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Abstract.    Since slender structures such as utility poles, radio masts, and chimneys, are essentially statically 
determinate structures, they often collapse during earthquakes. Although vibration control is the most logical 
method for improving the earthquake resistance of such structures, there are many practical problems with 
its implementation due to their very long natural vibration period. This paper proposes a new vibration 
control device to effectively prevent the collapse of slender structures subjected to strong earthquakes. The 
device consists of a pendulum, an elastic restraint and a lever, and is designed such that when it is attached to 
a slender structure, the second vibration mode of the structure corresponds to the first vibration mode of the 
same structure without the device attached. This is highly effective in causing the transverse motions of the 
device and the structure to oppose each other and so reduce the overall transverse vibration during an 
earthquake. In the present paper, the effectiveness of the vibration control device is first evaluated based on 
laboratory experiments and numerical studies. An example of applying the device to a tall chimney is then 
simulated. A new dynamic analytical method for slender structures with abrupt rigidity variations is then 
proposed. 
 

Keywords:  slender structure; vibration control; vibration control device; long period; pendulum type; 
earthquake resistance; dynamic analyses; abrupt variation of rigidity. 

 
 
1. Introduction 
 

Slender structures such as utility poles, emergency radio masts, chimneys, and towers 
essentially behave as cantilevers when subjected to external loads. Since such structures often play 
important public roles, there is a need to improve their resistance to collapse due to severe 
earthquake ground motion. These structures are particularly influenced by long-period earthquake 
waves because they naturally have long vibration periods. The most common failure mechanism is 
for the structure to fall over due to the overturning moment, thus losing all functionality. Due to 
the importance of guarding against such failure, many vibration control methods have been 
considered in order to reduce the response of the structure to external loads. 

 Vibration control methods for general structures can be broadly divided into three categories: 
passive control, semi-active control and active control. Table 1 demonstrates various vibration
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Table 1 Previously proposed vibration control devices 

Passive control device 

TMD (TVA) 
Tuned Mass Dampers 

(Tuned Vibration Absorber) 

Chang and Soong (1980), Thompson 
(1981), Kaynia et al. (1981), Abé (1996), 

Tesar (1999), Sun et al. (1995) 

PTMD Pendulum Tuned mass Damper 
Gerges and Vickery (2005), Takabatake 
and Satoh (2006), Roffel et al. (2011) 

MTMD Multiple Tuned Mass Dampers 

Xu and Igusa (1992), Fujino and Abé 
(1993), Yamaguchi and Harnpornchai 
(1993), Igusa and Xu (1994), Abé and 

Fujino (1994) 
MMD Multiple Mass Dampers Kareem and Kline (1995) 

TM-MR 
Tuned Masses Magnetorheological 

(MR) dampers 
Zemp et al (2011) 

TLD Tuned Liquid Dampers Fujii et al. (1990) 

LCD Liquid Column Dampers 
Ghosh and Basu (2004), Ghosh and Basu 

(2008) 

TLCD Tuned Liquid Column Dampers 
Balendra et al. (1995), Won et al. (1996), 

Yalla and Kareem (2000) 

Semi-active control device 

SA-TMD Semi-Active Tuned Mass Dampers 
Abé (1996), Abé and Igusa (1996), 

Nagarajaiah and Sonmez (2007) 
SAF-TMD Semi-Active Friction Tuned Mass Dampers Lin et al. (2010) 

SAIVS-TMD 
Semi-Active Independently Variable 

Stiffness Tuned Mass Dampers 
Nagarajaiah and Varadarajan (2004) 

SAMPC Semi-Active Multi-step Predictive Control 
with Magnetorheological (MR) dampers 

Varadarajan and Nagarajaiah (2004), 
Setareh et al. (2007), Xu and Li (2008)SAMPC-MR 

SAIVD Semi-Active Independently Variable Dampers Nagarajaiah and Narasimhan (2007) 

Active control device 

ATMD Active Tuned Mass Dampers Chang and Soong (1980) 

AVS Active Variable Stiffness system Kobori, et al. (1993) 

 
 
control devices that have been previously proposed. 

One of the most common passive control approaches is the use of tuned mass dampers (TMDs), 
which are generally designed to optimize the stiffness and damping coefficients. Chang and Soong 
(1980) studied the possibility of enhancing TMD effectiveness against wind action by the addition 
of an active control capability. Thompson (1981) considered optimization of the spring and 
damper rates of a dynamic vibration absorber. Kaynia et al. (1981) investigated the effectiveness 
of TMDs in the presence of seismic disturbances. Tesar (1999) demonstrated the applicability of 
TMDs to slender structures. Abé (1996) proposed a design method for TMDs for use on structures 
with bilinear hysteresis. Pendulum-type tuned mass systems, in particular, are widely used for 
slender structures for conventional vibration control. Gerges and Vickery (2005) investigated the 
optimum design of pendulum-type TMDs under dynamic loads due to both wind and earthquakes. 
Takabatake and Satoh (2006) demonstrated that vibration control is an effective means of reducing 
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the disagreeable swaying that occurs in super-high-rise buildings for extended periods following 
an earthquake. Roffel et al. (2011) developed a relatively simple vibration control design to 
compensate for the detuning that occurs in typical pendulum TMDs (PTMDs).  

