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Abstract.  This paper presents the results of an experimental program concerning the efficiency of a specific 
strengthening technique which utilizes a small steel link element connected to the R/C frame through bracing 
elements. Brittle types of failure, especially at the connections between steel and concrete elements, can be avoided 
by appropriate design of the local details. Five single storey one bay R/C frames scaled 1:3 were constructed 
according to older codes with substandard details. The first one was a typical bare reference frame. The other four 
were identical to the first one, strengthened by steel bracing elements. The behavior of the strengthened frames is 
described with respect to the reference bare frame. The concrete frames were constructed according to older code 
provisions by the use of smooth steel bars, low strength concrete, sparsely spaced stirrups and substandard details. 
The strengthening scheme aimed to the increase of both strength and deformation capacity of the original R/C frame. 
The inelastic deformations are purposely concentrated to a short steel link element connecting the steel bracing to the 
R/C frame. The results show that the steel link element can increase considerably the strength and the energy 
dissipation capacity of the frame. 
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1. Introduction 
 

The strengthening of existing old reinforced concrete (RC) buildings, mainly those with soft 
ground storey (pilotis), is a current necessity in seismic prone areas. It has been known for decades 
that infills upgrade drastically the seismic behavior of constructions. Many different types of infills 
were introduced for the strengthening of existing buildings, like reinforced or unreinforced 
masonry, reinforced concrete, precast reinforced concrete elements, aluminum or steel panels, steel 
bracings and steel link elements. 

The scope of this work is the experimental investigation of a specific steel link element for the 
upgrading of existing buildings. Easy installation and replacement, low cost and low technological 
demand are the prim advantages of this technique. 

Although the technique is not new, the limits of its application are not well investigated. 
Appropriate selection of shape, section and length of the link should lead to reasonable solutions. 
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As a lower limit, a significant improvement of the system must appear and, as an upper limit, the 
R/C frame must suffer a reasonable level of damage at the connections to the bracing system. 
 
 
2. State of the art review 
 

Maheri et al. (1997, 2003a, 2003b, 2003c) and Ghaffarzadeh et al. (2006) investigated 
experimentally the use of steel bracing in concrete frames. A steel truss for the strengthening of 
R/C frames was tested by Kunisue et al. (2000). Failure was observed at purposely used 
elastoplastic energy dampers. Test results show that the strength and the energy dissipation 
capacity can be significantly improved by the use of these dampers. A calculation method was also 
suggested for the estimation of the strength increase in strengthened R/C frames and satisfactory 
approximation between experimental and analytical results was observed. In tests performed by 
Perera et al. (2004) the strengthening of masonry infilled R/C frames was examined. In some 
frames the masonry was replaced by a system of two steel braces and significant improvement of 
the energy dissipation was observed. In an experimental work by Ishii et al. (2004), R/C frames 
were tested and various types of failure in R/C structural elements were observed. Frames were 
strengthened by the same system of two steel braces. Differences at the hysteresis loops were 
recorded for each type of specimen. The optimum response was observed in specimens with 
flexural failure at the columns. In R/C frames that were strengthened by the use of two steel braces, 
considerable increase of strength and energy dissipation capacity was observed. In that case, 
significant damage occurred at the ends of the top R/C beam. Tests on two full scale, 4 storey R/C 
frames were reported by Pinto et al. (2006). For the frame without any strengthening interventions, 
high vulnerability to seismic loads was observed. It was found that through the use of steel braces, 
the seismic response of the strengthened frame and the energy dissipation capacity are 
significantly improved. A full scale 3D two storey R/C frame was tested by Antonucci et al. (2006). 
Viscous dampers were used at the connection point of the top of the bracing system to the middle 
of the R/C beam. Three tests were performed by D’Aniello (2006) on an existing R/C building that 
was strengthened against seismic actions by the use of the same system of two steel braces. From 
the tests it was resulted that shear elements can be easily connected at the concrete and the steel 
elements and can also be easily replaced after an important seismic event. Mazzolani et al. (2004, 
2006, 2009a, 2009b) investigated experimentally the use of various strengthening methods on 
existing full scaled two storey R/C frames, among others the use of steel bracing. Mehmet Baran et 
al. (2011) investigated experimentally and analytically the effectiveness of adding precast concrete 
infilled panels to existing R/C frames, already infilled by hollow bricks. Eight R/C frames, 1:3 
scaled, were tested incorporating four different types of precast panels. The results showed that 
both strength and stiffness of the frame were significantly improved by the introduction of precast 
panels. Experimental results were compared with analytical approaches. 
 
