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Abstract.    The earthquake responses are studied for the tall flexible structures such as TV towers when the 
vertical eccentricities between the discrete nodes and the corresponding centroids of investigated lumps are 
considered. In practical analyses, the tall flexible structures can be made into a spatial-discrete system of 
some certain length of beam elements with different lengths and cross-sectional areas. These elements are 
used to construct the investigated lumps in this paper. The different cross-sectional areas and the different 
lengths of two adjacent elements lead to the appearance of vertical eccentricity between the discrete node 
and the centroid of investigated lump within the same investigated lump. Firstly, the governing equations are 
established for a typical investigated lump. Secondly, the calculating formulae of the forces and moments 
acting on the investigated lump are derived and provided. Finally the new dynamic equilibrium equations 
with modified mass matrix and assemblage of stiffness matrix have been derived for the stick MDOF model 
based on beam theory when the existing vertical eccentricities are considered. Numerical results demonstrate 
that these vertical eccentricities should be considered in order to obtain the accurate earthquake responses for 
the tall flexible structures. 
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1. Introduction 
 

In the dynamic analyses of tall flexible structures such as tall TV transmission towers, tall 
reinforced concrete chimneys and so on, it is known that the stick MDOF 
(multi-degree-of-freedom) structural model on the basis of the beam theory can be used to obtain 
the calculating results needed for the researches and designs as well. 
  Many research works have been carried out about the TV towers and tall reinforced concrete 
chimneys. The wind-induced acceleration responses at the small observation hall of Nanjing TV 
tower in Nanjing, China under strong winds were found to be too high to meet the human comfort 
requirements. The acceleration response at the small observation hall exceeded. Some researchers 
have studied the wind-induced vibration responses (Reinhorn 1995, Feng 1997) and designed the 
control devices (Wu 2000, Cao 1998) for the Nanjing TV tower in order to reduce the acceleration 
response of the small observation hall to meet the human comfort requirements. Literatures (Feng 
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1998, Wu 2004) studied the finite element model updating of the Nanjing TV tower based on 
ambient vibration measurements for establishing an accurate and reliable dynamic model of the 
tower in order to design an appropriate vibration control system. 

Khaloo et al. (2001) adopted respectively the beam element, shell element and brick solid 
element to investigate the linear and nonlinear response of the Milad TV tower. Halabian et al. 
(2002) analyzed the seismic response of the Milad tower. They considered not only the foundation 
flexibility but also the nonlinear model of the TV tower. Yahyai et al. (2009) developed a detailed 
finite element model of Milad tower and carried out the nonlinear dynamic analysis of the tower 
under the design earthquakes. 

A 115-meter high reinforced concrete chimney collapsed on August 17, 1999 Izmit (kocaeli) 
earthquake in Turkey. Another similar survived chimney at the same site was calculated using the 
ground motions recorded at a nearby station. Literatures (Gould 2009, Akinci 2009, Huang 2007, 
Gould 2006, Huang 2004) studied thoroughly the collapsed chimney with different methods 
including the linear dynamic response spectrum, nonlinear static capacity spectrum, nonlinear 
dynamic analysis with shell elements, and a new 3D pushover analysis procedure. The analyzing 
results demonstrated that the low ductility and inadequate capacity due to a large duct were the 
two significant factors for the collapsed chimney. 

Goyal and Maiti (1997) presented a procedure to quantify the difference between inelastic 
seismic resistance and elastic seismic resistance in terms of displacement ductility capacity factors 
for the chimney. Wilson (2003) studied the inelastic response of ten chimneys, ranging in height 
from 115-meter to 301-meter, subjected to earthquake excitations.  

The finite element is an efficient method to solve the dynamic equilibrium equations for the tall 
structures in order to obtain their earthquake responses. When the stick MDOF structural model is 
used, the discrete beam elements are usually adopted for the tall flexible structures in practical 
dynamic analyses. A certain length of element is commonly used for each of the beam elements. 
Though very fine beam elements can be adopted theoretically, it is not often used in the practical 
analyses. The discrete lengths are usually different, that is to say, the spatial-discrete size is not 
equal. The sizes of the element’s cross sections are also different because the cross-sectional areas 
of tall flexible structures are commonly designed to be variable. The different cross-sectional areas 
and the different lengths of the two adjacent elements lead to the appearance of vertical 
eccentricity between the discrete node and the corresponding centroid of the investigated lump 
(see point i  and point C  in the schematic Figs. 1 and 2 where the shade parts are the  
 