On the other hand, multiple TMDs (MTMDs), which consist of a large number of individual 
TMDs with natural frequencies distributed around the fundamental frequency of the structure, 
have been proposed as a means of compensating for the spread in natural vibration frequency due 
to the nonlinear rigidity of the target structure. Fujino and Abé (1993), Xu and Igusa (1992), 
Yamaguchi and Harnpornchai (1993), Igusa and Xu (1994), Abé and Fujino (1994) and Kareem 
and Kline (1995) showed that an MTMD is more robust against off-tuning than a conventional 
TMD with the same mass. 

Either mass- or liquid-based systems can be used for vibration control of slender structures. 
Liquid systems offer the advantages of simplicity, as shown by Ghosh and Basu (2004), Ghosh and 
Basu (2008), Balendra et al. (1995), Won et al. (1996) and Yalla and Kareem (2000). 

The weakest point concerning the above-mentioned passive control schemes is that they are 
incapable of responding with sufficient speed to the very rapid movement that occurs at the 
beginning of an earthquake. For this reason, semi-active control devices have been proposed by 
many researchers, as listed in Table 1. 

The following restrictions apply to vibration control devices for slender structures. First, the 
device must be placed in a high position near the top of the structure where the cross-sectional area 
is very small. Second, when being applied to an existing structure, the device must be as 
light-weight as possible. Finally, since slender structures essentially behave as cantilevers, the 
dynamic behavior is mainly governed by elasticity. 

Based on these considerations, vibration control for slender structures is usually only 
considered in terms of wind action as an external load. The additional mass of a TMD system that 
is effective in mitigating wind effects on general high-rise buildings is about 1% of the total mass 
of the original structure. However, a TMD system that is effective against earthquake excitations 
needs to be about 10% of the total mass. This means that the device itself must be large and, in the 
case of a slender structure, the structure may be excessively loaded. Since slender structures have a 
very large aspect ratio and are generally constructed with the standardized design structure even if 
the application purpose and setting place of them differ from each other, passive control devices 
are considered to be the most practical since they do not require any electrical equipment. 

Therefore, the present paper proposes a new pendulum-type vibration control device for slender 
structures that improves on many of the weak points of previous pendulum-type devices. Such 
devices generally include systems based on shock absorption, pounding, and damping. However, 
for a device with a single compact mass, since the natural vibration period of the device must 
correspond to the long vibration period of the structure, it is necessary to make the rigidity of the 
strut supporting the mass extremely low. This means that when the strut is compressed it can easily 
buckle. If an alternative approach is used in order to avoid such buckling, such as hanging the 
mass from the strut, then there is a high risk of the mass colliding with the structure. 

A large number of analytic studies have been carried out for slender structures without any 
abrupt rigidity variations. Static analyses for tapered members were performed by many 
researchers, such as Boley (1963), Takabatake (1990), Wang and Lee (1973), Rohde (1953), 
Prathap and Varadan (1976) and Gupta (1985, 1986). Takabatake and Mizuki (1995) reported a 
simplified dynamic analysis for a cantilevered, linearly tapered, thin-walled member with a 
discontinuous additional mass and/or structural rigidity, subjected to transverse vibrations.  

However, structures in which abrupt rigidity variations occur, such as slender structures and 
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high-rise buildings with setbacks, cannot be directly solved numerically due to these rigidity 
changes. In such situations, the most effective analytical method is to separate the original 
structure at points where the abrupt rigidity variations occur and to use continuity conditions at the 
connecting points (Takabatake et al. 2011). For slender, one-dimensional structures, this involves 
ensuring continuity for displacement, rotation, bending moment, and shear force. However, this 
approach cannot be applied to structures with vibration control devices because the connection 
between the structure and the device represents an abrupt rigidity variation. A general analytical 
method that is applicable to such problems is still lacking. 

The aims of the present study are twofold. First, a novel vibration control device is proposed 
that can prevent the collapse of slender structures during uncommonly large earthquakes. The 
effectiveness of the proposed device is evaluated both experimentally and numerically, and the 
finite element method (FEM) code SNAP is used to simulate the application of the proposed 
device to a tall steel chimney. Second, a general analytical method for slender structures with an 
abrupt rigidity variation at the joint between the structure and the vibration control device is 
proposed. This is based on converting the normal continuous rotation and bending moments at a 
connection point to new expressions using elastic restraints. This new concept is very effective for 
avoiding the analytical difficulties that normally arise due to abrupt rigidity variations. The 
numerical results indicate that this approach can be successfully applied to all cases involving 
rigidity variations. 
 
