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1. Introduction  
 

Functionally graded materials (FGMs) are the advanced 

materials in which thermal-mechanical properties are varied 

continuously as a function of position along certain 

dimension(s) of the structure to achieve a required function. 

The concept of FGMs was first proposed in 1984 by a 

group of material scientists in Japan (Koizumi 1993, 1997). 

Typically, FGMs are made from a mixture of metals and 

ceramics. Due to excellent characteristics of ceramics in 

heat and corrosive resistances combined with the toughness 

of metals, the interlaminar stresses at the interface would 

vanish (Meksi et al. 2018, Bellifa et al. 2017, Ait Yahia et 

al. 2015, Abualnour et al. 2018, Bousahla et al. 2014, Zidi 

et al. 2014). 

Due to the increased relevance of the FGMs structural 

components in the design of aerospace and engineering 

structures, their vibration characteristics have attracted the 

attention of many scientists in recent years. 

Using two-dimensional higher-order plate theory, 

Matsunaga (2008) developed a set of fundamental dynamic 

equations and presented analytical solutions for simply-

supported rectangular plates, while Qian et al. (2004) 

utilized a meshless local Petrov-Galerkin method to solve 
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the governing equations of higher-order shear and normal 

deformable plate theory and to elucidate the static 

deformation and vibration behaviors of square plates.  

Bouderba et al. (2016) studied the thermal buckling 

response of functionally graded sandwich plates with 

various boundary conditions by using a simple first-order 

shear deformation theory.  

Vel and Batra (2004) proposed three-dimensional 

solutions for vibrations of simply supported rectangular 

plates. Reddy (2000) presented the formulation and finite 

element models for static and dynamic analysis of FG plates 

using the third-order shear deformation theory. Ferreira et 

al. (2006) analyzed the free vibration of FG plates based on 

the first and third-order shear deformation theories using the 

Mori-Tanaka homogenization method and the global 

collocation method with multiquadratic radial basis 

functions. Abrate (2006) studied the free vibration, static 

buckling, and static deformation of the FGM plates. It was 

shown that the natural frequencies, buckling loads and static 

deflections of functionally graded plates are always 

proportional to those of homogeneous isotropic plates. 

Dehghan and Baradaran (2011) solved the eigenvalue 

equations based on a mixed finite element (FE) and 

differential quadrature (DQ) method to obtain the natural 

frequency and buckling load parameters. Amal Alshorbagy 

et al. (2011) studied the free vibration analysis of FG beams 

is investigated using numerical finite element method. 

Talha and Singh (2010) studied free vibration and static 

analysis of FGM plates using modified HSDT kinematics. 

The fundamental equations are obtained using variational 

principle by considering the stress free boundary conditions 
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at the top and bottom faces of the plate. 

Hadji et al. (2011) investigated the free vibration 

analysis of functionally graded material (FGM) sandwich 

rectangular plates. The theory presented is variationally 

consistent and strongly similar to the classical plate theory 

in many aspects. It does not require the shear correction 

factor, and gives rise to the transverse shear stress variation 

so that the transverse shear stresses vary parabolically 

across the thickness to satisfy free surface conditions for the 

shear stress. Benachour et al. (2011) developed a model for 

free vibration analysis of plates made of functionally graded 

materials with an arbitrary gradient. Closed form solutions 

are obtained by using Navier technique, and then 

fundamental frequencies are found by solving the results of 

eigenvalue problems. Attia et al. (2015) have studied the 

free vibration of temperature-dependent functionally graded 

(FG) plates. 

Tounsi et al. (2013) presented a refined trigonometric 

shear deformable plate theory for thermoelastic bending of 

FGM sandwich plates. The same theory was used to study 

the mechanical behavior of FG plates (Bourada et al. 2012, 

2012, Kettaf et al. 2013, Khalfi et al. 2014, Attia et al. 

2015, Bouderba et al. 2013, Ait Amar Meziane et al. 2014, 

Draiche et al. 2014, Nedri et al. 2014, Sadoune et al. 2014).  

Bennoun et al. (2016) presented a new five variable refined 

plate theory for vibration analysis of functionally graded 

sandwich plates. 