 
3. Description of the tests 
 

3.1 Strengthening layout 
 
As shown in Fig. 1, the bracing system is composed by two steel elements that are connected to 

each other at their top. At this point there is a steel plate on which the shear - flexural link element  
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Fig. 1 Strengthening layout 
 

 

Fig. 2 Geometry (m) and reinforcement arrangement of the specimens 
 

is welded. The top of the link element is connected to the midpoint of the beam through a steel U 
shaped collar which surrounds the beam. The collar element is connected to the top beam by six 
bolts from side to side of the beam. The diagonal elements of the bracing system are connected at 
their bottom with the column base and the foundation beam of the specimens by external bolts. 
The elements of the bracing system, the collar and the connections to the beams and the columns 
were not considered as parameters under investigation in the present study. Therefore they were 
overdesigned in order to avoid local failures at these elements. Consequently, the inelastic 
deformation of the strengthened specimens is expected to be concentrated mainly at the link 
element. This type of link elements are expected to significantly increase the strength and stiffness 
of the strengthened frame, but the most important advantage of these systems is the drastic 
reduction of the strength demand of the strengthened R/C elements against seismic actions due to 
their high energy dissipation capacity.  

 
3.2 Specimens 
 
The tests were carried out at the Laboratory of Concrete and Masonry Structures, Civil 

Engineering Department, Aristotle University of Thessaloniki. In this work results are given from 
the tests of five specimens constructed in 1:3 scale. The specimens represent a single storey one 
bay frame rigidly based on a strong foundation. The five R/C specimens are identical to each other. 
The geometry and the reinforcement arrangement of the specimens are shown in Fig. 2. 
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Table 1 Specimens names and geometry of the links 
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Although specimen F1 is a bare reference frame, the bracing system was placed as in the other 

four specimens, but without the link element. This layout was selected in order to ensure the same 
geometrical conditions for all the specimens concerning the effective height of the columns. In the 
other four specimens the bracing system was connected at the middle of the top beam by a steel 
link, different for each specimen (Table 1).  

The percentage and the layout of the reinforcement, the steel and concrete quality and the type 
of reinforcement bars (smooth) were selected in order to simulate R/C frames that were 
constructed according to older codes using past construction techniques. The smooth steel bars for 
the longitudinal reinforcement had a yield to ultimate strength ratio fy/fu = 442/517MPa (it was not 
possible to find lower strength smooth reinforcement bars 6mm in diameter) and for stirrups fy/fu = 
377/428MPa. Low strength concrete was also used with fck = 16MPa. The reinforcement was 
arranged according to older code provisions without dense spacing at the critical areas of possible 
hinge regions at the ends of the concrete structural elements. The anchorage length of the steel bars 
was also small contrary to modern code provisions. The steel link elements had a yield to ultimate 
strength fy/fu = 271/366MPa and geometrical dimensions shown in Table 1. 

 
3.3 Experimental test setup 
 
For the tests, the facilities of the Laboratory of Concrete and Masonry Structures, Aristotle 

University of Thessaloniki, were used (Fig. 3). The reaction frame consists of steel beams and 
columns connected to each other by prestressed bolts. One double acting actuator is connected at 
the top beam of the specimens applying horizontal displacement reversals. Another actuator can 
also be connected to the system to apply vertical axial loads on the columns through a top steel 
beam in a load control mode. This option was not activated for the present study. 

The reaction frame is connected to the strong floor of the laboratory by the use of steel stoppers  
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Fig. 3 Test setup 

 

Fig. 4 Horizontal loading history and LVDT arrangement on the specimens 
 

in combination with vertical prestressed anchored bolts. The test specimens were also connected to 
the floor by the same technique. It is worth mentioning that during the tests no slip was recorded 
between the specimens and the laboratory floor. The horizontal actuator was connected to the top 
of the specimens by a system of two stiff steel plates at the vertical outer sides of the beam - 
column joints, connected to each other by four long bolts. In order to provide rotational degree at 
the connection points, beyond the 3D rotational hinges of the actuator at the ends of its length, two 
more rotational hinges were provided between the steel plates and the two top beam - column 
joints of each specimen. 

The horizontal loads were imposed in a displacement control mode. The displacement history is 
composed of 17 levels of displacement (Fig. 4). Due to the extended damage that developed, some 
tests were terminated earlier but the maximum strength had already been developed. For each 
displacement level, two full cycles were imposed. 