 
2. New vibration control device 
 

The vibration control device proposed here for slender structures satisfies the following 
advantages:  
(1) The idea is unique and free from existing licenses. 
(2) The same principle is applicable to various kinds of slender structures. 
(3) The weight of the device represents a small fraction of that of the structure. 
(4) Installation on existing structures is simple and fast. 
(5) The device does not disturb the original function of the structure. 
The proposed device consists of a pendulum (I), an elastic restraint (II) and a lever (III), as 
 
 

 
(a) (b) 

Fig. 1 Schematic illustration of proposed vibration control device: (a) functions and (b) state of vibration 
after the current caption 
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shown in Figs. 1 and 2(b). The function of the pendulum is to synchronize the vibration period of 
the device with the natural period of the structure by adjusting the weight and height of the 
compact mass. The elastic restraint increases the natural period of the pendulum by allowing it to 
rotate. This means that a pendulum strut with a high bending rigidity can be used in order to 
prevent buckling. The lever then transforms the relatively large vertical displacement of the elastic 
restraint to a smaller vertical displacement but more powerful vertical force of the rod connected to 
the damper (see Fig. 1), thus increasing the damping performance. 

In addition, the proposed vibration control device is designed such that, when it is attached to a 
slender structure, the second vibration mode of the structure becomes identical to the first vibration 
mode of a structure without the device. This ensures that the motion of the pendulum directly 
opposes that of the structure, greatly reducing its response to earthquakes. 
 
 
3. Experiment 
 

3.1 Experimental setup 
 
The effectiveness of the proposed device was experimentally evaluated using a shaker table. 

Figs. 2(a) and (b) show photographs of the experimental setup and the vibration control device, 
respectively. The test specimen, representing a slender structure, was an aluminum tube 
(6063TD-H18) with a diameter of 0.06 m, a thickness of 0.002 mm and a height of 2 m. The 

values of Young’s modulus and Poisson’s ratio were 810683 N/m2 and 0.3, respectively. The 
specimen was free at the top and clamped at the base located on the shaker table. The shaker table 
oscillated in a single transverse direction. The vibration control device was set at the top of the 
specimen. In order to increase the vibration period of the specimen to correspond to that of a 
full-size structure, a large number of additional masses were attached to the specimen using angle 

 
 

(a) Overall experimental setup (b) Vibration control device 
Fig. 2 Photographs of (a) overall experimental setup and (b) vibration control device 

15



 
 
 
 
 
 

Hideo Takabatake and Fumiya Ikarashi 

 

Table 2 Specimen parameters, natural periods, and damping constants 

Specimen 
Total  

height (m) 

Vibration control device 
Natural  

period (s) 
Damping 
constant Diameter of  

elastic restraint (m)
Compact mass 

Weight (kg) Height (m)

S2-0-0 2 Non Non Non 0.497 0.010 

S2-0.15-0.45 2 
0.15 

0.45 0.60 0.496 0.045 

S2-0.15-0.89 2 0.89 0.45 0.496 0.044 

S2-0.20-4.04 2 0.20 4.04 0.60 0.496 0.040 

 
 
Table 3 Maximum acceleration and velocity of earthquake input waveforms 

No Name 

Original wave Normalized wave 
Maximum 

acceleration 
(m/s2) 

Maximum 
velocity  

(m/s) 

Maximum 
acceleration 

(m/s2) 

Maximum 
velocity  

(m/s) 
1 El Centro 1940 NS 50 3.42 0.33 5.11 0.50 

2 JMA Kobe NS 50 8.18 0.91 4.50 0.50 

3 Noto Peninsula EW 50 8.49 0.48 8.81 0.50 

4 Tomakomai NS 50 0.69 0.30 1.16 0.50 
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Fig. 3 Acceleration response spectrum for specimen S2-0-0, subjected to the El Centro 1940 NS 50 

waveform 
 
 
brackets placed along the longitudinal axis. The overall weight of the specimen thus changed from 
2.16 to 90.96 kg. Four different experimental configurations were used, as shown in Table 2, 
where the three terms in the specimen name indicate the total height excluding the vibration 
control device, the diameter of the elastic restraint (urethane foam cylinder), and the weight of the 
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compact mass, respectively. S2-0-0 corresponds to a specimen without the vibration control 
device.           

The height of the compact mass above the elastic restraint is set such that the second vibration 
mode for the specimen with the device corresponds to the first vibration mode for the specimen 
without the device. The damping constants for all specimens determined from the shaking tests are 
also shown in Table 2. 

The fact that the experiments were carried out indoors placed strong restrictions on both the 
height and weight of the specimen. The weight of the vibration control device could not be 
reduced because it was constructed using commercially available components. In particular, the 
weight of the angle brackets used to set up the dampers was a sizeable fraction of the overall 
weight of the device. The ratio of the weight of the device to that of the specimen alone (90.96 kg) 
was 1/202, 1/102 and 1/32 for S2-0.15-0.45, S2-0.15-0.89 and S2-0.20-4.04, respectively. 
However, the ratio of the weight of the device is improved for practical slender structures because 
the weight of only the slender structure increases far greater than one of the vibration control 
device. 