 

Fig. 1 Investigated lump i  and its deformation for the 0ciz  case 
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Fig. 2 Investigated lump i  and its deformation for the 0ciz  case 

 
 
investigated lumps). When we think the conventional dynamic equilibrium equations over, we can 
find that the conventional governing equations are not quite exact. As a matter of fact, the 
conventional dynamic equilibrium equations based on the stick MDOF models imply that the 
vertical eccentricities between the discrete nodes and the corresponding centroids of investigated 
lumps are omitted. The translation equations should be established about the centroid of 
investigated lump but not about the discrete node based on Newton’s second law of motion. The 
rotational equation for each investigated lump should also pivot about the horizontal axis through 
its centroid but should not hold about the horizontal axis through the discrete node within the same 
investigated lump. The distance between the discrete node and the centroid within the same 
investigated lump is called vertical eccentricity in this paper. In the stick MDOF model, the 
lumped mass is commonly used by the researchers. Namely, only the inertial forces are considered 
in the calculation. It means that the rotary inertias about the horizontal axis are usually neglected 
for the earthquake responses when the tall TV towers and tall chimneys subjected to the 
earthquake loads. 

Though there have been many research literatures about tall flexible structures such as TV 
towers and tall chimneys based on beam models, to the best of our knowledge, the vertical 
eccentricities mentioned above were not considered up to now in the dynamic analyses for real tall 
flexible structures. 

In this paper, the concept of investigated lump is presented for the tall flexible structures based 
on stick MDOF model. The modified dynamic equilibrium equations are presented. A new mass 
matrix, which can exactly describe the effect of vertical eccentricities between the discrete nodes 
and the corresponding centroids of investigated lumps, is proposed to modify the conventional 
mass matrix that is now widely used in the dynamic equilibrium equations. The conventional 
assemblage of stiffness matrix is also modified because of the existing vertical eccentricities. Not 
only the inertial forces of the investigated lumps are considered but also the rotary inertias of the 
investigated lumps are also taken into account. The earthquake responses of Nanjing TV 
transmission tower are studied finally. 
 
 
2. Governing equations of the investigated lumps 
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It is known that the cross section is variable in most tall flexible structures. When such a 
structure is made into a spatial-discrete system, we obtain some elements of different lengths and 
different cross-sectional areas along the axial direction of the structure in order to get the stick 
MDOF analysis model. These elements are used to construct the investigated lumps that will be 
used as the investigated objects in this paper. An investigated lump consists of half the upper 
element and half the lower element around the discrete node that is inside the investigated lump. It 
can be easily found that the centroid of the investigated lump is generally not at the same point of 
the corresponding discrete node (see Figs.1 and 2). The differences of the cross-sectional areas and 
the lengths of the discrete elements cause that the centroid of the investigated lump and the 
corresponding discrete node inside the same investigated lump are not at the same point. 

The term eccentricity is used here to describe the distance between the discrete node and the 
centroid of the investigated lump within one investigated lump. Fig. 1 shows a typical investigated 
lump i (Nodal numbering i  is also used to denote the i -th investigated lump in this paper) for 
the eccentricity 0ciz  case. For example, if there is an observation hall on the TV tower, the case 
of investigated lump in Fig. 1 arises. That is because the cross-sectional area of the observation 
hall is bigger than that of its lower part of the structure. Fig. 2 is for the eccentricity 0ciz  case. 
This case exists widely because the cross-sectional area changes small gradually in the upward 
direction for most parts of the tall flexible structure. Let the eccentricity to be a positive quantity if 
the discrete node is under the centroid C (see Fig. 1) and the eccentricity to be a negative quantity 
if the discrete node is over the centroid C (see Fig. 2) in the same investigated lump. 

