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Abstract. Earthquake response calculation, parametric analysis and seismic parameter optimization of
base-isolated structures are some critical issues for seismic design of base-isolated structures. To calculate
the earthquake responses for such non-symmetric and non-classical damping linear systems and to
implement the earthquake resistant design codes, a modified complex mode superposition design response
spectrum method is put forward. Furthermore, to do parameter optimization for base-isolation structures, a
graphical approach is proposed by analyzing the relationship between the base shear ratio of a seismic
base-isolation floor to non-seismic base-isolation one and frequency ratio-damping ratio, as well as the
relationship between the seismic base-isolation floor displacement and frequency ratio-damping ratio. In
addition, the influences of mode number and site classification on the seismic base-isolation structure and
corresponding optimum parameters are investigated. It is demonstrated that the modified complex mode
superposition design response spectrum method is more precise and more convenient to engineering
applications for utilizing the damping reduction factors and the design response spectrum, and the proposed
graphical approach for parameter optimization of seismic base-isolation structures is compendious and
feasible.

Keywords: seismic base-isolation; modified complex modes superposition response spectrum method;
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1. Introduction

Base isolation is an anti-seismic technology that can significantly reduce the seismic responses
of a superstructure by setting seismic base-isolation devices to extend the system natural period
and to increase the system damping (Buckle and Mayes 1990, Skinner et al. 1993, Hong and Kim
2004, Fan et al. 1991, Naeim and Kelly 1999, Komodromos 2000, Eurocode 2004, Takewaki
2008). At present, there are three main methods to calculate the earthquake responses of seismic
base-isolation structures. One is the time domain method that takes a typical seismic wave as the
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seismic excitation to calculate the seismic responses in time domain (Heaton ez a/. 1995, Matsagar
and Jangid 2004). The second is the frequency domain method that takes the random earthquake
ground motion model as the seismic excitation to calculate the random seismic responses in
frequency domain (Constantinou and Tadjbakhsh 1983, Jangid and Datta 1995, Takewaki and
Fujita 2009). The third is the mode decomposition response spectrum method that calculates the
maximum seismic responses according to the mode decomposition and design response spectrum
(GB50011-2010) (lgusa et al. 1984, Gupta and Jaw 1986, Mahendra and Barbara 1986, Yang et al.
1990, Zhou et al. 2004).

The time domain method which adopts only one seismic wave as an excitation is difficult to
reflect the statistical characteristics as the earthquake is a random process. The frequency method
which adopts the seismic random model as an excitation is uncertain for the uncertainties in the
model parameters. The mode decomposition response spectrum method, on the other hand, is on
the basis of design response spectrum, which is a statistical result according to hundreds of seismic
wave excitations and is adopted by the earthquake resistant design code (GB50011-2010) for
engineering application. As is well-known, the seismic base-isolation structure is a non-symmetric
and non-classical damping system, therefore, the forced real mode decomposition response
spectrum method should be substituted by the complex mode superposition design response
spectrum method for more accurate results.

With a wide use of seismic base-isolation structures, the parameter optimization design on the
seismic base-isolation devices is of interest (Alessandro and lleana 2004, Zhou and Han 1996,
Constantinou and Tadjbakhsh 1984, Cenk and Henri 2004, Takewaki 2005). Nowadays, many
constrained optimization methods for parameter optimization have been proposed such as
conjugate gradient methods (Horisberger and Belanger 1974), mathematical programming
approach (Balling et al. 1983), genetic algorithm (Yoshi et al. 1999), GA-fuzzy optimization
method (Hyun and Paul 2007) and so on. All these methods are performed by constant iterating,
which are either time-consuming or non-intuitive. In this paper, a modified complex mode
superposition design response spectrum method is implemented to calculate the seismic responses
and a graphical approach for parameter optimization of the seismic base-isolation devices is
proposed. Moreover, the influences of mode number and site classification on the seismic
base-isolation structure and corresponding optimum parameters are investigated.