To examine the effectiveness of the proposed vibration control device, four different earthquake 
waveforms were used to vibrate the shaker table; these are described in Table 3. These acceleration 
waveforms were normalized to a maximum velocity of 0.5 m/s. Accelerations were measured 
using accelerometers installed at various points on the vibration control device and the specimen. 
Strains were measured by strain gauges mounted near the base of the specimen, and the bending 
moments and transverse shear forces were calculated from the measured strain values. Fig. 3 
shows the acceleration response spectrum for specimen S2-0-0 (no vibration control) to the 
waveform for El Centro 1940 NS 50 with a damping constant of 0.01. It can be seen that the 
largest response occurs for a period of about 0.497 s, which is taken to be the natural vibration 
period for the specimen. Therefore, if the vibration control device is found to be effective against 
vibrations at this period, it can be considered highly successful. 
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Fig. 4 Acceleration response spectrum at the top of specimens S2-0-0, S-0.15-0.45, S2-0.15-0.89, and 

S2-0.20-4.04, subjected to a sinusoidal waveform 
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Fig. 6 Reduction ratio for (a) absolute acceleration at the top, (b) relative lateral displacement at the top, 
and (c) bending moment at the base 

 
 

3.2 Experimental results 
 
Fig. 4 shows the acceleration response spectrum measured at the top of the four specimens 

during vibration testing with a constant sinusoidal input at 1 to 20 Hz. The first (fundamental) 
resonance period is at about 0.496 s for all specimens. The second resonance period corresponds to 
a higher vibration mode. 

Figs. 5(a) and (b) show the time histories of the absolute acceleration at the specimen top and 
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the bending moment at the specimen base, respectively, for S2-0-0-0 and S2-0.15-0.45, subjected 
to the El Centro 1940 NS 50 waveform. 

The effectiveness of the vibration control device is evaluated in terms of the ratios of the 
maximum acceleration and relative transverse displacement at the top of the specimen, and the 
bending moment and transverse shear stain at the base. The reduction ratio is defined as the ratio 
of the maximum response of the specimens with the vibration control device to that without the 
device. Figs. 6(a)-(c) show the reduction ratios for absolute acceleration, relative transverse 
displacement and bending moment, respectively. The horizontal axis indicates the earthquake 
waveform being applied to the shaker table, and the numbers correspond to those shown in Table 3. 
Although the reduction ratios depend on the particular earthquake, it is clear that the vibration 
control device is capable of reducing the maximum responses to 60~90 % of their original values. 
 
 
4. Comparison between experimental and numerical results 
 

4.1 Computational method 
 
In the preceding section, the effectiveness of the proposed device was demonstrated 

experimentally by subjecting a test specimen to the recorded waveforms of strong earthquakes. 
However, for a more comprehensive evaluation of the device performance, numerical simulations 
were carried out using the FEM code SNAP. Fig. 7(a) shows an overview of the computational 
model used in the present study. Fig. 7(b) shows the details of the vibration control device model. 

The computational method involves a nonlinear dynamic analysis, dividing the specimen into 
100 beam elements. The rigidity of the urethane elastic restraint is expressed in terms of a 
rotational rigidity rK  in the computational model. The values of rK  and the damping 
coefficient Ce of the dampers are determined using the following approximate method, because of 
restriction from the ability of shaker table for long period of the vibration control device. First, 

rK  is determined such that the period of second vibration mode EXT  for the specimen with the 

vibration control device agrees with the period of second vibration mode SNAPT  obtained from 
the computation model using SNAP, as shown in Fig. 8. Next, Ce for the damper is determined 
such that the experimentally obtained damping constant EXh  is equal to the numerically 

obtained value SNAPh  for vibration control device alone. It is assumed that the damping 

constant is independent of vibration mode, i.e., 1i hh  . 
 
4.2 Results 
 
Fig. 9 shows a comparison between the experimental and numerical results for the time history 

of the absolute acceleration at the top of S2-0.15-0.45, subjected to the El Centro 1940 NS 50 
waveform, and Fig. 10 shows the corresponding relative displacement. Fig. 11 compares the 
experimental and numerical results for the reduction ratios for the absolute acceleration, relative 
displacement, bending moment and shear strain. Again, the horizontal axis indicates the 
earthquake index. From the charts, it can be seen that there is reasonably good agreement between 
the experimental and computational results. 
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(a) Overall structure (b) Vibration control device 

Fig. 7 Computational model for SNAP simulation: (a) overall structure and (b) vibration control device 

 
(a) Specimen with vibration control device (b) Corresponding computation model

 
(c) Vibration control device (d) Corresponding computation model

Fig. 8 Modeling setup for vibration control device: (a) specimen with vibration control device, (b) 
corresponding computation model, (c) vibration control device and (d) corresponding computation model
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Fig. 9 Absolute acceleration at the top of specimen S2-0.15-0.45, subjected to the El Centro 1940 NS 50 

waveform 
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Fig. 10 Relative displacement at the top of specimen S2-0.15-0.45, subjected to the El Centro 1940 NS 50 

waveform 
 
 
5. Application to tall steel chimney 
 

In the preceding sections, the effectiveness of the proposed vibration control device was 
demonstrated both experimentally and numerically. We next numerically simulate its application to 
a realistic slender structure, which is a tall steel chimney. 

