
 
 
 
 
 
 
 
 
 

Earthquakes and Structures, Vol. 4, No. 4 (2013) 341-363                                     341 

 
 
 
 

Modified complex mode superposition design response 
spectrum method and parameters optimization for linear seismic 

base-isolation structures 
 

Dong-Mei Huang1,2, Wei-Xin Ren1,2 and Yun Mao3 
 

1School of Civil Engineering, Central South University , Changsha, Hunan ,410075 ,China 
2National Engineering Laboratory for High Speed Railway Construction, Central South University, Changsha, 

Hunan, 410075, China 
3Department of Civil Engineering, Hubei University of Technology, Hubei, Wuhan, China 

 
(Received March 12, 2012, Revised May 20, 2012, Accepted July 11, 2012) 

 
Abstract.    Earthquake response calculation, parametric analysis and seismic parameter optimization of 
base-isolated structures are some critical issues for seismic design of base-isolated structures. To calculate 
the earthquake responses for such non-symmetric and non-classical damping linear systems and to 
implement the earthquake resistant design codes, a modified complex mode superposition design response 
spectrum method is put forward. Furthermore, to do parameter optimization for base-isolation structures, a 
graphical approach is proposed by analyzing the relationship between the base shear ratio of a seismic 
base-isolation floor to non-seismic base-isolation one and frequency ratio-damping ratio, as well as the 
relationship between the seismic base-isolation floor displacement and frequency ratio-damping ratio. In 
addition, the influences of mode number and site classification on the seismic base-isolation structure and 
corresponding optimum parameters are investigated. It is demonstrated that the modified complex mode 
superposition design response spectrum method is more precise and more convenient to engineering 
applications for utilizing the damping reduction factors and the design response spectrum, and the proposed 
graphical approach for parameter optimization of seismic base-isolation structures is compendious and 
feasible. 
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1. Introduction 
 

Base isolation is an anti-seismic technology that can significantly reduce the seismic responses 
of a superstructure by setting seismic base-isolation devices to extend the system natural period 
and to increase the system damping (Buckle and Mayes 1990, Skinner et al. 1993, Hong and Kim 
2004, Fan et al. 1991, Naeim and Kelly 1999, Komodromos 2000, Eurocode 2004, Takewaki 
2008). At present, there are three main methods to calculate the earthquake responses of seismic 
base-isolation structures. One is the time domain method that takes a typical seismic wave as the 
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seismic excitation to calculate the seismic responses in time domain (Heaton et al. 1995, Matsagar 
and Jangid 2004). The second is the frequency domain method that takes the random earthquake 
ground motion model as the seismic excitation to calculate the random seismic responses in 
frequency domain (Constantinou and Tadjbakhsh 1983, Jangid and Datta 1995, Takewaki and 
Fujita 2009). The third is the mode decomposition response spectrum method that calculates the 
maximum seismic responses according to the mode decomposition and design response spectrum 
(GB50011-2010) (Igusa et al. 1984, Gupta and Jaw 1986, Mahendra and Barbara 1986, Yang et al. 
1990, Zhou et al. 2004). 

The time domain method which adopts only one seismic wave as an excitation is difficult to 
reflect the statistical characteristics as the earthquake is a random process. The frequency method 
which adopts the seismic random model as an excitation is uncertain for the uncertainties in the 
model parameters. The mode decomposition response spectrum method, on the other hand, is on 
the basis of design response spectrum, which is a statistical result according to hundreds of seismic 
wave excitations and is adopted by the earthquake resistant design code (GB50011-2010) for 
engineering application. As is well-known, the seismic base-isolation structure is a non-symmetric 
and non-classical damping system, therefore, the forced real mode decomposition response 
spectrum method should be substituted by the complex mode superposition design response 
spectrum method for more accurate results. 