2. Modified complex modes superposition design response spectrum method
2.1 Motion equation and solution

To calculate the earthquake responses of seismic base-isolation structures, the computational
model that not only reflects the actual deformation behavior but also makes the calculation easy
and feasible must be set up. At present, the commonly used computational models are a series of
multi-particle system model and spatial finite element model. The series of multi-particle system

model is herein adopted as shown in Fig. 1. In the figure, the ith floor mass of structure is m, and
the mass of structural base plate is m, , while the stiffness and damping coefficients of seismic

base-isolation device are k, and c,, respectively. Under the earthquake action, the structural
linear motion equation is
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Fig. 1 Motion model for seismic base-isolated structure
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where X, is the horizontal ground earthquake acceleration; x; is the displacement of structural

base plate; x , is the ith floor displacement of the structure relative to structural base plate;

[M,] is the lumped mass matrix of superstructure; [K, ] :[k..] =[5. ]71 is the lateral stiffness

; ij
matrix of superstructure, which is obtained according to the mechanical meanings of stiffness
coefficient k; or flexibility coefficient &, ; [CO] is the damping matrix of superstructure with
Rayleigh Damping; {/} = [1,1,-~,1]T.

Let

{xs} = [xs,vxs,zl""xs,iv"’xs,n’]T = Zm:q_i {(01} )

J=1

{(pj}:{(plj!"'n(Dij-,"',(pW.}T

where m is the number of modes for combination. Eq. (1) can be transformed into the following by
the modal decomposition
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G;+7% +250,4,+0iq, ==y %, (j=1~m) (32)
Zajqj +(+y,)%, +25,0,x, +a)h2xb =—(1+ lr//l)jég (3b)
=

in which

T

[KO]{("j} , G = {(/’f}T [CO]{("J'}

28,0, :C;/M;; a’/z :K./*‘/M.z*'; 25w, =c,/m,; o =k, [m,

M; :{("j}T[MO]{(/’f}; K; :{901'}

7= Qmey) [ Qomel): yu=(om) fmy s ;= mey) [m,
i=1 i=1 i=1l i=1l
Let{%) =[q1, 45", 4,%,] , then Eq. (3) can be deduced to the following unified form

) €143 +[K]1 = ) g

in which
‘1 0 - 0 7] 250, |
o 1 0 - 26,0, 0
[M]: N [C}: ;
o 0 - 1 vy, 0 26 o,
a6 & a, l+y | L 26,@, |
o7 ;
w: 0
[l%]: : {f(;)}:_jég[yl,yz,...’ m’l"'%]T
0 w?
i @, |

The damping matrix in Eq. (4) is composed of structural damping and additional damping of
base-isolation devices, which is a non-classical large damping matrix. As a result, the mass matrix
is a non-symmetric matrix. Eq. (4) can be decoupled by the complex modes.

Let

U IR AV L PR S A e (5)

Then Eq. (4) can be deduced to the following unified form
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[M]{F}+[K]{r =17 (1)) 6)
in which
1o D] )
(7] [€] o] [£]

{f(t)} = —5C'g [0,"',0'717""7m'1+l//1]T2(m+1)x1

[M]

The 2(m+1) eigenvalues p, (k=1~2(m+1)) can be obtained by solving the eigenvalue

equation‘p[M]+[K]‘ =0, and their corresponding right and left eigenvector equations are as
follows

[D(p KU} ={0}; [D(p)]'{,}={0} (k=1~2(m+1)) O

Each corresponding right and left eigenvectors of p, are

. T
{Uk} = [Ulk’Uzk""’UZ(mﬂ)k] , {Vk} - [Vlk’VZk’m’Vz(WDk} ®)

Accordingly, [P]=diag[p,] ( k=1~2(m+1) ), [Ul=[U,U,; Uy, | . and

[V]:[I/l,I/z,---,I/Z(,n+l)] are called the eigenvalue matrix, right eigenvector matrix, and left

eigenvector matrix, respectively. The system meets with the following weighted orthogonality
(Fawzy and Bishop 1976)

V] (M)[U]=diag[m}]: [V] [K][U]=~diag[m; | [P] ©)
By means of the transformation {y} =[U]{z} and orthogonality, Eq. (6) can be decoupled to
{z} - [PKz}={F (1)} (10)

inwhich {F()}=[AV1{f©)} ; (] = diag[s,]= diag[m, *]. The component form of Eq.
(10) is

Z, — DiZi =Rk§ég (k=1~2(m+1)) (1)
where R, =—1, {Vk}T [0,-:-,0,73,-, 7, 1+ 1//1]T2(m+1)xl. The solution of Eq. (11) is

z, (t):RkI;Xg(r)ep"(’_’)dr (k=1~2(m+1)) (12)
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According to the transformation Eq. (5) and the complex modal transformation {y} =[U]{z},
the generalized coordinates and the displacement of structural base plate are