 
5.1 Computation model 
 
We consider a steel chimney with a height of 100 m, as illustrated in Fig. 12. The external 

diameters of the tapered circular cross section are 8.6 m at the base and 5.25 m at the top. The 

material used is SS400. Young’s modulus E is 111005.2   N/m2, Poisson’s ratio is 0.3, and the 

total mass is 310302 kg. Again, the computation method uses SNAP and the chimney is divided 
into 100 beam elements. Details of the computation model are shown in Fig. 13. To investigate the 
influence of the rotational rigidity Kr, the damping coefficient Ce of the damper, and the 
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(a) Absolute acceleration at the top (b) Displacement at the top 
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(c) Bending moment at the base (d) Shear strain at the base 

Fig. 11 Reduction ratio for specimen S2-0.15-0.45: (a) absolute acceleration at the top, (b) displacement at 
the top, (c) bending moment at the base and (d) shear strain at the base 

 
 

 
Fig. 12 Dimensions of numerical model of steel chimney 
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(a) Computation model (b) Vibration control device 

Fig. 13 SNAP computation model of tall steel chimney: (a) overall structure and (b) vibration control 
device 
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magnitude of the compact mass m on the effectiveness of vibration control, the following values 
for these parameters are used: 

Kr = 1, 10, 100 kNm/rad 

Ce = 1, 5, 10 MN/m/s 
 m = 3,000, 6,000, 9,000 kg 
The height, h, of the compact mass measured from the surface of the elastic restraint is 2 m in the 
reference state. However, this height is adjusted in order to maintain the natural vibration period 
for different values of Kr. The mass m above corresponds to 1, 2 and 3% of the total mass of the 
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chimney. 
The height of the compact mass is determined such that the second vibration mode of the 

chimney with the vibration control device attached is the same as the first vibration mode for the 
chimney alone. Table 4 indicates the natural periods corresponding to various values of Kr. Fig. 14 
shows the eigenfunctions for the chimney with the vibration control device for m=3,000 kg and 
Kr=1.0 kNm/rad. For the second mode, the movement of the vibration control device is seen to 
perfectly oppose that of the chimney. 
 

 
Table 4 Natural periods without and with vibration control for different rotational rigidity Kr 

Kr 
(kNm/rad) 

Natural periods (s) 

without vibration control 
with vibration control 

Compact mass 
3,000 kg 

Compact mass 
6,000 kg 

Compact mass 
9,000 kg 

1st 2nd 1st 2nd 1st 2nd 1st 2nd 
1 

0.740 0.193 
21.77 0.740 30.78 0.740 37.70 0.740

10 6.89 0.740 9.74 0.740 11.93 0.740
100 3.82 0.739 5.40 0.739 6.61 0.739

 
 
Table 5 Reduction ratios for absolute acceleration at the top due to vibration control with m=9,000 kg 

Kr 
(kNm/rad) 

Ce 
(MN/m/s) 

Reduction ratio for each earthquake excitation 

1 2 3 4 5 6 7 

El Centro 
1940 NS 50 

El Centro 
1940 NS 70

JMA Kobe 
NS 50 

JMA Kobe 
NS 75 

JMA Kobe 
NS 100 

Noto 
Peninsula 

EW 50 

Tomakomai
NS 50 

1 

1 0.91 0.91 0.86 0.87 0.86 0.80 0.75 

5 0.74 0.74 0.79 0.80 0.79 0.62 0.48 

10 0.68 0.68 0.79 0.80 0.79 0.53 0.42 

10 

1 0.91 0.91 0.86 0.87 0.86 0.80 0.75 

5 0.74 0.74 0.79 0.80 0.79 0.62 0.48 

10 0.68 0.68 0.79 0.80 0.79 0.53 0.42 

100 

1 0.95 0.95 0.95 0.96 0.95 0.94 0.88 

5 0.86 0.86 0.79 0.80 0.79 0.68 0.63 

10 0.78 0.78 0.78 0.79 0.78 0.64 0.51 

 
 

5.2 Results 
 
From the numerical computation results, the following conclusions are obtained. 

(1) For Ce=0.1, there is no vibration control effect. 
(2) The magnitude of Kr does not affect the degree of vibration control. 
(3) When Ce and/or m become large, the vibration control effect increases. 
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Fig. 15 Time histories of energy produced by dampers in vibration control device with Kr=1 kNm/rad, 
m=9,000 kg, and different values of Ce, subjected to the El Centro 1940 NS 75 waveform 
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Fig. 16 Time histories of energy produced by dampers in vibration control device with Kr=1 kNm/rad, 
Ce=5 MN/m/s and different values of m, subjected to the El Centro 1940 NS 75 waveform 

 
 

Fig. 17 Time histories of all energy components for chimney with vibration control device with Kr=1 
kN/m/rad , Ce=10, and m=9,000 kg, subjected to the El Centro NS 75 waveform 
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(4) The enhancement of vibration control by increasing Ce occurs for all of the earthquake 
waveforms tested.  