In Figs. 1 and 2 jN , jV  and jM  are respectively the median axial force, median shear force 

and median bending moment acting on the median cross section of element j . 1jN , 1jV  and 

1jM  the ones of element 1j . In fact they are also the forces and the bending moments acting 

on the investigated lump i . jh  and 1jh  are respectively the lengths of elements j  and 1j . 

ju  and 1ju  are the transverse displacements at the center of elements j  and 1j  respectively. 

ciu  is the transverse displacement of centroid C  of the investigated lump i . iu  is the 

transverse displacement of node i , 1iu  the node 1i  and 1iu  the node 1i . 
Using the function of deflection curve of the beam, we can obtain explicitly the following 

formulae 
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modified coefficient when considering the shear deformation in transverse direction. 
For the case of 0ciz , 
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The vertical and transverse governing equations for the investigated lump i  are respectively 

gmNNwm ijjcii  1                              (3) 

1 jjcii VVum                                   (4) 

where im  is the mass, ciw  and ciu  respectively the vertical and horizontal accelerations of 

the centriond C  of the investigated lump i . 
The rotational equation about the horizontal axis ( y -axis) through the centroid of the 

investigated lump i  can be obtained as 
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where ciJ  is the moment of inertia of investigated lump i  about the y -axis through its 

centroid C , i  the rotational acceleration of the investigated lump. The last two terms on the 
right-hand side of Eq. (5) show the “extra moments” caused by the vertical dead loads and the 
axial forces coming from vertical deformations. 

It should be pointed that the Eq. (5) holds for the both cases of 0ciz  and 0ciz . The 

0ciz  case does not exit for the top investigated lump and the 0ciz  case does not exit for the 
bottom investigated lump. 

From Fig. 3, it can be seen that the following equation holds not only for 0ciz case but also 

for the 0ciz  case noticing that the eccentricity ciz  itself is negative in Fig. 2. 

icicii zuu                                    (6) 
 
 
3. Median forces and median bending moment of the element 

 
Fig. 4 shows a typical beam element j  between two discrete nodes i  and 1i  of the tall 
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Fig. 3 Acceleration relations between node i  and the corresponding centroid C  of the investigated 

lump: (a) for the 0ciz case and (b) for the 0ciz case 

 
 

Fig. 4 Deformations, axial forces, shear forces and bending moments at both ends of segment j  
 
 

Fig. 5 Free-body diagrams of the upper and lower part of segment j  by making an artificial cut through 

its median cross section 
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flexible structure. The corresponding axial forces, shear forces and bending moments at the both 
ends of the element j  are shown in Fig. 4. The positive shear forces, bending moments, 
displacements and angles of rotation are in the directions of the coordinate axes. The positive axial 
force corresponds to the compressive force. Following the beam theory with the shear deformation 
and the axial force considered, the axial forces, shear forces and bending moments at the both ends 
of the element j  can be written as follows 
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. Subscript j  denotes the j -th element (see Fig. 4). /
iN  and 

/
1iN are respectively the axial compressive forces of the bottom end and top end of element j  

coming from its vertical deformation, /
iV  and /

1iV  the shear forces, /
iM  and /

1iM  the bending 

moments. jEI )( , jGA)(  and jEA)(  are respectively the bending stiffness, shear stiffness and 

axial stiffness of element j . /
iigj NNN   is the axial force acting on element j . igN  is the 

axial force coming from the dead load of the structure above node i  and giN 1 the dead load 

above node 1i . iw  and i  are respectively the vertical displacement and rotational angle of 

node i . 1iw  and 1i  are respectively the vertical displacement and rotational angle of node 

1i . 
Eliminate iu  and 1iu by subtracting Eq. (10) from Eq. (9), we have 
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Fig. 5 shows the free-body diagrams of upper half part and lower half part of the element j by 
an artificial cut at the median cross section of element j . We can derive the formulae of median 
axial force, median shear force and median bending moment for element j  from the free-body 
diagrams. 

Considering the equilibrium of the upper half part of element j , we have 
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/

1 jijjjji uuNhVMM                            (12) 

Considering the equilibrium of the lower half part of element j , we have 

139



 
 
 
 
 
 

Tielin Liu, Yingchun Jiang and Yu Luan 

)(2/
ijjjjji uuNhVMM                           (13) 

and 

)()( 1211   iijiijj KuuKV                            (14) 

Eliminate ju  by using Eq. (1a) and then substitute Eqs. (12) and (13) into Eq. (11), the 

median bending moment of element j  is obtained as follows 

)( 15 iijj KM                                 (15) 

where 24)(5 jjjjj hNhEIK  .  

 
 
4. Modified dynamic equilibrium equations for the stick MDOF model 

 
In Section 2 the governing equations about the centroid of a typical investigated lump i  have 

been established and the forces and the bending moment acting on the investigated lump i  were 
provided in Section 3. We will use them to derive the dynamic equilibrium equations about the 
discrete nodes for the spatial-discrete system of tall flexible structures based on the stick MDOF 
model. 