2(m+1) 2(m+1)

r.. —r .
4= 2 iz = 2 R E(@en T (j=1~m) (133)
=1 =1
_ 2(m+1) _ 2(m+1) R ‘. N (x—r)d 13h
Xp = z ¢(m+l)kzk = z ¢(m+l)k kj.oxg(r)e T (13b)
=1 =1

where {U, } = {p}z;ﬁk}} {6} = [¢1k!¢2k"“’¢jk’”"¢(m+l)k]-r

2.2 Complex modes superposition design response spectrum method

As the complex frequencies are conjugated, let p, =p. ..., then {4}={4 ...} and

R, =R .. . .Because the actual system has a real solution, Eq. (13) can then be expressed as
m+1 P (1-0)
. -7 .
q;= 22 Re[¢/kRk.[ o e (x)e” " dr]  (j=1~m) (14a)
k=1
m+1 m+1 ‘. (r-0)
Xy = 22 Re[d .21 = ZZ Re[d .1 Ry I o Ve (z)e™ " "dr] (14b)
k=1 k=1
Let
Dp = A +iD, =&, +id1- & (15)
(k=1~m+1li=+-1)
Then

~ A
a~)k=|pk|=\/A,f+D2; ék:_Re(pk)/é}k:% (16)
A + D}

where Ek is the kth generalized damping ratio and E)k is the kth complex frequency.

Substituting Eg. (16) into Eq. (14) yields

m+1

L., _E &, (t-1 i, —~kz -7 .
4 =2) Rel(§R, [ |5, (2)e 500 ] (=1~ m) (172
k=1
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m+1

‘., —E @, (t-1) id1-E (11
%, =2 Relf, R, [ £, (2)e 504 0] (17b)
k=1

+i

By implementing the Euler equations e*'? = cos@+isiné, Eq. (17) becomes

m+1

t.. —E &, (-1 ~
q;= 22 Re[(¢ijkJ‘ o e (r)e %= cos @p, (t—7)d7
k=L

R ;xg (0)e 5 Dsing,, (1—r)dr] (18a)

m+1

-23'R L -&ay (1-1) ~ d
Xp = z e[¢(m+l)kRk I o Ve (v)e Cos @y, (t—7)dz
=

R[5, ()e 3D sin o, (- 1)d 7] (18b)

where @), = @, \1— &7

In order to solve the Eq. (18) further, a single degree of freedom system is discussed firstly.
The motion equation of a system with a single degree of freedom under seismic excitation is

un +2§ka~)k77k +E)k277k =_jég 19)
By the Duhamel integral the solution is

-1 ., “E o (1) i ~
n, =—— txg (r)e =2~ sin op, (t—7)dT (20)
Wpy * °

The derivation of the above solution is
s _E & 'y ~80,0-7) 505 &
0 ==& @~ [ K, (0)e cos @y (1~ 7)d7 (21)

By using Egs. (20) and (21), Eq. (18) becomes

m+1

q; = 2; Re{(¢ijk I:":gk(?)k + @Dki]ﬂk PRy 'ﬁk} (j=1~m) (22a)
m+1 5
x,=2) Re {¢(m+1)kRk [fkd’k + @Dki] T s Re 'ﬁk} (22b)
k=L

Let  h, =¢, R[S0, +opil=E, +F,i By=¢,R, =G, +H,i and
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8r = ¢(m+1)kRk[§k(5k +E)Dki] = Ek +Fki ) g'jk = ¢(m+1)kRk = Gk +Hki , Eq. (22) can be
converted into

m+1

9, = Z(ZEjkﬂk T 2ij77k) (j=1~m) (23a)
k=1
m+1 - ~
Xp = Z(ZEkm +2G,77,) (23b)
k=1

In order to utilize the design response spectrum of the seismic code, ¢, and x, must be

solved by superposition of absolute maximum responses of series of single degree of freedom
systems. Assumed that the seismic excitation is a zero mean stationary white noise process and the
peak factor is unity, according to the random vibration theory and considering the influence of the

cross-term, the absolute maximums of ¢, and x, can be obtained by (the derivation process is
shown in Appendix A)