Table 5 shows the reduction ratio for the absolute acceleration at the top of the chimney for a 
vibration control device with a compact mass of m=9,000 kg, subject to seven kinds of earthquake 
waveforms. The final term in the earthquake labels indicates the normalized magnitude of the 
maximum velocity. Similarly, Table 6 shows the reduction ratio for the bending moment at the 
base for the same vibration control device. 

Thus, the effectiveness of the proposed vibration control device has been demonstrated for the 
case of a tall chimney subjected to strong earthquake waves with normalized maximum velocities 
of 0.50, 0.75 and 1.0 m/s. Fig. 15 shows the time histories of the energy produced by the dampers 
for a vibration control device with m=9,000 kg, Kr=1 kNm/rad, and different values of Ce, when 
subjected to the El Centro 1940 NS 75 waveform. It can be seen that the optimum performance is 
achieved for Ce=5. Fig. 16 shows similar plots for Ce=5 and different values of m, where it can be 
seen that the energy produced by the dampers increases with m. Finally, Fig. 17 shows the time 
histories of all energy components for Kr=1 kNm/rad, Ce=10 MN/m/s, and m=9,000 kg, again for 
the El Centro 1940 NS 75 waveform. The input energy changes mainly to the damper energy 
produced by the vibration control device and the damping energy due to the vibration of the 
structure. The damper is very important role for the vibration control of the slender structure. 

Thus, effective vibration control can be achieved for a tall chimney during an extremely strong 
earthquake with a maximum velocity of 1 m/s using a simple device whose weight is only 3% of 
the weight of the chimney. 
 
 
6. Analytical method 

 
In the preceding sections, the numerical computations were based on the FEM code SNAP. In 

this section, we consider a general analytical method which is applicable to arbitrary slender 
structures with abrupt rigidity variations.  

Transverse vibrations of slender structures are mainly governed by bending. The equation of 
transverse motion under the influence of ground motion at the base is  
 
 
Table 6 Reduction ratios for bending moment at the base due to vibration control with m=9,000 kg 

Kr 
(kNm/rad) 

Ce 
(MN/m/s) 

Reduction ratio for each earthquake excitation 
1 2 3 4 5 6 7 

El Centro 
1940 NS 50 

El Centro 
1940 NS 70

JMA Kobe 
NS 50 

JMA Kobe 
NS 75 

JMA Kobe 
NS 100 

Noto 
Peninsula 

EW 50 

Tomakomai
NS 50 

1 
1 0.85 0.85 0.91 0.91 0.91 0.75 0.73 
5 0.69 0.69 0.90 0.90 0.90 0.60 0.61 
10 0.71 0.71 0.95 0.95 0.95 0.66 0.61 

10 
1 0.85 0.85 0.91 0.91 0.91 0.75 0.73 
5 0.69 0.69 0.90 0.90 0.90 0.60 0.61 
10 0.71 0.71 0.95 0.95 0.95 0.66 0.61 

100 
1 0.93 0.93 0.96 0.96 0.96 0.90 0.90 
5 0.77 0.77 0.88 0.88 0.88 0.68 0.63 
10 0.69 0.69 0.87 0.87 0.87 0.58 0.60 
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Fig. 18 Schematic illustration of slender structure consisting of two structural parts 

 
 

   ,vmvEIvcvm 0                            (1) 

where 0v  is the transverse acceleration at the base due to the earthquake, v  is the relative 
transverse displacement, m is the mass per unit length, c is the damping coefficient and EI is the 
bending rigidity. The dashes and dots indicate differentials with respect to the axial direction x and 
time t, respectively. 

In order to formulate a general theory which is applicable to arbitrary slender structures with 
rigidity variations, such structures are regarded as an assemblage of uniform structural parts with 
constant bending rigidity and constant mass. The overall behavior of the structure is determined by 
combining the equations of motion for each of these parts, assuming continuity of the conditions 
across the joints between parts. 

The well-known equation for the transverse free vibration of a structural part with a uniform 
cross section is  

.0vEIvm                                  (2) 

Expressing the transverse displacement v in terms of x and t, the solution for the displacement 
component  xv  becomes 

        ,kxsinCkxcosCkxsinhCkxcoshCv 4321               (3) 

where C1 to C4 are arbitrary constants and k4 is defined as 

.
EI

m
k

2
4 
                                   (4) 

For simplicity, we consider a slender structure consisting of two structural parts with uniform 
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properties, as shown in Fig. 18. For parts (1) and (2), the constant k is expressed as k1 and k2, 
respectively. Since for the same vibration mode, the natural frequency   of the whole structure 
must be the same for each part, Eq. (4) gives 

 ,kCkC 2
202

2
101                               (5) 

where the bending wave velocity i0C  for the i-th structural part is defined as 

 

 

   .2,1ifor

m

EI
C

i

i

2
i0                             (6) 

The velocity ratio i  for the i-th mode is defined as 

 ,
C

C

i0

01
i                                     (7) 

where C01 is the bending wave velocity for a reference part, which is taken to be part (1) for 
simplicity. Thus 

 ,)n,1ifor(kk 1ii                          (8) 

where 0.11  . Hence, Eq. (3) for the i-th structural part may be written as 

 
   

 
 

 
 