With a wide use of seismic base-isolation structures, the parameter optimization design on the 
seismic base-isolation devices is of interest (Alessandro and Ileana 2004, Zhou and Han 1996, 
Constantinou and Tadjbakhsh 1984, Cenk and Henri 2004, Takewaki 2005). Nowadays, many 
constrained optimization methods for parameter optimization have been proposed such as 
conjugate gradient methods (Horisberger and Belanger 1974), mathematical programming 
approach (Balling et al. 1983), genetic algorithm (Yoshi et al. 1999), GA-fuzzy optimization 
method (Hyun and Paul 2007) and so on. All these methods are performed by constant iterating, 
which are either time-consuming or non-intuitive. In this paper, a modified complex mode 
superposition design response spectrum method is implemented to calculate the seismic responses 
and a graphical approach for parameter optimization of the seismic base-isolation devices is 
proposed. Moreover, the influences of mode number and site classification on the seismic 
base-isolation structure and corresponding optimum parameters are investigated. 
 
 
2. Modified complex modes superposition design response spectrum method 
 

2.1 Motion equation and solution 
 
To calculate the earthquake responses of seismic base-isolation structures, the computational 

model that not only reflects the actual deformation behavior but also makes the calculation easy 
and feasible must be set up. At present, the commonly used computational models are a series of 
multi-particle system model and spatial finite element model. The series of multi-particle system 
model is herein adopted as shown in Fig. 1. In the figure, the ith floor mass of structure is im  and 

the mass of structural base plate is bm , while the stiffness and damping coefficients of seismic 

base-isolation device are bk  and bc , respectively. Under the earthquake action, the structural 

linear motion equation is 
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Fig. 1 Motion model for seismic base-isolated structure 
 
 

            0 0 0 0s s s g bM x C x K x M I x x       
          

(1a) 

,
1

( ) ( ) 0
n

i b s i g b b g b b b b
i

m x x x m x x c x k x


                          (1b) 

where gx is the horizontal ground earthquake acceleration; bx is the displacement of structural 

base plate; ,s ix  is the ith floor displacement of the structure relative to structural base plate; 

 0M  is the lumped mass matrix of superstructure;  0 ijK k    =
1

ij


    is the lateral stiffness 

matrix of superstructure, which is obtained according to the mechanical meanings of stiffness 

coefficient ijk  or flexibility coefficient ij ;  0C is the damping matrix of superstructure with 

Rayleigh Damping;    T1,1, ,1I   . 

Let 

   T

,1 ,2 , ,
1

, , , , ,
m

s s s s i s n j j
j

x x x x x q 


                         (2) 

   T

1 , , , ,j j ij nj       

where m is the number of modes for combination. Eq. (1) can be transformed into the following by 
the modal decomposition 
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22j j b j j j j j j gq x q q x              ( 1 ~j m )               (3a) 

2
1 1

1

(1 ) 2 (1 )
m

j j b b b b b b g
j

q x x x x     


                         (3b) 

in which 

    *
0j j jM M 


 ;      *

0j j jK K 


 ;      *
0j j jC C 


  

* *2 j j j jC M   ;  2 * *
j j jK M  ;  2 b b b bc m   ;  2

b b bk m   

2

1 1

( ) ( )
n n

j i ij i ij
i i

m m  
 

   ;  1
1

( )
n

i b
i

m m


  ; 
1

( )
n

j i ij b
i

m m 


   

Let   T1 2, , , ,n bx q q q x  , then Eq. (3) can be deduced to the following unified form 

       ( )M x C x K x f t          
     

                      
(4) 

in which 
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     
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 
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 
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2
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





 
 
 
      
 
  

  ;    T1 2 1( ) , , , ,1g mf t x          

The damping matrix in Eq. (4) is composed of structural damping and additional damping of 
base-isolation devices, which is a non-classical large damping matrix. As a result, the mass matrix 
is a non-symmetric matrix. Eq. (4) can be decoupled by the complex modes. 
Let 

     Tbmbm
T

m xqqxqqyyyy ,,...,,,,...,,..., 11)1(22,1                      (5) 

Then Eq. (4) can be deduced to the following unified form 
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        M y K y f t                            (6) 

in which 

 
 0 M

M
M C

    
       




， 

 
 

0

0

M
K

K

     
    





   T1 1 2( 1) 1
( ) 0, ,0, , , ,1g m m

f t x   
 

      

The 2(m+1) eigenvalues kp ( 1 ~ 2( 1)k m  ) can be obtained by solving the eigenvalue 

equation     0p M K  , and their corresponding right and left eigenvector equations are as 

follows 

[ ( )]{ } {0}k kD p U  ; [ ( )] { } {0}k kD p V T  ( 1 ~ 2( 1)k m  )          (7) 