\qj\max or x| =S, +S,+S, (j=1~m) (24)

in which
m+l  m+l s
Sy = Z ZZEjk '2Eﬂ “Pu SaSa (25a)
k=1 -1
n+l n+l D
S, = 22 ZZE_jk 2G ;- Py Sa Sy (25b)
PR
n+l n+l -
S, = Z ZZij '2Gj1 “Pu Sa Sy (25¢)
PR
ngD = 8\/ gké:la-}kasl (fk&;k + 51(51)(51(&31 IT, (25d)
p/ZD =4y gkég/(bk&)z (5)12 - (b/f)a}/ T, (25e)
p/ZV = 8\/ ‘fkéla;kg)/ (ékajl + Sglg)k)g)kg)z IT, (25f)
L, = (a‘“ij - a—;jz)z + 45k§l&3k&31 (&;kz + ajzz) + 4(9€k2 - glz)a)kz&;lz (259)

where S, (S,) and S,(S,) are the absolute maximal displacement and velocity of a single

degree of freedom system (Eq. (19)), respectively, i.e., the displacement response spectrum and
velocity response spectrum. When it comes to the absolute maximal displacement of seismic
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base-isolation floor, ie.|x,| ., the E,andG, in Eq. (25) are replaced by E, and G,,

respectively .

However, the code for seismic design of buildings (GB50011-2010) does not provide the
displacement response spectrum and the velocity response spectrum, except for the corresponding
acceleration response spectrum, therefore, the Eq. (25) can’t be applied directly and must be
further deduced.

As we all know, in the case of small damping ratio such as & =5%, the displacement

response spectrum, velocity response spectrum and acceleration response spectrum of a single
degree of freedom system have the following approximate relationship

S,:80:8,=1l0:0° (26)

However, Eq. (26) can’t be substituted into Eq. (25) directly for the damping ratio in it is not a
small one. Lin and Chang (2003) analyzed the displacement and velocity responses of single
degree of freedom systems with different damping ratio excited by 1053 actual earthquake
acceleration time-history records and then gave the damping reduction factor derived from the
displacement and velocity, respectively, as shown in Table 1, which can be expressed as

Bd:i, Bv: SV (27)
SdO SvO

where B, and B, are the damping reduction factor derived from the displacement and velocity,

Table 1 Damping reduction factors derived from (a) displacementand (b) velocity

Period (s)

Damping
01 05 1 2 3 4 5 6 7 8 9 10

(@ 2%/5% 125 131 130 128 125 123 121 119 117 115 114 112
10%/5% 0.85 0.77 0.78 0.79 0.80 0.80 0.81 0.83 0.84 085 0.86 0.87
15%/5% 0.77 065 0.66 0.67 069 069 070 072 0.74 0.76 0.77 0.78
20%/5% 0.72 057 057 059 0.61 0.61 0.63 0.65 0.67 0.69 0.70 0.20
25%/5% 0.69 051 051 052 055 056 057 0.60 0.62 0.64 0.65 0.68
30%/5% 0.66 046 047 048 051 051 053 056 058 0.60 0.61 0.64
40%/5% 0.61 0.40 040 041 044 045 046 049 051 054 055 0.58
50%/5% 0.58 0.35 0.35 0.36 0.39 040 042 045 047 049 051 0.54

(b) 2%/5% 137 131 127 121 116 114 111 1.09 107 105 104 1.03
10%/5% 0.77 0.77 080 0.84 087 0.88 090 092 094 095 0.95 0.97
15%/5% 0.65 0.65 0.69 0.74 0.80 0.82 0.84 0.87 0.90 0.92 0.92 0.94
20%/5% 0.57 057 062 068 0.74 0.77 0.80 0.84 0.87 0.89 0.90 0.92
25%/5% 052 051 057 063 070 0.74 0.77 081 0.85 0.87 0.89 091
30%/5% 0.48 046 052 060 0.67 071 0.75 0.79 0.83 0.85 0.87 0.90
40%/5% 042 0.39 046 054 062 067 071 0.76 080 0.83 0.85 0.88
50%/5% 0.37 0.34 041 050 059 0.64 0.68 0.73 0.77 0.80 0.83 0.86




350 Dong-Mei Huang, Wei-Xin Ren and Yun Mao

respectively; S, and S, are respectively the displacement response spectrum and velocity
response spectrum of single degree of freedom system with damping ratio & # 5%, S,, and
S, are respectively the displacement response spectrum and velocity response spectrum of single
degree of freedom system with damping ratio & =5%.