Hamidi et al. (2015) developed a sinusoidal plate theory 

for the thermomechanical bending analysis of functionally 

graded sandwich. This theory has five unknowns and 

incorporates the effect of stretching. Belabed et al. (2014) 

presented an efficient and simple higher order shear and 

normal deformation theory for functionally graded material 

(FGM) plates. Their theory accounts for both shear 

deformation and thickness stretching effects. Bessaim et al. 

(2013) have presented a new higher-order shear and normal 

deformation theory for the bending and free vibration 

analysis of sandwich plates with FG face sheets. Sekkal et 

al. (2017) presented an analytical solution for buckling and 

dynamic problems of functionally graded plates. They 

propose a new quasi-3D higher shear deformation theory. 

Zine et al. (2018) analyzed the bending and free vibration 

of multilayered plates and shells by utilizing a new higher 

order shear deformation theory (HSDT). 
Recently, Tounsi et al. (2016) studied the buckling and 

vibration of functionally graded sandwich plate by using a 
new 3-unknowns non-polynomial plate theory. Houari et al. 
(2016) used the same theory to analyze the bending and free 
vibration analysis of functionally graded (FG) plates. 

Because of the widespread applications of foundations 

in engineering, the interaction between engineering 

components and elastic media has been considered in many 

researches recently. 

To describe the interactions of the plate and foundation 

as more appropriate as possible, scientists have proposed 

various kinds of foundation models. 

The mechanical behavior of one-parameter elastic 

foundation was first discussed by Winkler (1867), whereas 

Pasternak (1954) considered a two-parameter model in 

analyzing elastic foundations. Kerr (1964) presented 

various models for elastic and viscoelastic foundations. 

Based on third-order shear deformation theory, Baferani 
et al. (2011) presented an accurate solution for free 
vibration of functionally graded thick rectangular plates 
resting on elastic foundation. 

Benyoucef et al. (2010) analyzed the bending response 

of FG thick plate resting on elastic foundation by using a 

new hyperbolic displacement model. Yaghoobi and 

Yaghoobi (2013) studied the buckling behavior of 

symmetric sandwich plates with FG face sheets resting on 

an elastic foundation using the first-order shear deformation 

plate theory (FSDPT) and subjected to mechanical, thermal 

and thermo-mechanical loads. Bouderba et al. (2013) used a 

refined plate theory to investigate the thermomechanical 

bending response of functionally graded plates resting on 

Winkler-Pasternak elastic foundations. Recently, Khalfi et 

al. (2013) studied the thermal buckling of solar functionally 

graded plate (SFGP) resting on two-parameter Pasternak’s 

foundations using a refined and simple shear deformation 

theory. Also the same plate theory which accounted for a 

quadratic variation of the transverse shear strains across the 

thickness of functionally graded plates resting on elastic 

foundation was developed by Thai and Choi (2011). 

Yaghoobi and Fereidoon (2014) presented a simple refined 

nth-order shear deformation theory for mechanical and 

thermal buckling analysis of FG plates resting on elastic 

foundations.  

To accurately model FGM, knowing the effective or 

bulk material properties as a function of individual material 

properties and geometry especially at micromechanics level 

is essential. In the last few years, different models have 

been proposed to estimate the effective properties of FGMs 

with respect to reinforcement volume fractions (Shen and 

Wang 2012, Jha et al. 2013). 

Weng (2003) investigated the effective bulk moduli of 

two functionally graded composites by means of change of 

the dependent variable. Rahman and Chakraborty (2007) 

proposed a stochastic micromechanical model for predicting 

probabilistic characteristics of three phase FGMs. Pindera et 

al. (1995) used a computational micromechanical model, 

the generalized method of cells, to predict local stress in the 

fiber and matrix phases of FGMs. Fang et al. (2007), 

developed a micromechanics-based elastodynamic model to 

predict the dynamic behavior of two-phase functionally 

graded materials. Zuiker (1995) reviewed the 

micromechanical modeling of FGMs and concluded that the 

self-consistent method (SCM) provided good estimates, 

with minimal effort, and with no need for empirical fitting 

of parameters for the silicon carbide (SiC) - carbon (C) 