Each corresponding right and left eigenvectors of kp  are 

  1 2 2( 1), , ,k k k m kU U U U    
T

 ,   1 2 2( 1), , ,k k k m kV V V V    
T

              (8) 

Accordingly, [ ] [ ]kP diag p ( 1 ~ 2( 1)k m  ), 1 2 2( 1)[ ] , , , mU U U U     , and 

1 2 2( 1)[ ] , , , mV V V V      are called the eigenvalue matrix, right eigenvector matrix, and left 

eigenvector matrix, respectively. The system meets with the following weighted orthogonality 
(Fawzy and Bishop 1976) 

     *
kV M U diag m   

T
;       *

kV K U diag m P    
T

            (9) 

By means of the transformation }]{[}{ zUy   and orthogonality, Eq. (6) can be decoupled to 

)}({}]{[}{ tFzPz                               (10) 

in which )}({]][[)}({ T tfVtF  ； * 1[ ] [ ] [ ]k kdiag diag m    . The component form of Eq. 

(10) is 

k k k k gz p z R x    ( 1 ~ 2( 1)k m  )                       (11) 

where    TT

1 1 2( 1) 1
0, ,0, , , ,1k k k m m

R V   
 

    . The solution of Eq. (11) is 

  ( )

0
( ) dk

t p t
k k gz t R x e      ( 1 ~ 2( 1)k m  )                   (12) 
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According to the transformation Eq. (5) and the complex modal transformation     y U z , 

the generalized coordinates and the displacement of structural base plate are 

2( 1) 2( 1)
( )

0
1 1

( ) dk

m m t p t
j jk k jk k g

k k

q z R x e    
 



 

      ( 1 ~j m )             (13a) 

2( 1) 2( 1)
( )

( 1) ( 1) 0
1 1

( ) dk

m m t p t
b m k k m k k g

k k

x z R x e    
 


 

 

                    (13b) 

where    
 
k k

k
k

p
U




    
  

,   1 2 ( 1), , , , ,k k k jk m k        
T

   

 
2.2 Complex modes superposition design response spectrum method 
 
As the complex frequencies are conjugated, let *

1 kmk pp  , then }{}{ *
1 kmk    and

*
1 Kmk RR  . Because the actual system has a real solution, Eq. (13) can then be expressed as 

1
( )

0
1

2 Re[ ( ) d ]k

m t p t
j jk k g

k

q R x e   






      ( j=1~m )               (14a) 

1 1
( )

( 1) ( 1) 0
1 1

2 Re[ ] 2 Re[ ( ) d ]k

m m t p t
b m k k m k k g

k k

x z R x e    
 


 

 

                (14b) 

Let 

21k k k k k k kp A iD i                                (15) 

)1,1~1(  imk  

Then 

2 2
k k k kp A D    ; 

2 2
Re( ) / k

k k k

k k

A
p

A D
   


                 (16) 

where k
~

 is the kth generalized damping ratio and k
~ is the kth complex frequency. 

Substituting Eq. (16) into Eq. (14) yields 

21
1 ( )( )

0
1

2 Re[( ( ) d ]k kk k

m t i tt
j jk k g

k

q R x e e       


  



  
    )~1( mj          (17a) 
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2
1

1 ( )( )
( 1) 0

1

2 Re[ ( ) d ]k kk k

m t i tt
b m k k g

k

x R x e e       


  




  
               (17b) 

By implementing the Euler equations  sincos ie i  , Eq. (17) becomes 

1
( )

0
1

2 Re[( ( ) cos ( )dk k

m t t
j jk k g Dk

k

q R x e t      


 



  
    

( )

0
( ) sin ( )d ]k k

t t
jk k g DkR i x e t        

                   (18a) 

1
( )

( 1) 0
1

2 Re[ ( ) cos ( )dk k

m t t
b m k k g Dk

k

x R x e t      


 




  
    

( )
( 1) 0

( ) sin ( )d ]k k
t t

m k k g DkR i x e t       
 

                 (18b) 

where 21Dk k k       

In order to solve the Eq. (18) further, a single degree of freedom system is discussed firstly. 
The motion equation of a system with a single degree of freedom under seismic excitation is 

gkkkkkk x   2~~~
2                           (19) 