Therefore, S, S;and Ssin Eq. (25) can be further deduced as

m+l m+l

S, = z ZZEjdek 'ZEﬂBdl 'pk[;D “Sao Sao (28a)

k=1 =1

n+l  n+l

S, = 22 ZZE‘/dek 'ZG‘/lel 'P/ZD S0 Suo (28b)

k=1 I=1

n+l n+l
S, = z ZZijka 'ZGﬂsz 'kazV S0~ Suo (28¢)

k=1 I=1
Where S;0(Sa0) and S,x0(S.0) are the displacement response spectrum and the velocity response
spectrum of kth(/th) single degree of freedom system with damping ratio &, =5%, respectively;

B, (B,) and B, (B,)are the kth(/th) damping reduction factors derived from the displacement
and velocity, respectively. When it comes to the absolute maximal displacement of seismic
base-isolation floor, i.e., |xb|max, the E, and G, in Eqg. (25) are replaced by Ek and G, ,

respectively.
Let

aO :SaO/g (29)

where ¢« is the design response spectrum with damping ratio & =5%, which is also called

earthquake affecting coefficient in the code for seismic design of buildings (GB50011-2010) and is

shown in Fig. B1 of Appendix B. The maximum value of horizontal seismic influent coefficient

appeared in Fig. B1, which is related to earthquake intensity, is shown in Table B1 of Appendix B.
Considering of Egs. (26) and (29), S; , S;and Sz in Eq. (28) can be rewritten as

n+tln+l

o o
S = Zzzajdek 2a; B, 'P/fz)D g~_§0g~_2,0 (30a)
k=11=1 W, @
n+l n+l
~ ga, ga
S, = 22 zzajdek 'chszla)z 'p:zD : ~§0 ',,—210 (30b)
k=1 =1 W, w,
n+l n+l
S3 = Z ZZCjkak(Bk . chlela‘;l . IOIZV . gfzfo % (300)

~2
k=l =1 A ,
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where a,,=S,,/g(a,,=S,,/g)is the design response spectrum (i.e., earthquake affecting

coefficient) of kth(/th) single degree of freedom system with damping ratio Ek (EZ) =5%.

The derived Eq. (30) not only applies the design response spectrum in the code conveniently
but also uses the damping reduction factors to consider the large damping ratio, which improves
the work in the literature (Zhou et al. 2004) greatly.

In such a way, ‘q-f‘max(j:l~ m) and |x,,|max can be obtained according to Eg. (30). Once

‘qj‘max is known, the jth maximum displacement, maximum earthquake action and maximum

interlaminar shear force can be determined according to Eq. (2)

03 =1l (312)
}{F}-/‘max - [KO]}{XS}f max or ‘Ef max - m’a)12¢’f ‘q/ max (l =1~ I’l) (31b)
Vy= Z Byl e ((=1~1) (31c)

k=i

Ignoring the cross-term, the finer solution can be calculated by Square Root of the Sum of
Squares (SRSS) method

_ N p2
|RP|max - ZRJ (32)
J=i
where R;expresses the jth maximum displacement and maximum interlaminar shear force of each
structural floor, while |RP|max expresses the ultimate combination results.

3. Parameter optimization for seismic base-isolation floor

For the numerical application, one 8-story reinforced concrete structure is taken as an example
where the 1% and the 2™ floors are the large markets, the 3"9-7" floors are offices, and the top floor
is a revolving restaurant. The seismic intensity is /=8 degree (0.2 g) and the site class is Il. The
classification of design earthquake is the 1* group and the characteristic period is 7,=0.35 s. The
mass and stiffness of each floor are listed in Table 2. The basic period of the structure is 7,=0.973
(s) and the damping ratio is& = 0.05. The mass of seismic base-isolation floor is 7,=400000 kg,

while the damping ratio of seismic base-isolation floor is within 0.01< &, <0.2. The frequency
ratio of seismic base-isolation floor is 0.5< @, /@, <3.0.

In order to obtain the best seismic base-isolation effect, the parameter optimization of seismic
base-isolation floor has to be carried out, so as to determine three important parameters of seismic

base-isolation floor, which is the mass m, , natural frequency @, and damping ratio ¢, .
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Table 2 Structural parameters of building

Floor No. Mass (kg) Stiffness (KN/m) Storey heights (m)
bottom 400000 30000 -
1 220000 250000 45
2 300000 250000 45
3 270000 350000 3.0
4 270000 350000 3.0
5 270000 350000 3.0
6 270000 350000 3.0
7 270000 350000 3.0
8 130000 220000 45
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Fig. 2 Base shear force ratio vs. frequency ratios and damping ratios
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Fig. 4 Base shear force ratio vs. damping ratio for different frequency ratios
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Fig. 5 Seismic base-isolation floor displacement vs. frequency ratios and damping ratios

Supposing that the seismic responses of the structure is mainly contributed by the first mode, when
the m, is known, the base shear of the structure and the displacement of seismic base-isolation

floor can be calculated under different frequency ratios @, /@, and damping ratios &, .

