioned on n
kx the state equations will have a 

conditionally linear Gaussian sub-structure.  The measurements are assumed to be made on the 
displacement response  1u t resulting in measurement equation 1 ; 1, 2, ,   k k ky x k N  where 

 k is a zero mean identical and independent Gaussian sequence of random variables (with standard 
deviation = 0.0029 m) which are independent of process noise terms. In the numerical work we 
take 1 100kg,m 2 150kg,m 0.10kN/m,bk 2 0.10kN/m,k 3 50N/m,k 1 2 0.08,   10, 

0.05,  0.5,  0.5,  1,A 4,n 80s,T 0.0100s,  1 0.001N,  2 0.002 N,  3 0.001N, 
and 2

4 0.150 m/s  .The system parameter values are such that significant nonlinearity in the 
force-displacement relation comes into play under the applied excitations. The objective is to 

obtain the estimates of the conditioned support displacement 3
1:E |  k kx y and velocity 4

1:E |  k kx y . Eq. 

(21) in conjunction with the above measurement model is amenable for solution via the SIS 
particle filtering method. By virtue of the partitioning of the state vector into linear and nonlinear 
state vectors the estimation problem can also be solved using combined Kalman-SIS filter 
algorithm(Radhika and Manohar 2012).In the filtering algorithm we have employed 5000 particles 
with 1666thresN . Fig. 12 shows the time history of the measured displacement. Results of the 
dynamic state estimation are shown in Figs. 13 and 14. Fig.13 shows the plot of conditional 
expectation of the displacements at the two degrees of freedom. The results of force identification 
are shown in Fig. 14 along with the applied support motions. The estimated support displacements 
resulted in an error of 0.6% (SIS) and 0.5% (Kalman-SIS) in the peak Fourier amplitude spectrum 
and that in estimated support velocities was observed to be 12% (SIS) and 10% (Kalman-SIS). The 
trends of estimated support displacement and velocity agree well with the applied actions but 
however are seen to be noisy especially after the strong motion phase, this being attributed to the 
relatively high value of 2

4 0.150 m/s  . It is to be noted that a choice of reduced value for the 
noise parameter will result in a poorer estimate for the support motion in the strong motion phase. 
This limitation could be overcome by adopting a nonstationary model for the noise so that the 
value of the variance of noise after the strong motion phase could be modulated. This aspect, 
however, requires further study. The role played by sampling fluctuations in simulation based state 
estimation also needs to be borne in mind in this context. 

 

 
Fig. 12 Time history of measurement used in Section 4.4 
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(a) (b) 
Fig. 13 Example in Section 4.4; estimated conditional mean of system displacement responses; (a)  1u t ; 

(b)  2u t  

 

(a)  

Fig. 14 Example in Section 4.4; estimated conditional mean of support motions;  (a)  bx t ; (b)  bx t

 

 

5. Conclusions 

 

This paper addresses the problem of earthquake support motion identification using measured 
system responses within the framework of Bayesian filtering tools. The unknown forcing functions 
are taken as additional states modeled initially as Gaussian white noise processes and these are 
updated subsequently based on measured responses. The solution to the problem of dynamic state 
estimation for the resulting state space model is shown to contain the solution to the problem of 
unknown force identification. For the class of problems governed by linear state space models 
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with additive Gaussian noises, exact solutions are obtained using the Kalman filter. For more 
general class of problems involving nonlinear system behavior and (or) non-Gaussian 
additive/multiplicative noises, particle filtering methods with provision for sampling variance 
reduction via importance sampling and (or) Rao-Blackwellization are shown to be effective. While 
for linear systems the posterior model for the excitation is Gaussian, for nonlinear systems, 
however, the pdf becomes non-Gaussian. Illustrative examples cover transient, multi-component 
and spatially varying support motions as well as linear/nonlinear system behavior and the results 
obtained point towards the promise of the method for further applications.  It may be noted here 
that the identified forces using the propose method are noisy and could be considered as estimates 
which can be further refined for subsequent analysis. The current authors are presently exploring 
the application of the procedure to field examples involving large scale structures and recorded 
responses under realistic earthquake motions. 
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