By the Duhamel integral the solution is 

( )

0

1
( ) sin ( )dk k

t t
k g Dk

Dk

x e t      


 
 

  


                  (20) 

The derivation of the above solution is 

( )

0
( ) cos ( )dk k

t t
k k k k g Dkx e t             

                     (21) 

By using Eqs. (20) and (21), Eq. (18) becomes 


1

1

2 Re (
m

j jk k k k Dk k
k

q R i    




        jk k kR      )~1( mj             (22a) 


1

( 1)
1

2 Re
m

b m k k k k Dk k
k

x R i    





        ( 1)m k k kR                 (22b) 

Let iFEiRh jkjkDkkkkjkjk  ]~~~
[  , iHGRh jkjkkjkjk  '  and
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iFEiRg kkDkkkkkmk

~~
]~~~

[)1(    , iHGRg kkkkmjk

~~
' )1(   , Eq. (22) can be 

converted into 







1

1

)22(
m

k
kjkkjkj GEq    )~1( mj                     (23a) 







1

1

)
~

2
~

2(
m

k
kkkkb GEx                             (23b) 

In order to utilize the design response spectrum of the seismic code,  jq  and bx  must be 

solved by superposition of absolute maximum responses of series of single degree of freedom 
systems. Assumed that the seismic excitation is a zero mean stationary white noise process and the 
peak factor is unity, according to the random vibration theory and considering the influence of the 
cross-term, the absolute maximums of jq  and bx  can be obtained by (the derivation process is 

shown in Appendix A) 

maxjq  or 1 2 3maxbx S S S    )~1( mj                  (24) 

in which 
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
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
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2 24 ( ) /VD
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where )( dldk SS  and )( vlvk SS  are the absolute maximal displacement and velocity of a single 

degree of freedom system (Eq. (19)), respectively, i.e., the displacement response spectrum and  
velocity response spectrum. When it comes to the absolute maximal displacement of seismic 
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base-isolation floor, i.e.
maxbx , the jkE and jkG  in Eq. (25) are replaced by kE  and kG , 

respectively . 
However, the code for seismic design of buildings (GB50011-2010) does not provide the 

displacement response spectrum and the velocity response spectrum, except for the corresponding 
acceleration response spectrum, therefore, the Eq. (25) can’t be applied directly and must be 
further deduced. 

As we all know, in the case of small damping ratio such as %5 , the displacement 
response spectrum, velocity response spectrum and acceleration response spectrum of a single 
degree of freedom system have the following approximate relationship 

2
000 ::1:: avd SSS                          (26) 

However, Eq. (26) can’t be substituted into Eq. (25) directly for the damping ratio in it is not a 
small one. Lin and Chang (2003) analyzed the displacement and velocity responses of single 
degree of freedom systems with different damping ratio excited by 1053 actual earthquake 
acceleration time-history records and then gave the damping reduction factor derived from the 
displacement and velocity, respectively, as shown in Table 1, which can be expressed as 

0 0

,d v
d v

d v

S S
B B

S S
                               (27) 

where dB  and vB  are the damping reduction factor derived from the displacement and velocity,  

 
 
Table 1 Damping reduction factors derived from（a）displacement and（b）velocity 

Damping 
Period (s) 

0.1   0.5    1     2     3    4    5     6    7     8    9    10 

(a)  2%/5% 
10%/5% 
15%/5% 
20%/5% 
25%/5% 
30%/5% 
40%/5% 
50%/5% 

1.25  1.31  1.30  1.28  1.25  1.23  1.21  1.19  1.17  1.15  1.14  1.12 
0.85  0.77  0.78  0.79  0.80  0.80  0.81  0.83  0.84  0.85  0.86  0.87   
0.77  0.65  0.66  0.67  0.69  0.69  0.70  0.72  0.74  0.76  0.77  0.78 
0.72  0.57  0.57  0.59  0.61  0.61  0.63  0.65  0.67  0.69  0.70  0.20 
0.69  0.51  0.51  0.52  0.55  0.56  0.57  0.60  0.62  0.64  0.65  0.68  
0.66  0.46  0.47  0.48  0.51  0.51  0.53  0.56  0.58  0.60  0.61  0.64 
0.61  0.40  0.40  0.41  0.44  0.45  0.46  0.49  0.51  0.54  0.55  0.58 
0.58  0.35  0.35  0.36  0.39  0.40  0.42  0.45  0.47  0.49  0.51  0.54 