Meanwhile, the base shear of non-seismic-isolation structure can be also calculated by the classical
mode decomposition response spectrum method. The relationship between base shear ratio of
seismic base-isolation floor to non-seismic base-isolation floor and the frequency ratio, damping
ratio is shown in Fig. 2. The relationships between base shear ratio of seismic base-isolation floor
to non-seismic base-isolation floor and the frequency ratio under four different damping ratios are
shown in Fig. 3. The relationships between base shear ratio of seismic base-isolation floor to
non-seismic base-isolation floor and the damping ratio for four different frequency ratios are
shown in Fig. 4.
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Fig. 6 Seismic base-isolation floor displacement vs. frequency ratio for different damping ratios
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Fig. 7 Seismic base-isolation floor displacement vs. damping ratio for different frequency ratios

It can be observed that with the frequency ratio increasing, the base shear force ratio is
monotonically increasing, while with the damping ratio increasing, the base shear force ratio is
almost linearly decreasing, which illustrates that if the frequency ratio becomes smaller and the
damping ratio becomes greater, the seismic base-isolation effect becomes larger. There is also an
important issue in the design of seismic base-isolation floor, that is, the allowable displacement
(under rare earthquake). In fact, the displacement of seismic base-isolation floor should be limited
and has to meet the requirements of practical engineering.

Fig. 5 shows the relationship between seismic base-isolation floor displacement and frequency
ratio, damping ratio. Compared with Fig. 2, it can be seen that the smaller the base shear ratio is
(that is, the better seismic reduction effect), the larger the displacement of seismic base-isolation
floor is. When the better seismic reduction effect is pursued, the displacement limit of seismic
base-isolation floor should be also considered at the same time, which results in a problem of
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constrained optimization. The relationships between seismic base-isolation floor displacement and
frequency ratio for four different damping ratios are shown in Fig. 6, while the relationships
between seismic base-isolation floor displacement and damping ratio for four different frequency
ratios are shown in Fig. 7.

It is demonstrated that with the frequency ratio increasing, the displacement of seismic
base-isolation floor is monotonically decreasing. When the frequency ratio is small, the
displacement of seismic base-isolation floor changes greatly, while when the frequency ratio is
large, the displacement of seismic base-isolation floor changes slowly. With the damping ratio
increasing, however, the displacement of seismic base-isolation floor is almost linearly decreasing.
When the frequency ratio is small, the enlargement of damping ratio has a great influence on the
seismic base-isolation floor displacement, while when the frequency ratio is large, the enlargement
of damping ratio has a little influence on the seismic base-isolation floor displacement.

It can be seen from Figs. 2-7 that to achieve a better seismic base-isolation effect, the damping
ratio should be larger and the frequency ratio should be smaller. In addition, the displacement limit
requirement of seismic base-isolation floor must be met.

The parameter optimization problem of seismic base-isolation structure is actually a problem of
constrained optimization, so it can be described as the following mathematical model

min g

Xy S Xpmax
0 S gb S ébmax

33
m, = cont (33)

@,
Q,<—+L<Q,
a)l

Taking into account the practical engineering situations and the characteristics of the example,
Xy =200mm , & =02, m, =400000kg , Q, =05, Q,=3.0 are herein assumed.

Then, the above parameter optimization problem can be resolved through any method of
constrained optimization. Since Figs 2-7 show that the curves in figures are monotonically
increasing or decreasing, this paper gives a more convenient and intuitive procedure combined
with the example. The selection process for optimized parameters is as follows:

(1) Let m, =400000kg , and try to choose a larger damping ratio, thatis &, =0.2;
(2) Let x, =200mm and the corresponding frequency ratio can be obtained according to Fig.

6, that is w, /a)1 =1.15, so the three important parameters of seismic base-isolation floor can be
determined.

(3) Once the frequency ratio is obtained, the corresponding base shear ratio can be determined
through Fig. 3, which is £ = 0.59, then the seismic reduction ratio is 7 = (1— £)/1=41%.