 
4.1 Dynamic equilibrium equations of the investigated lumps about the centroids 
 
Substitute Eq. (14) into Eq. (4), we obtain transverse equation of equilibrium for i -th 

investigated lump as follows 

0)()( 1221211211111111   ijijjijijijjijcii KKKKuKuKKuKum  .   (16) 

After substituting Eqs. (7), (14), (15) and /
iigj NNN   into Eq. (5) and rewriting Eqs. (16), 

and (5) in the matrix form, we can obtain the following governing equations for the investigated 
lumps subject to the horizontal earthquake load 
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where T
cnccc uuuU ][ 21   , T

n ][ 21    ,  nmmmdiagM 21 , 

 cnccc JJJdiagJ 21 .  TnE 11 111    is unit vector. U  is the vector that consists of the 

nodal transverse displacements relative to the foundation.   is the vector composed of the 
rotational angles of the investigated lumps. gu  is the horizontal acceleration history of the 

foundation. Matrices uK , uK , uK , K , IK , I
uK , /

uK and /
K  are shown in Appendix A. In fact, the 

four partitioned matrices uK , uK , uK  and K  in Eq. (17) are just the same assembled stiffness 

matrices that are used in the conventional governing equations for the stick MDOF structural 
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model. Matrices I
uK  and IK  arise from the vertical eccentricities. The matrix I

uK  has the 

same form for the two cases of 0ciz  and 0ciz , and IK  has the same characteristics as I
uK . 

Matrices /
uK  and /

K  arise also because of the vertical eccentricities. But they are needed to 

consider the two different cases ( 0ciz or 0ciz ) of the investigated lumps in order to correctly 

assemble the matrices /
uK  and /

K . 

Multiplying Eq. (16) by ciz , we can obtain the following relations in matrix form 
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where  cnnccz zmzmzmdiagM 2211 . 
Substituting Eq. (18) into Eq. (17), we have another type of governing equations for the 

investigated lumps under horizontal earthquake load as follows 
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4.2 Dynamic equilibrium equations of the investigated lumps about the discrete nodes 
 
Let  cnccc zzzdiagZ 21 , then cz MZM  . Multiplying matrix M  by the matrix form of 

Eq. (6), we have 
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 Noticing 2
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  JUMJUM zccz                           (22) 

where  nJJJdiagJ 21 , iJ  is the moment of inertia of investigated lump i  about the 

horizontal axis( y -axis) through the discrete node inside the i -th investigated lump. 
Rewrite Eq. (20) and Eq. (22) in the following matrix form as 
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 Finally, the modified governing equations about the spatial-discrete nodes for the dynamic 
analysis of tall stick MDOF model is obtained 
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As is well know, the conventional dynamic equations for the stick MDOF model is 
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Comparing Eq. (25) with Eq. (24), it can be seen that the conventional global mass matrix and 
global stiffness matrix, that are widely used up to now, should be modified for the reasons of 
vertical eccentricities in order to calculate the dynamic response of tall structure accurately. Eq. 
(24) instead of Eq. (25) should be used as the governing equations for the problems of earthquake 
response based on the tall stick MDOF structural model. 

Eq. (24) reduces Eq. (25) if the phenomena of vertical eccentricities disappeared. 
It should be pointed that Eq. (24) can be used in the other problems of dynamic response of tall 

flexible structure based on stick MDOF model if the right-hand side earthquake load is changed 
into a specified dynamic load, e.g. the impact loading. The non-linear dynamic analysis of tall 
flexible structure can be carried out by using the incremental form of modified governing Eq. (24) 
if the hysteretic behaviors are known on the basis of experimental results. 

It is not difficult to obtain the governing equations in matrix form when the vertical and 
horizontal earthquake loads are considered together. The matrix form is 
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where gw  is the vertical acceleration history of the foundation. wK  is the assemblage of axial 

element stiffness matrix. W  is the vector consist of the nodal vertical accelerations relative to the 
foundation. W is the vector consist of the nodal vertical displacements relative to the foundation. 
It should be pointed that zM , /

uK , and /
K  vanish when eccentricity 0ciz  and then Eq. (26) 

reduces the conventional dynamic equations. 
 