(b)  2%/5% 
10%/5% 
15%/5% 
20%/5% 
25%/5% 
30%/5% 
40%/5% 
50%/5% 

1.37  1.31  1.27  1.21  1.16  1.14  1.11  1.09  1.07  1.05  1.04  1.03 
0.77  0.77  0.80  0.84  0.87  0.88  0.90  0.92  0.94  0.95  0.95  0.97   
0.65  0.65  0.69  0.74  0.80  0.82  0.84  0.87  0.90  0.92  0.92  0.94 
0.57  0.57  0.62  0.68  0.74  0.77  0.80  0.84  0.87  0.89  0.90  0.92 
0.52  0.51  0.57  0.63  0.70  0.74  0.77  0.81  0.85  0.87  0.89  0.91  
0.48  0.46  0.52  0.60  0.67  0.71  0.75  0.79  0.83  0.85  0.87  0.90 
0.42  0.39  0.46  0.54  0.62  0.67  0.71  0.76  0.80  0.83  0.85  0.88 
0.37  0.34  0.41  0.50  0.59  0.64  0.68  0.73  0.77  0.80  0.83  0.86 
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respectively; dS  and vS  are respectively the displacement response spectrum and velocity 

response spectrum of single degree of freedom system with damping ratio %5 , 0dS  and 

0vS  are respectively the displacement response spectrum and velocity response spectrum of single 

degree of freedom system with damping ratio %5 . 
Therefore, S1, S2 and S3 in Eq. (25) can be further deduced as 
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Where Sdk0(Sdl0) and Svk0(Svl0) are the displacement response spectrum and the velocity response 

spectrum of kth(lth) single degree of freedom system with damping ratio %5
~
k , respectively; 

)( dldk BB  and )( vlvk BB are the kth(lth) damping reduction factors derived from the displacement 

and velocity, respectively. When it comes to the absolute maximal displacement of seismic 

base-isolation floor, i.e., 
maxbx , the jkE  and jkG  in Eq. (25) are replaced by kE  and kG , 

respectively. 
Let 

gSa /00                                 (29) 

where 0  is the design response spectrum with damping ratio %5 , which is also called 

earthquake affecting coefficient in the code for seismic design of buildings (GB50011-2010) and is 
shown in Fig. B1 of Appendix B. The maximum value of horizontal seismic influent coefficient 
appeared in Fig. B1, which is related to earthquake intensity, is shown in Table B1 of Appendix B. 

Considering of Eqs. (26) and (29), S1 , S2 and S3 in Eq. (28) can be rewritten as 
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where )/(/ 0000 gSgS allakk   is the design response spectrum (i.e., earthquake affecting 

coefficient) of kth(lth) single degree of freedom system with damping ratio %5)
~

(
~

lk  . 

The derived Eq. (30) not only applies the design response spectrum in the code conveniently 
but also uses the damping reduction factors to consider the large damping ratio, which improves 
the work in the literature (Zhou et al. 2004) greatly. 

In such a way, )~1(
max

mjq j  and 
maxbx  can be obtained according to Eq. (30). Once 

maxjq  is known, the jth maximum displacement, maximum earthquake action and maximum 

interlaminar shear force can be determined according to Eq. (2) 

}{}{
maxmax jjjs qx                             (31a) 

max0max
}{][}{ jsj xKF   or 

max

2

max jijjiij qmF    ( ni ~1 )         (31b) 





n

ik
kjij FV

max
  )~1( ni                           (31c) 

Ignoring the cross-term, the finer solution can be calculated by Square Root of the Sum of 
Squares (SRSS) method 





m

ij
jRRP 2

max
                               (32) 

where Rj expresses the jth maximum displacement and maximum interlaminar shear force of each 

structural floor, while 
max

RP expresses the ultimate combination results. 