The specimens were instrumented by the use of seven LVDTs. The layout of these instruments 
is shown in Fig. 4. LVDTs 1, 5, 2, 6 were used for the measurement of the shortening and the 
elongation of the outer fibers at the ends of the left column. LVDT 8 was used for the 
measurement of the top horizontal displacement of the specimen and was compared with the 
measurements of the internal LVDT of the horizontal actuator. LVDTs 4 and 7 were used for the 
measurement of the net horizontal displacement at the top and bottom ends of the steel link 
element. Some differences between instruments 8 and 4 occurred because the top collar of the 
shear – flexural element could not be completely horizontally restrained at the midpoint of the top  

147



 
 
 
 
 
 

Apostolos A. Karalis and Kosmas C. Stylianidis 

 

 
Fig. 5 Load - displacement (Ρ-δ) curves of the frame F1 

 
 

beam of the specimen. The measurements of the external LVDTs together with the measurements 
of the internal LVDT and load shell of the horizontal actuator were recorded through the digital 
controller. In the present work, only a small part of the experimental measurements and the 
postprocessed data are given due to limited available space. 

 
 
4. Results 
 
The discussion of the results is based mainly on the five characteristic diagrams given below 

for each specimen: 
 Load - displacement (P - δ) curves. 
 Load - displacement (P - δ) envelopes. 
 Energy dissipation - displacement (E - δ). 
 Normalized energy dissipation - displacement (E/2δ - δ). 
 Equivalent viscous damping - displacement (ζ - δ). 

The displacement mentioned corresponds to the clear beam horizontal displacement (LVDT 8, 
Fig. 4). Note that, since the height of the specimens is almost 100cm, a displacement of 1cm 
corresponds almost to 1% storey drift. 

 
4.1 Reference specimen F1 
 
At early stages, during the first imposed cyclic displacements, horizontal or inclined cracks 

appeared, initially at the base and later at the top of the columns. The cracks at the base of the 
columns were formed just over the connection point of the bracing system to the columns (Figs. 
10-11). Under high level of imposed displacements, plastic hinges were formed at the ends of the 
columns of the specimens. Although no specific measures were taken, such as local confinement, 
the strength of the specimen was slightly increased even for drifts close to 3% (Figs. 5-6). For 
higher levels of the imposed inelastic deformation, the strength degradation was very low. This  
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Fig. 12 Load - displacement (Ρ-δ) curves of the frame F2 

 
 
capacity is observed. 

A rapid increase of the normalized energy dissipation is observed until the displacement of 
6mm at the first cycles, and consequently the curve tends to stabilize at 10KNmm/mm in the 
maximum displacement 42mm. During the second cycles the curve is similar to the one of the first 
cycles but the values are lower (Fig. 8).  

During the three firsts displacement levels, only a small reduction of the equivalent viscous 
damping is observed in both cycles and then, with a soft increase, stabilizes at the maximum value 
13% (Fig. 9). From the displacement of 27mm and then the curve variation is exactly the same in 
both cycles. 

 
 
4.2 Specimen F2 
 
The steel link element significantly increased stiffness, strength and the energy dissipation 

capacity of the strengthened specimen F2, especially at the level of small imposed displacements. 
The welds did not show signs of failure.  

This specimen presents an excellent behavior up to a drift of 12‰ (Figs. 12 and 13). The load 
carrying capacity is three times higher than that of the reference specimen F1, the hysteresis loops 
are very rich, no pinching is traced. The failure mode of the R/C frame is the same as in F1, since 
plastic hinges are formed again at the top and the bottom of the columns. The midpoint of the 
beam suffers some local cracking, but the cracking is not significant enough to alter the failure 
mode (Fig. 17). When the drift reaches about 12‰, the steel link element reveals a failure of a 
rather shear type, with a side to side horizontal crack at the top and the bottom ends (Fig. 18). 
After the complete detachment of the link element, the overall behavior, concerning strength and 
energy dissipation capacity, drops to the behavior of the reference specimen (Figs. 13-15). It is 
worth mentioning that no signs of unfavorable phenomena, such as considerable drop of strength 
during imposed reversals and pinching, are traced. 
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Fig. 19 Load - displacement (Ρ-δ) curves of the frame F3 

 
 

15‰, the equivalent viscous damping is almost 15% (Fig. 16). This percentage is very close to the 
perfect plastic behavior (ζ=1/2π=15,92%). After the failure of the link element this percentage 
drops to the behavior of the reference specimen. 

 
4.3 Specimen F3 
 
The failure mode of the R/C frame is the same as in the previous specimens, since plastic 

hinges are formed again at the top and the bottom of the columns. Once more time the midpoint of 
the beam suffers some local cracking (Fig. 24). 