 
 

   .2,1iforxksinCxkcosCxksinhCxkcoshCv 1i

i

41i

i

31i

i

21i

i

1

i
    (9) 

The boundary conditions for this structure are 

 
 

0v
1
  at ,0x                    (10) 

 
 

0v
1
  at ,0x                    (11) 

representing the clamped condition at the base and  

 
   

0vEI
22
  at ,x 2                   (12) 

 
   

0vEI
22
  at ,x 2                   (13) 

representing the free condition at the top. Furthermore, the continuity conditions for displacement, 
rotation, bending moment and shear force at the adjoining point are 

 
   21

vv   at ,x 1                  (14) 

 
   21

vv   at ,x 1                  (15) 
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       2211

vEIvEI   at ,x 1                  (16) 

 
       2211

vEIvEI   at ,x 1                   (17) 

where the bending moment 
)i(

M  and transverse shear force 
)i(

Q  for the i-th structural part are 

expressed as 
)i()i()i(

vEIM   and 
)i()i()i(

vEIQ  , respectively. 
From Eq. (9), there are a total of eight arbitrary constants for the two structural parts. From Eqs. 

(10) to (13) and (14) to (17), there are also a total of eight boundary conditions and continuity 
conditions. 

Thus, we obtain homogeneous equations coupled for 

 1

1C ~

 1

4C and 

 2

1C ~

 2

4C , as given in 
Appendix I. 

   ,0

C

C

C

C

A

)2(

4

)2(

1

)1(

4

)1(

1











































                              (18) 

where [A] is an 8 8 square matrix. The natural frequencies i  are obtained by setting the 
determinant of the coefficient matrix [A] to zero. For a structure consisting of many parts, 
continuity conditions must be prepared for each joining point. 

A vibration control device set on top of a slender structure is subject to an elastic restraint at its 
base. There is a very abrupt discontinuity between the bending rigidity of the structure and the 
device. Therefore, the above method based on continuity across joints is not valid in such a 
situation. From the expression for the bending moment M, the relationship between the bending 
rigidity EI and elastic restraint R for bending is given by  

 .vRvEIM                               (19) 

For the current vibration control device, R can be approximately expressed as 
oh

EI
R  , 

corresponding to bending deformation of the urethane elastic restraint, where ho, I and E are the 
thickness, principal moment of inertia, and Young modulus of the urethane, respectively. 

Hence, the rotation v is expressed by 

 .v
R

EI
v                                  (20) 
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Fig. 19 Analytical model consisting of slender structure (1), elastic restraint (2) and pendulum (3) 
 
 

The rotations 
)1(

v   and 
)2(

v   for adjoining structural parts (1) and (2) can then be explicitly 
written as 

 ,v

R

EI
v

)1(

)1(

)1(
)1(

                                (21) 

.v

R

EI
v

)2(

)1(

)2(
)2(

                                (22) 

The continuity conditions for the rotation and bending moment corresponding to Eqs. (15) and 
(16), respectively, are modified as 

 
)2(

)2(

)2(
)1(

)1(

)1(

v

R

EI
v

R

EI 

 

,xat 1                    (23) 

 
)2()2()1()1(

vRvR   .xat 1                     (24) 

Thus, for slender structures with an abrupt change in bending rigidity, the divergence in the 
numerical computations may be prevented by the use of the elastic restraint. 

We now apply this analytical method to the proposed vibration control device. In the analytical 
model, the device is divided into two structural parts: the elastic restraint and the pendulum, 
labeled as (2) and (3), respectively, in Fig. 19. The slender structure is labeled as (1). Since parts 
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(2) and (3) are rigidly connected, their rotational rigidities 
 2
R  and 

 3
R  are the same. The three 

structural parts have a total of twelve arbitrary constants (four each). For part (1), the boundary 
conditions on the base at x=0 are given by Eqs. (10) and (11). The continuity conditions between 
parts (1) and (2) at 1x   are 

 
)2()1(

vv   ,xat 1                  (25) 

 
)2(

)2(

)2(
)1(

)1(

)1(

v

R

EI
v

R

EI   ,xat 1                  (26) 

 
)2()2()1()1(

vRvR   ,xat 1                  (27) 

 
)2()2()1()1(

vEIvEI   .xat 1                  (28) 

Similarly, the continuity conditions between parts (2) and (3) at 2x   are 

     
)3()2(

vv    ,xat 2                   (29) 

  
)3(

)3(

)3(
)2(

)2(

)2(

v

R

EI
v

R

EI   ,xat 2                   (30) 

 
)3()3()2()2(

vRvR   ,xat 2                   (31) 

 
)3()3()2()2(

vEIvEI   .xat 2                   (32) 

Finally, the boundary conditions at the top at 3x   are 

 0vEI
)3()3(
  ,xat 3                   (33) 

 0vEI
)3()3(
  .xat 3                   (34) 

Thus, we have the following homogeneous equations for 12 unknown arbitrary constants 