 
 
3. Parameter optimization for seismic base-isolation floor 
 

For the numerical application, one 8-story reinforced concrete structure is taken as an example 
where the 1st and the 2nd floors are the large markets, the 3rd~7th floors are offices, and the top floor 
is a revolving restaurant. The seismic intensity is I=8 degree (0.2 g) and the site class is II. The 
classification of design earthquake is the 1st group and the characteristic period is Tg=0.35 s. The 
mass and stiffness of each floor are listed in Table 2. The basic period of the structure is T1=0.973 
(s) and the damping ratio is 0.05  . The mass of seismic base-isolation floor is mb=400000 kg, 

while the damping ratio of seismic base-isolation floor is within 2.001.0  b . The frequency 

ratio of seismic base-isolation floor is 0.3/5.0 1  b . 

In order to obtain the best seismic base-isolation effect, the parameter optimization of seismic 
base-isolation floor has to be carried out, so as to determine three important parameters of seismic 
base-isolation floor, which is the mass bm , natural frequency b  and damping ratio b . 
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Table 2 Structural parameters of building 

Floor No. Mass (kg) Stiffness (kN/m) Storey heights (m)  

bottom 
1 
2 
3 
4 
5 
6 
7 
8 

400000 
220000 
300000 
270000 
270000 
270000 
270000 
270000 
130000 

30000 
250000 
250000 
350000 
350000 
350000 
350000 
350000 
220000 

- 
4.5 
4.5 
3.0 
3.0 
3.0 
3.0 
3.0 
4.5 

 

 
Fig. 2 Base shear force ratio vs. frequency ratios and damping ratios 

 

Fig. 3 Base shear force ratio vs. frequency ratio for different damping ratios 
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Fig. 4 Base shear force ratio vs. damping ratio for different frequency ratios 
 

Fig. 5 Seismic base-isolation floor displacement vs. frequency ratios and damping ratios 
 
 
Supposing that the seismic responses of the structure is mainly contributed by the first mode, when 
the bm  is known, the base shear of the structure and the displacement of seismic base-isolation 

floor can be calculated under different frequency ratios 1/b  and damping ratios b . 

Meanwhile, the base shear of non-seismic-isolation structure can be also calculated by the classical 
mode decomposition response spectrum method. The relationship between base shear ratio of 
seismic base-isolation floor to non-seismic base-isolation floor and the frequency ratio, damping 
ratio is shown in Fig. 2. The relationships between base shear ratio of seismic base-isolation floor 
to non-seismic base-isolation floor and the frequency ratio under four different damping ratios are 
shown in Fig. 3. The relationships between base shear ratio of seismic base-isolation floor to 
non-seismic base-isolation floor and the damping ratio for four different frequency ratios are 
shown in Fig. 4. 
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Fig. 6 Seismic base-isolation floor displacement vs. frequency ratio for different damping ratios 

 

Fig. 7 Seismic base-isolation floor displacement vs. damping ratio for different frequency ratios 

 
 

It can be observed that with the frequency ratio increasing, the base shear force ratio is 
monotonically increasing, while with the damping ratio increasing, the base shear force ratio is 
almost linearly decreasing, which illustrates that if the frequency ratio becomes smaller and the 
damping ratio becomes greater, the seismic base-isolation effect becomes larger. There is also an 
important issue in the design of seismic base-isolation floor, that is, the allowable displacement 
(under rare earthquake). In fact, the displacement of seismic base-isolation floor should be limited 
and has to meet the requirements of practical engineering.  

Fig. 5 shows the relationship between seismic base-isolation floor displacement and frequency 
ratio, damping ratio. Compared with Fig. 2, it can be seen that the smaller the base shear ratio is 
(that is, the better seismic reduction effect), the larger the displacement of seismic base-isolation 
floor is. When the better seismic reduction effect is pursued, the displacement limit of seismic 
base-isolation floor should be also considered at the same time, which results in a problem of 
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constrained optimization. The relationships between seismic base-isolation floor displacement and 
frequency ratio for four different damping ratios are shown in Fig. 6, while the relationships 
between seismic base-isolation floor displacement and damping ratio for four different frequency 
ratios are shown in Fig. 7. 