4. Parametric studies

4.1 Influence of each mode on seismic base-isolation and optimal parameters
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Table 3 Contribution for the base shear force of each mode

base shear force (kN)

mode No. L . no seismic-isolation vibration reduce
seismic-isolation structure
structure value
1 674.47 1123.2 508.55
2 -0.6261 19.1 19.73
3~8 -0.0691 1.8 1.87
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Fig. 8 Base shear force vs. frequency ratio for different mode combined numbers
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Fig. 9 Seismic base-isolation floor displacement vs. frequency ratio for different mode combined numbers

In order to see the influence degree of each mode on the seismic base-isolation, Table 3 lists the
contribution of each mode to the base shear forces of seismic base-isolation structure and
non-seismic base-isolation structure. It is demonstrated that the base shear force are primarily
contributed by both first-order mode for seismic-isolation structure and non-seismic-isolation
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Fig. 11 Seismic base-isolation floor displacement vs. frequency ratio for different site classifications

structure.

Figs. 8 and 9 illustrate the relationship curves of base shear force ratio vs. frequency ratio, and
the relationship curves of seismic base-isolation floor displacement vs. frequency ratio for
different mode combined number of m=1, 2, 3, 8. As shown in Fig. 8, when the frequency ratio is
small, the base shearing force is mainly contributed by the 1% mode, however, when the frequency
ratio is large, the base shearing force is contributed by the 1% and 2™ modes. One can observe from
Fig. 9 that the four curves are almost coincident, which illustrates that the number of mode
combination has almost no effect on the result of parameter optimization.

4.2 Influence of site classification on seismic base-isolation and optimal parameters

In order to analyze the influence of site classification on the seismic base-isolation effect and
optimization parameters, Figs. 10 and 11 respectively show the relationship curve of base shear
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ratio # vs. frequency ratio, and the relationship curve of seismic base-isolation floor displacement
vs. frequency ratio under different site classes: I, Il, 1l and IV (the classification of design
earthquake is the 1st group). The site classification and design earthquake can determine the
characteristic period value, as shown in the code for seismic design of buildings (GB50011-2010)
or Table B2 of Appendix B. It can be observed that softer the site soil is, worse the seismic
base-isolation effect is when the optimal frequency ratio becomes larger. For the case of site class
IV, the seismic base-isolation device may perhaps cause a negative impact, which needs to be
careful.

5. Conclusions

Through the above analysis, the following conclusions can be drawn:

(1) The modified complex mode superposition design response spectrum method for
earthquake effects calculation of seismic base-isolation structure is high-precision and convenient
to engineering applications by applying complex modal decomposition technique, damping
reduction factors and design response spectrum in seismic code.

(2) The proposed graphical approach is convenient to parameters optimization by analyzing the
relationship between the base shear ratio of seismic base-isolation floor to non-seismic
base-isolation one and frequency ratio-damping ratio, as well as the relationship between the
seismic base-isolation floor displacement and frequency ratio-damping ratio. Some conclusions
can be drawn: with the frequency ratio increasing, the base shear force ratio is monotonically
increasing, while the seismic base-isolation floor displacement is almost linearly decreasing; with
the damping ratio increasing, the base shear force ratio and seismic base-isolation floor
displacement are almost linearly decreasing; with the damping ratio changing, the trends of base
shear force ratio and seismic base-isolation floor displacement are consistent (i.e., the larger the
damping ratio is, the better the seismic base-isolation effect is), however, with the frequency ratio
changing, such trends are contradictory.

(3) For the seismic base-isolation structures, when the frequency ratio is small, the base shear
force is mainly contributed by the 1st mode of superstructure, and when the frequency ratio is
larger, the 2nd mode also makes some contributions. Moreover, the number of mode combination
has almost no effect on the results of parameter optimization.