4.3 Dynamic equilibrium equations with rotary inertia vanished 
 
When the beam elements are adopted to study the real tall flexible structure, the longitudinal 

size of the discrete element in practical application is usually not much smaller than its lateral size. 
The two types of sizes may approximately be equal or even the longitudinal size is longer than the 
lateral size of the element. That is to say, the moment of inertia of investigated lump may be a big 
quantity. But the angular accelerations are commonly small quantities. When the angular 
accelerations are so small that the rotary inertias of the investigated lumps are neglected, Eq. (26) 
can be changed into the following forms according to the partitioned matrices 

1EwMWKWM gw                               (27) 

1EuMKUKUM guu                              (28) 
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0)()( //   KKUKKUM uuz
                        (29) 

From Eq. (29), we obtain 
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Substituting Eq. (30) into Eq. (28) to eliminate  , we have 
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For the conventional dynamic Eq. (25), it is known that the equation with the rotary inertia 
omitted is 

1
1 )( EuMUKKKKUM guuu   

 .                      (32) 

Comparing Eq. (31) with Eq. (32), it can be found that zuzu MKKMKK
1/1    is the 

additional term of the mass matrix and /1/1//1
uuuuuu KKKKKKKKK 

   the additional 

term of stiffness matrix because of the vertical eccentricities. Eq. (31) instead of Eq. (32) should be 
used as the governing equations for the earthquake response of tall stick MDOF model with the 
rotary inertia neglected. 

Eq. (31) reduces Eq. (32) if the phenomena of eccentricities disappeared. 
Finally the matrix form of the governing equations neglecting the rotary inertia can be written 

as follows 
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5. Earthquake responses of tall flexible structures 
 

5.1 Test of the new method 
 
To test the correctness of the present method, the ratios of 0cc are plotted against a  to 

compare with those of the exact theory (Kolsky 1953), where c  is the phase velocity that was 
calculated by using the method presented in this paper, Ec 0 , a  the radius of the bar with 

constant cross section throughout its length and   the wavelength of the flexural waves.  
It can be seen from Fig. 6 that curve given by the present method agrees very well with that of 

the exact theory. It can be concluded that the method presented in this paper is valid and accurate 
to study the flexural waves. 

143



 
 
 
 
 
 

Tielin Liu, Yingchun Jiang and Yu Luan 

 
Fig. 6 Phase velocity of flexural waves in cylindrical bars (for ν = 0.29) 

 
Fig. 7 Sketch of the discrete models of an ideal 210 m chimney with equal cross section area 

 
 

5.2 Earthquake acceleration records used 
 

Four earthquake acceleration records (see Table 1) on four different soil types selected from the 
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Table 1 Seismic waves used 

Soil site Earthquake Date Direction Station and component PGA /g

Rock Kocaeli, Turkey 1999/08/17 
Horizontal KOCAELI/GBZ000  0.244 

Vertical KOCAELI/GBZ-UP 0.203 

Soft rock Morgan Hill 1984/04/24 
Horizontal MORGAN/G06000  0.222 

Vertical MORGAN/G06-UP 0.405 

Stiff soil Chichi, Taiwan   1999/09/20
Horizontal CHICHI/CHY006-N 0.345 

Vertical CHICHI/CHY006-V 0.202 

Soft soil Imperial Valley  1979/10/15 
Horizontal IMPVALL/H-E03140 0.266 

Vertical IMPVALL/H-E03-UP 0.127 
 
 
PEER web site (http://peer.berkeley.edu/smcat/search.html) are used as the earthquake loads for 
calculating the structural earthquake responses. 
 

5.3 Effect of eccentricity 
 
An ideal model of reinforced concrete chimney of 210 meter high is adopted to study the 

influences of man-made vertical eccentricity in this section. The cross-sectional areas are assumed 
to be equal in the ideal chimney model with the outer radius of 5.43 meter and the wall thickness 
of 0.28 meter from the bottom to the top of the reinforced concrete chimney. The bending stiffness 
EI of the chimney is 910538.2  2mkN  , shear stiffness GA  710780.3  kN, and axial stiffness EA  

810813.1  kN. 
Four study cases (see Fig. 7) are adopted here. (1) The equal discrete elements of 10 meters 

long are used in study case 1 for the ideal chimney. (2) There is a discrete element of 20 meters 
long between the elevations of 100 and 120 meters in study case 2. The others are also 10 meters 
long. (3) There are two discrete elements of 20 meters long ranging respectively from 100 to 120 
meters and from 40 to 60 meters in the study case 3. The others are also 10 meters long. (4) There 
are two discrete elements of 20 meters long ranging respectively from 100 to 120 meters and from 
160 to 180 meters in the study case 4. The others are also 10 meters long. It can be seen clearly 
that the man-made vertical eccentricity phenomena arise in the study cases 2, 3 and 4. 