It is demonstrated that with the frequency ratio increasing, the displacement of seismic 
base-isolation floor is monotonically decreasing. When the frequency ratio is small, the 
displacement of seismic base-isolation floor changes greatly, while when the frequency ratio is 
large, the displacement of seismic base-isolation floor changes slowly. With the damping ratio 
increasing, however, the displacement of seismic base-isolation floor is almost linearly decreasing. 
When the frequency ratio is small, the enlargement of damping ratio has a great influence on the 
seismic base-isolation floor displacement, while when the frequency ratio is large, the enlargement 
of damping ratio has a little influence on the seismic base-isolation floor displacement.  

It can be seen from Figs. 2-7 that to achieve a better seismic base-isolation effect, the damping 
ratio should be larger and the frequency ratio should be smaller. In addition, the displacement limit 
requirement of seismic base-isolation floor must be met. 

The parameter optimization problem of seismic base-isolation structure is actually a problem of 
constrained optimization, so it can be described as the following mathematical model 

max

max

1 2
1

min

0
b b

b b

b

b

x x

m cont



 





 
  




   


                             (33) 

Taking into account the practical engineering situations and the characteristics of the example,

max 200bx mm , max 0.2b  , 400000bm kg , 1 0.5  , 2 3.0   are herein assumed.  

Then, the above parameter optimization problem can be resolved through any method of 
constrained optimization. Since Figs 2-7 show that the curves in figures are monotonically 
increasing or decreasing, this paper gives a more convenient and intuitive procedure combined 
with the example. The selection process for optimized parameters is as follows: 

(1) Let kgmb 400000 , and try to choose a larger damping ratio, that is 2.0b ; 

(2) Let mmxb 200  and the corresponding frequency ratio can be obtained according to Fig. 

6, that is 15.1/ 1 b , so the three important parameters of seismic base-isolation floor can be 

determined. 
(3) Once the frequency ratio is obtained, the corresponding base shear ratio can be determined 

through Fig. 3, which is 59.0 , then the seismic reduction ratio is %.411/)1(    
 
 
4. Parametric studies 
 

4.1 Influence of each mode on seismic base-isolation and optimal parameters 
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Table 3 Contribution for the base shear force of each mode 

mode No. 
base shear force (kN) 

seismic-isolation structure
no seismic-isolation 

structure 
vibration reduce 

value 

1 
2 

3~8 

674.47 
-0.6261 
-0.0691 

1123.2 
19.1 
1.8 

508.55 
19.73 
1.87 

 

Fig. 8 Base shear force vs. frequency ratio for different mode combined numbers 
 

Fig. 9 Seismic base-isolation floor displacement vs. frequency ratio for different mode combined numbers
 
 
In order to see the influence degree of each mode on the seismic base-isolation, Table 3 lists the 
contribution of each mode to the base shear forces of seismic base-isolation structure and 
non-seismic base-isolation structure. It is demonstrated that the base shear force are primarily 
contributed by both first-order mode for seismic-isolation structure and non-seismic-isolation  
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Fig. 10 Base shear force vs. frequency ratios for different site classifications 
 

Fig. 11 Seismic base-isolation floor displacement vs. frequency ratio for different site classifications 

 
 
structure. 

Figs. 8 and 9 illustrate the relationship curves of base shear force ratio vs. frequency ratio, and 
the relationship curves of seismic base-isolation floor displacement vs. frequency ratio for 
different mode combined number of m=1, 2, 3, 8. As shown in Fig. 8, when the frequency ratio is 
small, the base shearing force is mainly contributed by the 1st mode, however, when the frequency 
ratio is large, the base shearing force is contributed by the 1st and 2nd modes. One can observe from 
Fig. 9 that the four curves are almost coincident, which illustrates that the number of mode 
combination has almost no effect on the result of parameter optimization. 
 

4.2 Influence of site classification on seismic base-isolation and optimal parameters 
 
In order to analyze the influence of site classification on the seismic base-isolation effect and 

optimization parameters, Figs. 10 and 11 respectively show the relationship curve of base shear 
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ratio β vs. frequency ratio, and the relationship curve of seismic base-isolation floor displacement 
vs. frequency ratio under different site classes: I, II, III and IV (the classification of design 
earthquake is the 1st group). The site classification and design earthquake can determine the 
characteristic period value, as shown in the code for seismic design of buildings (GB50011-2010) 
or Table B2 of Appendix B.  It can be observed that softer the site soil is, worse the seismic 
base-isolation effect is when the optimal frequency ratio becomes larger. For the case of site class 
IV, the seismic base-isolation device may perhaps cause a negative impact, which needs to be 
careful. 