(4) The difference of earthquake site classification has great influence on the seismic
base-isolation effects and optimized parameters: with the site soil becomes softer, the optimal
frequency ratio becomes larger and the seismic-isolation effect becomes worse.
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Appendix A

The expressions of the responses is

m+1

q; () :Z(ZEijk (t)+2ij77k ®) (j=1~m) (Ala)
5= 3 QE,n, (042G, () (A1b)

According to the stationary random vibration theory, the mean square value of response
q,(t)is (the solution process for x,(¢) issimilarto ¢;(z))

Elq(]= Erzfl(zakm (1) +2G 7, (t))} - E[i 2E,m,()+ 326, (t)} -

m+l m+1

[ZEjk '2Ej1 'E[m (t)'771 (t)]+2Ejk '2Gj1 ’ E[Uk(t) 'ﬁl(t)]—"_Zij 'ZGJI ' E[’]k(t)nl(t)]:l

k=1 I=1
m+1 m+1 s m+1 m+1 s m+1 m+1 -
=N (2E, 2B, -12°)+2- 3 Y (2E, 26, - 127 )+ Y. Y (2G,, -2G, - 1)) (j =1~ m)
k=1 I=1 k=1 I=1 k=1 I=1
(A.2)
in which
17 = f” H, (i0)H,(~io)S,(0)do (A.3a)
12 = jf““ ioH, (i0)H,(~io)S,(0)do (A.3b)
17 = [w o*H, (io)H,(-io)S, (w)do (A.30)
where S, (w) is the spectral density of ground motion; H, (iw) (H,(—iw)) is the transfer
function of structure, and it can be written as
. 1
H (iw) =—— (A.4)

OF — 0 +2iE &0
Assumed that the ground motion X, (#) is azero-mean stationary white noise process, there is
E[ 3, (0)3,(5) | = 278,5(r —5) (A5)

where J(z—s) is Dirac delta function; S, is the intensity parameters when ground motion is
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looked on as white noise process.

Elishakaff and Lyon (1986) deduced the mode correlative coefficients by the integral method

provided in appendix, which is

7 =TT~ . e~
pk[l)D = = 8\/ & éoo (o +&o)o,o T,

VI A
]VD —
VD g ~ ~ f~2 ~2\ ~

Pu :—WH = 4\ &,.8,0,0, (& — ;. )éd, 1T,

Ikk ]ll
]VV S— - -
1424 kl -~ = -~ =\
Pu = o 8\ &80, (S0, + S0, ), 0, 1T,
[kk [ll
Ty = (@] — @} ) + 45,800, (0f + @) )+ 47 - &) o of
Then the absolute maximums of ¢, (¢) ( see Eq.(A.2) ) can be written as

‘q_,‘max =S +S,+S;, (j=1~m)

in which

m+l  m+l

S, = Z ZzE‘,k 2E - py” Sy - Sy
=1

n+l  n+l

S, :22 22Ejk 2G - pi) S-Sy,
k=1 [=1

n+l  n+l

S;=Y 2.2G,-2G,-py Sy -S,

k=1 =1
PP =8\ £, &, (E®, + &)@, 1T,
PP =4EE@ @, (&7 — @)@, IT,
Pl =8E Ea.a, (.o, +Ed )@@ T,

Ly = (CT)k2 _5)12)2 +4§k§1a~)ka~)1 (C—Bk2 + 5)12)+4(§k2 _512)67’136512

(A.6a)

(A.6b)

(A.6¢)

(A.6d)

(A7)

(A.8a)

(A.8b)

(A.8¢)

(A.8d)

(A.8¢)

(A.8f)

(A.80)

When it comes to the absolute maximal displacement of seismic base-isolation floor, i.e.,
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|x,| . the Eq.(A.7) is also applicable and the £, and G, in Eq.(A.8) should be replaced by

E, and G,, respectively.

Appendix B

a: seismic influence coefficient; ama: maximum value of seismic influence coefficient; #;:
adjusting factor of slope for the linear decrease section; y: power index; 7,: characteristic period;
n2: damping adjustment factor and 7 structural natural periods.

n2amn' -

;
O =) Ny

0450,
Ct-:[ n20-27_ni(T_5Tg)] amax
1 Tis)
001 T, 5T, 6.0
Fig. B1 Seismic influence coefficient curve
Table B1 Maximum value of horizontal seismic influent coefficient
Earthquake . . . .
influence Intensity 6 Intensity 7 Intensity 8 Intensity 9

Frequently

carthquake 0.04 0.08 (0.12) 0.16(0.24) 0.32
Rarely earthquake 0.28 0.50 (0.72) 0.90(1.20) 1.40

Note: the values in the brackets are separately used for where the design basic seismic acceleration is 0.15 g
and 0.30 g.

Table B2 Characteristic period value (s)

Design earthquake Site-class
group I I III IV
1st Group 0.25 0.35 0.45 0.65
2nd Group 0.30 0.40 0.55 0.75

3rd Group 0.35 0.45 0.65 0.90