Four earthquake records in Table 1 are used as the earthquake loads. The acceleration peaks of 
the horizontal earthquake records are adjusted to 0.2 g, and the vertical peaks are adjusted to 0.13 
g in the following calculations. The small time step of ms5.0  is used to decrease the numerical 
errors of calculations in order to show the influences of vertical eccentricities clearly by 
considering the eccentricities or not. The damping is neglected. 

Study cases 2, 3 and 4 are all used to study the influences of vertical eccentricities by using the 
man-made unequal discrete elements (see Fig. 7). The time histories of bending moments at the 
bottom cross section of the ideal chimney are used for comparisons under the actions of four 
different earthquake waves. In Fig. 8 through Fig. 11, the curves “20 m” correspond to the study 
case 2, “20 m-20 m (down)” the study case 3 and “20 m-20 m (up)” the study case 4. “Result 10 
m”, that is the result obtained from study case 1 (equal spatial-discrete step), is used as the 
standard solution. 
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Fig. 8 Time histories of bending moments at the bottom cross section of the ideal chimney under the 

action of Kocaeli wave: (a) Considering eccentricities and (b) Neglecting eccentricities 

 
Fig. 9 Time histories of bending moments at the bottom cross section of the ideal chimney under the 

action of Morgan Hill wave: (a) Considering eccentricities and (b) Neglecting eccentricities 

 
 
Figs. (a) and (b) in Fig. 8 showed the comparisons of the four study cases considering and 

neglecting the vertical eccentricities respectively under the action of Cocaeli wave. Fig. 9 is for the 
Morgan Hill wave, Fig. 10 the Chichi wave and Fig. 11 the Imperial Valley wave. 

It can be seen clearly from (a) in Figs. 8 through 11 that the time history curves agree well with 
the standard solutions (see “Result 10 m” in the Figs) when the eccentricities were considered. 
Results neglecting the eccentricities (see (b) in Figs. 8 through 11) are not accurate. 

It should be pointed that the same conclusions can be obtained for the other time domains in  
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Fig. 10 Time histories of bending moments at the bottom cross section of the ideal chimney under the 

action of Chichi wave: (a) Considering eccentricities and (b) Neglecting eccentricities 

 
Fig. 11 Time histories of bending moments at the bottom cross section of the ideal chimney under the 

action of Imperial Valley wave: (a) Considering eccentricities and (b) Neglecting eccentricities 

 
 
time history. They were omitted in Figs. 8 through 11 in order to show the comparison curves 
clearly. 

The comparing results demonstrate that the method presented in this paper has the correcting 
function for the vertical eccentricity phenomena in order to provide satisfactory accuracy in the 
practical evaluations of earthquake response of the tall flexible structure. Namely, it is necessary to 
consider the vertical eccentricities for the earthquake responses of tall flexible structures when the 
two adjacent elements posses different cross-sectional areas and different spatial-discrete lengths. 
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Table 2 Calculation parameters of investigated lumps 

Investigated lump 
Elevation Mass Moment of inertia Eccentricity dead load 

/m / 310 kg /kg·m2 /m /kN 

18 310.1 4 4.04× 410  -2.75 39.2 

17 299.1 12 4.78× 410  -1.36 156.8 

16 286.1 18.7 1.00× 510  -1.89 340.1 

15 270.1 165.13 1.07× 610  -6.66 1958.3 

14 240.4 1081.47 6.04× 610  0.81 12556.7 

13 219.4 359.1 5.92× 610  0.40 16075.9 

12 199.2 1325.79 3.63× 710  -1.79 29068.7 

11 185.8 5678.6 1.41× 810  -0.15 84718.9 

10 171.8 3395.32 2.11× 810  1.26 117993.1 

9 158.8 1322.34 1.45× 810  -2.19 130952.0 

8 137.8 1628.07 1.11× 810  0.61 146907.1 

7 119.8 1624.51 1.21× 810  -0.09 162827.3 

6 101.8 1917.95 1.64× 810  -1.05 181623.2 

5 80.2 2319.79 2.11× 810  -0.46 204357.2 

4 58.6 2820.1 3.30× 810  -1.48 231994.1 

3 32.2 3186.74 3.45× 810  0.72 263224.2 

2 10.1 3992.9 3.22× 810  0.23 302354.6 

1 -10 - - - - 

 
 