 
 

5. Conclusions 
 

Through the above analysis, the following conclusions can be drawn: 
(1) The modified complex mode superposition design response spectrum method for 

earthquake effects calculation of seismic base-isolation structure is high-precision and convenient 
to engineering applications by applying complex modal decomposition technique, damping 
reduction factors and design response spectrum in seismic code. 

(2) The proposed graphical approach is convenient to parameters optimization by analyzing the 
relationship between the base shear ratio of seismic base-isolation floor to non-seismic 
base-isolation one and frequency ratio-damping ratio, as well as the relationship between the 
seismic base-isolation floor displacement and frequency ratio-damping ratio. Some conclusions 
can be drawn: with the frequency ratio increasing, the base shear force ratio is monotonically 
increasing, while the seismic base-isolation floor displacement is almost linearly decreasing; with 
the damping ratio increasing, the base shear force ratio and seismic base-isolation floor 
displacement are almost linearly decreasing; with the damping ratio changing, the trends of base 
shear force ratio and seismic base-isolation floor displacement are consistent (i.e., the larger the 
damping ratio is, the better the seismic base-isolation effect is), however, with the frequency ratio 
changing, such trends are contradictory. 

 (3) For the seismic base-isolation structures, when the frequency ratio is small, the base shear 
force is mainly contributed by the 1st mode of superstructure, and when the frequency ratio is 
larger, the 2nd mode also makes some contributions. Moreover, the number of mode combination 
has almost no effect on the results of parameter optimization. 

 (4) The difference of earthquake site classification has great influence on the seismic 
base-isolation effects and optimized parameters: with the site soil becomes softer, the optimal 
frequency ratio becomes larger and the seismic-isolation effect becomes worse. 
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Appendix A 
 

The expressions of the responses is 
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According to the stationary random vibration theory, the mean square value of response 
)(tq j is (the solution process for )(txb  is similar to )(tq j ) 
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where ( )gS   is the spectral density of ground motion; ( )kH i ( ( )lH i ) is the transfer 

function of structure, and it can be written as  
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Assumed that the ground motion )(txg  is a zero-mean stationary white noise process, there is 

  0E ( ) ( ) 2 ( )gk gly y s S s                            (A.5) 

where ( )s    is Dirac delta function; 0S  is the intensity parameters when ground motion is 
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looked on as white noise process. 
Elishakaff and Lyon (1986) deduced the mode correlative coefficients by the integral method 

provided in appendix, which is 
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Then the absolute maximums of )(tq j （see Eq.(A.2)）can be written as 
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When it comes to the absolute maximal displacement of seismic base-isolation floor, i.e.,
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maxbx , the Eq.(A.7) is also applicable and the jkE  and jkG  in Eq.(A.8) should be replaced by 

kE  and kG , respectively. 

 
 
Appendix B 

 
a: seismic influence coefficient; amax: maximum value of seismic influence coefficient; η1: 

adjusting factor of slope for the linear decrease section; γ: power index; Tg: characteristic period; 
η2: damping adjustment factor and T: structural natural periods. 
 
 

 
Fig. B1 Seismic influence coefficient curve 

 
Table B1 Maximum value of horizontal seismic influent coefficient 

Earthquake 
influence 

Intensity 6 Intensity 7 Intensity 8 Intensity 9 

Frequently 
earthquake 

0.04 0.08（0.12） 0.16(0.24) 0.32 

Rarely earthquake 0.28 0.50（0.72） 0.90(1.20) 1.40 
Note: the values in the brackets are separately used for where the design basic seismic acceleration is 0.15 g 
and 0.30 g. 
 
 
Table B2 Characteristic period value (s) 

Design earthquake 
group 

Site-class 
Ⅰ Ⅱ Ⅲ Ⅳ 

1st Group 0.25 0.35 0.45 0.65 
2nd Group 0.30 0.40 0.55 0.75 
3rd Group 0.35 0.45 0.65 0.90 
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