FGMs. Gasik (1998) studied the efficiency of the simplest 

micromechanical models to provide the most accurate 

estimates of FGM components with an arbitrary nonlinear 

three-dimensionally orientation of phases. Reiter and 

Dvorak (1997) used the transition function with Mori-

Tanaka method (MTM) and SCM to predict the thermo-

mechanical properties in C/SiC FGMs. Kar and Panda 

(2015) investigated the free vibration responses of shear 

deformable functionally graded single/doubly curved panels 

under uniform, linear and nonlinear temperature fields. The 

micromechanical material model of functionally graded 

material was computed using Voigt model in conjunction 

with the power-law distribution. 
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Fig. 1 FGM plate resting on elastic foundation 

 

 

To assess the effect of the micromechanical models on 

vibrational response of a simply supported FG plates resting 

on an elastic foundation, a new shear deformable plate 

theory is presented. Different micromechanical models are 

examined to obtain the effective material properties of 

FGMs with power-law function distributions of volume 

fraction within the thickness of the plate. Using an 

analytical method, the governing equations are treated and 

the effects of Voigt, Reuss, LRVE, Tamura and Mori-

Tanaka models on the natural fundamental frequencies of 

the FG plate resting on elastic foundation are investigated. 

 

 

2. Effective properties of FGMs 
 

Unlike traditional microstructures, in FGMs the material 

properties are spatially varying, which is not trivial for a 

micromechanics model Yu and Kidane 2014). 

A number of micromechanics models have been 

proposed for the determination of effective properties of 

FGMs. In what follows, we present some micromechanical 

models to calculate the effective properties of the FG plate. 

 
2.1 Voigt model 
 

The Voigt model is relatively simple; this model is 

frequently used in most FGM analyses estimates Young’s 

modulus E of FGMs as (Mishnaevsky Jr. 2007, Zimmerman 

1994) 

      zVFEzVFEzE mi  1
 (1) 

 

2.2 Reuss model 
 

Reuss assumed the stress uniformity through the 

material and obtained the effective properties as 

(Mishnaevsky Jr. 2007, Zimmerman 1994) 

 
    zVFEzVFE

EE
zE

mi

mi




1
 

(2) 

 

2.3 Tamura model 
 

The Tamura model uses actually a linear rule of 

mixtures, introducing one empirical fitting parameter 

known as “stress-to-strain transfer” (Gasik 1995, Zuiker 

1995) 

21
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(3) 

Estimate for q=0 correspond to Reuss rule and with 

q=±∞ to the Voigt rule, being invariant to the consideration 

of with phase is matrix and which is particulate. The 

effective Young’s modulus is found as 
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(4) 

 

2.4 Description by a representative volume element 
(LRVE) 

 

The local representative volume element (LRVE) is 

based on a “mesoscopic” length scale which is much larger 

than the characteristic length scale of particles 

(inhomogeneities) but smaller than the characteristic length 

scale of a macroscopic specimen (Ju and Chen 1994). The 

LRVE is developed based on the assumption that the 

microstructure of the heterogeneous material is known. The 

input for the LRVE for the deterministic micromechanical 

framework is usually volume average or ensemble average 

of the descriptors of the microstructures. 

Young’s modulus is expressed as follows by the LRVE 

method (Akbarzadeh et al. 2015) 
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(5) 

 

2.5 Mori-Tanaka model 
 

According to Mori-Tanaka homogenization scheme, the 

effective Bulk Modulus (K) and the effective shear modulus 

(G) are given by (Belabed et al. 2014, Benveniste 1987, 

Mori and Tanaka 1973) 
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(6a) 

Where 

0,5

p

C

z
V

h

 
  
   

(6b) 

In all models outlined above, Ei, Vi (i=c,m) are the 

Young’s modulus and the volume fraction of the phase 

material respectively. The subscripts c and m refer to the 

ceramic and metal respectively. The volume fractions of the 

ceramic and metal phases are related by Vc+Vm=1, and Vc is 

expressed as 

p

c

z
V = 0,5+ , p 0

h

 
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   

(7) 

The effective mass density ρ is given by the rule 
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mixtures as (Natarajan et al. 2011, Benachour et al. 2011, 

Bessaim et al. 2013, Yaghoobi and Torabi 2013, Tounsi et 

al. 2013, Ould Larbi et al. 2013, Hebali et al. 2014), 

regardless of the utilized micromechanical models 

mmcc VV  
 (8) 

 

 

3. Kinematics and strains 
 

In this study, further simplifying supposition are made to 

the conventional HSDT so that the number of unknowns is 

reduced. The displacement field of the conventional HSDT 

is given by 
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(9) 

u0, v0, w0, θx and θy are the five unknown displacement of 

the mid-plane of the plate. By considering that 

1
( , , )

x
k x y t dx   and 2

( , , )
y

k x y t dy    (Bourada 

et al. 2016). 