5.4 Earthquake responses of the Nanjing TV transmission tower of 310 meters high 
 
The existing Nanjing TV transmission tower of 310.1 meters high is located in Nanjing city, 

China. Fig. 12 shows the TV tower. There is a big observation hall at a height of 185.8 meters and 
a small observation hall at a height of 240.4 meters respectively, connected by a reinforced 
concrete cylinder tube structure. The part under the big observation hall consists of three 
prestressed concrete legs with hollow rectangular sections. Over the small observation hall there is 
also a reinforced concrete square tube structure between the height of 246.61 meters and 270.1 
meters. There are three hollow square steel tubes of different cross-sectional areas above the 
elevation of 270.1 meters. 

In the practical calculation, the structure of the three prestressed concrete legs is described by 
using such a model that consists of some cylinder-shaped tubes with their cross-sectional areas and 
moments of inertia of the cross-sectional area equivalent to the corresponding quantities of the 
original structure provided in the Table 2 in Wu and Li’s literature (Wu 2004). 

The parameters in the Table 2 in Wu and Li’s literature are used here and the other parameters 
used for studying the Nanjing TV tower are shown in Table 2 in this paper, which are calculated 
based on the data in Wu and Li’s Table 2 that has been obtained from the design drawings of the 
TV tower. 
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Fig. 12 The Nanjing TV Tower (Wu and Li 2004) 

Fig. 13 Spatial distributions of maximum normal stresses at different cross sections of the TV tower under 

the action of Kocaeli wave: (a) for the masts above the small observation hall and (b) for the mast 

between the small and the big observation halls. Solid and dash lines denote the compressive and 

tensile stresses respectively 
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Fig. 14 Spatial distributions of maximum normal stresses at different cross sections of the TV tower under 

the action of Morgan Hill wave: (a) for the masts above the small observation hall and (b) for the 

mast between the small and the big observation halls. Solid and dash lines denote the 

compressive and tensile stresses respectively 

 
 

 
Fig. 15 Spatial distributions of maximum normal stresses at different cross sections of the TV tower under 

the action of Chichi wave: (a) for the masts above the small observation hall and (b) for the mast 

between the small and the big observation halls. Solid and dash lines denote the compressive and 

tensile stresses respectively 
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Fig. 16 Spatial distributions of maximum normal stresses at different cross sections of the TV tower under 

the action of Imperial Valley: (a) for the masts above the small observation hall and (b) for the 

mast between the small and the big observation halls. Solid and dash lines denote the compressive 

and tensile stresses respectively 

 
 

Four earthquake records in Table 1 are also used here to analyze the earthquake responses of 
the Nanjing TV communication tower. The time step is ms0.1 . The damping is also neglected. 

In Figs. 13 through 16, “New” denotes the results given by the method presented in this paper, 
and “Conventional” denotes the conventional results with both vertical eccentricity and rotary 
inertia neglected. Solid lines denote the compressive stresses and dash lines the tensile stresses. 
Figs. (a) and (b) show respectively the spatial distributions of peak normal stresses of the mast 
above the small observation hall and the mast between the small and the big observation halls. 

Fig. 13 is for the earthquake load of Kocaeli wave, Fig. 14 the Morgan Hill wave, Fig. 15 the 
Chichi wave and Fig. 16 the Imperial Valley wave.  

The horizontal and vertical acceleration records are used as the input data for getting the 
earthquake response of the Nanjing TV tower. The mass and the moment of inertia of the 
foundation are not required because the fixed-base model was adopted. Therefore they are not 
calculated in Table 2 (see investigated lump 1). 

From figure (a) in Figs. 13 through 16, it can be seen that the tensile stresses and compressive 
stresses reach their biggest values at the root of second steel mast at the elevation of 286.1 meters. 
The curves of tensile stress and compressive stress were zigzag shapes because there are three steel 
masts of different cross-sectional areas. The small amount of data used to plot the figure also 
causes the curves to be zigzag shapes. 