Specimen F3 reveals an even better behaviour compared to F2. Failure occurs at a drift of 18‰ 
(Figs. 19 and 20). The load carrying capacity is almost four times higher than that of the reference 
specimen F1, the hysteresis loops are also very rich, again no pinching is traced. At that level of 
drift the steel link element reveals a rather bending type of failure (Fig. 25). For a small amount of 
further displacements, the link element, although practically inactive, is not completely detached 
from the plates, still offering some strength and energy dissipation capacity before the full 
detachment occurs (Figs. 20-22). Again, no unfavorable phenomena are evident. 

It is clear that the I shaped cross section in combination with the small length of the link 
element (100mm) resulted to a stronger and stiffer R/C frame compared to the specimens F1 and 
F2. A significant increase of the strength, the energy dissipation capacity and the equivalent 
viscous damping in both of cycles is observed, until the failure of the link element (drift 18‰) 
(Figs. 20-23). The flanges prevented the link element buckling and delayed the complete failure. 
The maximum strength of this appeared at a drift of 15‰. A small ductility increase is also 
observed due to the increase of failure drift at 18‰ compared to the specimen F2. After the failure 
of the link element, the overall behavior of the F3 specimen, in terms of strength and energy 
dissipation capacity, appeared to be similar to the behavior of the F1 frame.  

The equivalent viscous damping presents similar behavior with that of the specimen F2. The 
maximum percentage (~14%) is observed before the link element failure (Fig. 23). The difference 
is that the maximum percentage is observed for a 18‰ drift, when the equivalent drift for the 
specimen F2 is 15‰. 
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Fig. 37 Extended damage at the middle of the top beam (F5). The link did not fail 
 
 
failure (Figs. 34 and 35). The equivalent viscous damping was also slightly increased until the end 
of the test with the maximum percentage at ~14% for drift of 24‰ (Fig. 36). 
 
 
5. Comparisons between specimens 
 

For the comparison of the overall behavior of the specimens, four diagrams are presented in 
Figs. 38-41, corresponding to first cycles only. 

In Fig. 38 the loads are calculated as the mean of the absolute values of the positive and 
negative load carrying capacity at each displacement level. It is apparent that the strengthened 
specimens F2 and F3 are stiffer and stronger, about three and almost four times respectively in 
comparison to the reference specimen F1. The specimen F3 appears to behave better than the 
specimen F2 since it reveals higher strength and deformation capacity. The curve of specimen F4 
is very close to the curves of specimens F2 and F3, before the failure of their link elements. The 
link element failure of specimen F4 was delayed due to the link element longer length. So the 
strength was increased even for drifts close to 21‰. This type of link element increased drastically 
the ductility of the system. After the link element failure of specimens F2 - F4, the strength drops 
to the strength of the reference specimen F1. Specimen F5 presents a rapid increase of the strength 
but the higher forces due to the strong link element caused extended damage at the middle in the 
top beam and the strength of the frame drop earlier than in specimen F4. 

From Figs. 39-40 it is evident that, at the displacement levels where the links are active, the 
strengthened specimens can dissipate energy about ten times than that of the reference specimen. 
Again, specimen F3 seems to behave better than the specimen F2. Specimen F4 dissipates more 
energy since its link element did not fail soon. The hysteresis loops for the specimen F5, despite its 
higher strength, are not richer. Again, after the link elements failure, the energy dissipation drops 
to the reference specimen behavior. In Fig. 40 the normalized energy dissipation shows that the 
maximum value was almost the same for all strengthened specimens and appeared just before the 
link element failure. 

The equivalent viscous damping (Fig. 41) for the reference specimen (F1) presents an almost 
linear increase from 8% to 13% during the test. It is clear that all the curves of the strengthened 
specimens tend to reach the perfect plastic behavior (1/2π=15,92%) at early stages of displacement. 
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Experimental investigation of existing R/C frames  

 

 Steel link elements can increase considerably the stiffness and the strength but they mainly 
increase the energy dissipation capacity. 

 By a thorough selection of the geometrical dimensions, the shape and the material quality of 
the steel link elements, the unfavorable early local failure at the middle of the top beam of 
an existing R/C frame can be prevented. There is a need for careful design of the 
connection of the steel link element to the R/C top beam.  

 The influence of the axial force on the columns is significant and is under experimental 
investigation. 

 Further experimental research effort is under way to improve the advantages of steel link 
elements for the strengthening of existing R/C frames. 

 Analytical research to simulate the experiments has already started and the results are 
encouraging. 
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