The displacement fields mentioned above can be written 

as follows 
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(10) 

The integrals defined in the above equations shall be 

resolved by a Navier type method and the displacement 

fields can be rewritten as 
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(11) 

Where 

2 2

1 2
,k k  

 (12) 

The coefficients A’ and B’ are expressed according to 

the Navier type solution and they are given by 

2 2

1 1
' , 'A B

 
   

 
(13a) 

And 
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(13b) 

The shape function f(z) is given as follows 
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(14a) 

The transverse shear strain function is an even function 

which is the first derivation of the shape function 

(g(z)=f’(z)). Therefore, the shear shape function is 

presented in the present theory to satisfy zero stresses at top 

and bottom surfaces of the plate. The shear function is 

obtained as 
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(14b) 
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It can be seen that the displacement field in Eqs. (10) 

and (11) contains only four unknowns u0, v0, w0 and θ. 

The kinematic relations can be obtained as follows 
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4. Constitutive relations 
 

The linear constitutive relations are 
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where (ζx, ζy, ηxy, ηyz, ηyx) and (εx, εy, γxy, γyz, γyx) are the stress 

and strain components, respectively.  

 

 

5. Equations of motion 
 

Hamilton’s principle is used herein to derive the 

equations of motion. The principle can be stated in 

analytical form as 

 

T

F dtKUU
0

)(0 

 

(18) 

Where δU is the variation of strain energy; δK is the 

variation of kinetic energy; and δUF is the variation of strain 

energy of foundation. 

The variation of strain energy of the plate stated as 
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(19) 

Substituting Eqs. (15) and (17) into Eq.(19) and 

integrating through the thickness of the plate, Eq. (19) can 

be rewritten as 
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The stress resultants N, M, P, Q and R are defined by 
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Using Eq. (17) in Eq. (21), the stress resultants of the 

FG plate can be related to the total strains by 
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Where Aij, Dij …etc., are the plate stiffness, defined by 

 

11 11 11 11 11 11

12 12 12 12 12 12

66 66 66 66 66 66

2
2 2

11

2

1

1, , , ( ),  ( ), ( )

1

2

s s s

s s s

s s s

h

h

A B D B D H

A B D B D H

A B D B D H

Q z z f z z f z f z dz



 
 

 
 
 

 
 
 
 
 
 
 



 

(24a) 
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The variation of kinetic energy is expressed as 
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(25) 

 

121



 

Abdelkader Mahmoudi, Samir Benyoucef, Abdelouahed Tounsi, Abdelkader Benachour and El Abbas Adda Bedia 

 

.
0

0 0 0 0 0 0 0 1 0

0 0 0

0 0 0 1 1 0

1 0 2 0 2 0

20 0 0 0

2 2 1

2

[ ] [

] [ '

' ' ' ]

[ ] [( ')

( ')

w
I u u v v w w I u

x

w w w
u v v J k A u

x y y x

k A u k B v k B v
x y y

K
w w w w

I K k A
x x y y x x

k B


  

 
 

  
 


    


  



   
   

   

 
  

  


     
  

     

 2 0

2 1

0 0 0

1 2 2

] [ '

' ' ' ]

A

dA

w
J k A

y y x x

w w w
k A k B k B

x x y y y y

   

  

 
 
 
 
 
 
 
 
 
 
 
 
 

   
    
 

    
         



 

(26) 

Where (·) dot-superscript convention indicates the 

differentiation with respect to the time variable t; ρ(z) is the 

mass density; and (I0, I1, J1, I2, J2, K2) are mass inertias 

defined as 
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(27) 

The variation of strain energy of foundation is expressed 

as 

0F e

A

U f w dA  
 

(28) 

Where fe is the density of reaction force of foundation. 

For the Pasternak foundation model, it is given by  

2

0 0e w pf k w k w  
 

(29) 

If the foundation is modeled as the linear Winkler 

foundation, the coefficient kp in Eq. (29) is zero. 