It can be seen that the peak value of normal stress at the root of second steel mast increases 
when the existing vertical eccentricity phenomenon is considered. The peak value of compressive 
stress increases by 25% for the Kocaeli wave. The peak compressive and tensile stresses increase 
by 28% and 52% respectively for the Morgan Hill wave, 39% and 63% respectively for the Chichi 
wave and 7% and 21% respectively for the Imperial Valley wave. 
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It can be seen from Fig. (b) in Figs. 13 through 16 that the bottom stresses of reinforced 
concrete mast, that connects the small and the big observation halls, increase also when the vertical 
eccentricity phenomenon is considered. The bottom tensile stress increases by 13% for the Kocaeli 
wave, 26% for the Morgan Hill wave, 28% for the Chichi wave and 20% for the Imperial Valley 
wave. 

The results obtained above demonstrated that the conventional calculating results of stresses 
might be lower than their real values of earthquake response. The steel mast of the TV tower might 
tend to dangerous if some special earthquakes occur. 

It has been reported that the wind-induced acceleration response of the small observation hall 
under strong winds was too high to meet the comfort requirement (Wu 2004). In this study it is 
found that peak acceleration of the small observation hall increases by 7.1% for the Kocaeli wave, 
29.2% for the Morgan Hill wave and 26.5% for the Chichi wave, but decreases by 13.4% for the 
Imperial Valley wave when the vertical eccentricity phenomenon is considered. 

It is expected that the cognitions in this investigation are interesting and useful to researchers 
and designers involved in designing TV towers. 
 
 
6. Conclusions 

 
A method was presented for the earthquake response analyses of tall flexible structures based 

on beam models. The method is available in dealing with the existing vertical eccentricity 
phenomenon between the spatial-discrete nodes and the corresponding centroids of investigated 
lumps. The extra moments caused by the vertical dead loads and axial forces from vertical 
deformations are considered in the study. The modified dynamic equilibrium equations were 
derived for the stick MDOF model of tall flexible structure based on beam theory. It shows that the 
modified mass matrix and assemblage of stiffness matrix should be used instead of the 
conventional mass matrix and assemblage of stiffness matrix that are commonly used in the stick 
MDOF model. The numerical results demonstrate that it is necessary to consider the vertical 
eccentricities in order to obtain the accurate earthquake response for designing the tall flexible 
structure to avoid danger. The earthquake responses of Nanjing TV tower were studied under the 
actions of four earthquake waves in Rock, Soft rock, Stiff soil and Soft soil respectively. The 
numerical results demonstrate that the peak stress values of the masts of Nanjing TV tower 
obtained by using the conventional dynamic equations are lower than the evaluations given by the 
method presented in this paper, especially for the steel masts above the small observation hall. The 
cognitions obtained in this paper are expected to be useful for the researchers and designers to 
design the tall flexible structures such as tall TV transmission towers and tall reinforced concrete 
chimneys. The method presented here can be extended to the evaluations of inelastic response of 
tall flexible structures by using the incremental form of the modified dynamic equilibrium 
equations if the corresponding hysteretic behaviors are known. 
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Appendix A 
 

Matrices uK , uK , uK , K , IK  and I
uK  are respectively the assemblies of j

uK , j
uK  , 

j
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As for matrix /
uK , the element /

iik  in it should be assembled respectively for 0ciz  and 

0ciz  cases. Noting the case 0cnz  does not exit for the top investigated lump and the 01 cz  

case does not exit for the bottom investigated lump, the matrix /
uK is written in the following 

form 
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It should be noted that the element /
iik  in /

uK  for 0ciz  case is different from that for the 

0ciz  cases. If 0ciz , then 0/
1 iik , )( 1

/
jjiii NNak   , and //

1 iiii kk  . If 0ciz , then 
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1 iiii kk  , ))(1( 1
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jjiii NNak   , and 0/

1 iik . Variable ciz  is involved in ia  and /
ia . The 

other elements in matrix /
uK  vanish. When ),,2,1(0 nizci  , matrix /

uK  vanish. 

As for matrix /
K , the element /

iik  in it should also be assembled respectively for 0ciz  and 

0ciz  cases. Matrix /
K  is written as follows 
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The element /
iik  in /

uK  for 0ciz  case is also different from that for the 0ciz  cases. 
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The other elements in matrix /
K  vanish. When ),,2,1(0 nizci  , matrix /

uK  vanish. 

 

155