    0CA  ,         (35) 

where the coefficient matrix [A] is a 12 12 square matrix and {C} is a column matrix with 
12 rows. These matrices are described in detail in Appendix II. The natural frequencies i  
for the slender structure with the vibration control device can be easily determined from the 
eigenvalues of Eq. (35). 
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Fig. 21 Analytical and experimental results for time histories of absolute acceleration at the top of 

specimen S2-0.15-0.89, subjected to the El Centro 1940 NS waveform normalized to a maximum 
velocity of 0.5 m/s 

 
 
Table 7 Natural vibration periods for specimen S2-0.15-0.89 for comparison between experiment and 
analysis 

 Natural period (s) Ratio 

Mode (1) Analysis (2) Experiment (2)/(1) 

1st 307.539 N/A N/A 

2nd 0.497 0.496 1.00 

3rd 0.071 0.080 1.13 

 
 
7. Evaluation of the proposed general analytical method 
 

The analytical method proposed here is evaluated by comparing the analytical and experimental 
results. For simplicity, the analytical method for the dynamic response is based on modal analysis. 

Table 7 shows a comparison between the analytical and experimental results for the natural 
periods of specimen S2-0.15-0.89, and Fig. 20 shows the eigenfunctions obtained from the 
analytical results. The eigenfunction for the second vibration mode indicates that structural parts 
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Table 8 Comparison between analytical and experimental results 

No Earthquake 
Maximum 
response 

Analysis Experiment Analysis/ Experiment

(1) 
without 
device 

(2) 
with 

device

(5) 
Reduction 

ratio 
(2)/(1) 

(3) 
without 
device

(4) 
with 

device

(6) 
Reduction 

ratio 
(4)/(3) 

(1)/(3) (2)/(4) (5)/(6)

1 
El Centro 

1940 NS 50 

Absolute 
acceleration 

(m/s2) 
28.70 22.84 0.80 31.56 22.08 0.70 0.91 1.03 1.14

Relative 
transverse 

displacement 
(mm) 

153.07 132.66 0.87 153.40 143.00 0.93 1.00 0.93 0.94

2 
JMA Kobe 

NS 50 

Absolute 
acceleration 

(m/s2) 
27.94 22.97 0.82 34.10 28.24 0.83 0.82 0.81 0.99

Relative 
transverse 

displacement 
(mm) 

171.82 145.77 0.85 167.80 141.00 0.84 1.02 1.03 1.01

3 
Noto 

Peninsula  
EW 50 

Absolute 
acceleration 

(m/s2) 
33.43 21.13 0.63 32.24 22.22 0.69 1.04 0.95 0.91

Relative 
transverse 

displacement 
(mm) 

112.89 99.68 0.88 100.40 86.20 0.86 1.12 1.16 1.02

4 
Tomakomai 

NS 50 

Absolute 
acceleration 

(m/s2) 
6.76 5.42 0.80 6.69 5.91 0.88 1.01 0.92 0.91

Relative 
transverse 

displacement 
(mm) 

37.65 34.20 0.91 33.80 35.40 1.05 1.11 0.97 0.87

 
 
(2) and (3), corresponding to the vibration control device, move in the opposite direction to the 
slender structure (1). Fig. 21 shows a comparison of the time histories of the absolute acceleration 
at the top of specimen S2-0.15-0.89, subjected to the El Centro 1940 NS 50 waveform. The 
analytical results indicate excellent agreement with the experimental one. Table 8 compares the 
analytical and experimental results for the maximum response of the absolute acceleration and the 
relative transverse displacement for specimens with and without the vibration control device, 
subjected to four different earthquake waveforms normalized to a maximum velocity of 0.5 m/s. 
The ratios shown on the right-hand side of this table indicate good agreement between the 
analytical and experimental results, both with and without the device. 
 
 
8. Conclusions 

 
A new vibration control device for slender structures has been proposed to prevent collapse of 

such structures during strong earthquakes. The effectiveness of the device has been demonstrated 

33



 
 
 
 
 
 

Hideo Takabatake and Fumiya Ikarashi 

 

both experimentally, using a small-scale laboratory model, and through numerical computations. 
The performance of such a device in real-world applications has also been evaluated by modeling 
a tall steel chimney.  

In addition, a new general method has been developed for transverse free vibration analysis of 
slender structures with abrupt rigidity variations. This is based on the concept of transforming 
rotational rigidity into continuity conditions for the rotation and bending moment. The 
effectiveness of this method was demonstrated by comparison with the experimental results.  

Finally, we consider the limitations of the proposed vibration control device, which is based on 
the fundamental vibration frequency of slender structures. Since, during large earthquakes, the 
mechanical behavior of a structure can change from elastic to inelastic, the effectiveness of such 
an approach may be reduced. However, slender structures normally have a very high aspect ratio 
and their collapse is a result of the overturning moment. They are generally designed to be elastic 
because they contain few structural members. For this reason, it is believed that the proposed 
method of vibration control would be effective over a relatively wide range of conditions. 
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Appendix I 
 
Eq. (18) can be written in the explicit form 
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Appendix II 

 
The homogeneous equations described by the matrix expression (35) for a slender structure with a 

vibration control device, as shown in Fig. 19, are expressed as 
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