Substituting the expressions for δU; δUF and δK from 

Eqs. (20), (28) and (26) into Eq. (18) and integrating by 

parts and collecting the coefficients of δu0, δv0, δw0 and   

δθ, the following equations of motion of the plate are 

obtained 
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(30) 

By substituting Eq. (22) into Eq. (30), the equations of 

motion can be expressed in terms of displacements (u0, v0, 

w0 and θ) as 
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6. Navier solution for simply supported rectangular 
plates 

 

Rectangular plates are generally classified in accordance 

with the type of support used. We are here concerned with 

the exact solution of Eq. (31) for a simply supported FG 

plate. The following displacement functions are chosen to 
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satisfy the boundary conditions of plate and are selected as 

Fourier series 

0

0

1 10

i t

mn

i t

mn

i t
m n mn

i t

mn

U e cos x sin yu

V e sin x cos yv

w W e sin x sin y

e sin x sin y



 


 



   
  

    
   

    
        



 

(32) 

Where 1i   , α=π/a, β=π/b. ω is the natural 

frequency. Umn, Vmn, Wmn and θmn are arbitrary parameters to 

be determined. Substituting Eq. (32) into Eqs. (31), the 

following eigenvalue equation is obtained 
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7. Results and discussion 
 

In this study, the effect of micromechanical models on 

the free vibration analysis of FG plates on elastic 

foundation by a new shear deformation theory is suggested 

for investigation. Navier solutions for free vibration 

analysis of FG plates are presented by solving the 

eigenvalue equations. The Poisson’s ratio is fixed at ν=0.3. 

Comparisons are made with available solutions in literature. 

In order to verify the accuracy of the present analysis, some 

numerical examples are solved. The material properties 

used in the present study are: 

- Metal (Aluminium, Al): EM=70×10
9
 N/m

2
; v=0.3; 

ρM=2702 kg/m
3
.  

- Ceramic (Alumina, Al2O3): EC=380×10
9
 N/m

2
; v=0.3; 

ρC=3800
 
kg/m

3
. 

In all examples, the foundation parameters are presented 

in the non-dimensional form of Kw=kwa
4
/D

 
and Kp=kpa

2
/D, 

where D=Eh
3
/12(1−v

2
) is a reference bending rigidity of the 

plate. 

For simplicity, the following nondimensional 

fundamental frequency parameter is used in the numerical 

examples 3 /c ca h D   . 

 

7.1 Comparison between different micromechanical 
models 

 

The estimations of Young’s modulus using the 

aforementioned five micromechanical models are compared 

in Fig. 2. The estimated results are depicted as a function of 

volume fraction of inclusions (ceramic). As shown in Fig. 2, 

Voigt and Reuss approximations plot upper and lower 

bounds for estimation of Young’s modulus. While Reuss 

estimation for Young’s modulus could be 48% lower than 

the Voigt estimation for the volume fraction of VF= 0,5. 

The estimates made by LRVE are within Tamura   

(q=−100 GPa). It is worth noting that the estimates by 

Tamura greatly depend on the value of q. 

In addition, the estimation of Young's modulus given by 

the Mori-Tanaka model is slightly higher than that given by 

LRVE and Tamura. 

 

 

 
Fig. 2 Effective Young’s modulus as function of volume 

fraction of ceramic for several micromechanical models 
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Table 1 Comparison of the first six natural frequencies of square AL/AL2O3 FG plate 
cc Eh /   

a/h Mode n° 
Mode 

(α,β,i) 
Theory 

Power law index “p” 

p=0 p=1 p=4 p=10 p=∞ a 

2 

1 101 

Matsunaga (2008) 0,5572 0,4375 0,3579 0,3313 0,2829 

Ait Atmane et al. (2010) 0,5524 0,4324 0,3554 0,3289 0,2812 

Present 0,5546 0,4338 0,3592 0,3323 0,2823 

2 111 

Matsunaga (2008) 0,9400 0,7477 0,5997 0,5460 0,4773 

Ait Atmane et al. (2010) 0,9300 0,7725 0,6244 0,5573 0,4730 

Present 0,9337 0,7383 0,6008 0,5478 0,4753 

3 102 

Matsunaga (2008) 0,9742 0,8005 0,6325 0,5664 0,4946 

Ait Atmane et al. (2010) 0,9742 0,8013 0,6356 0,5668 0,4958 

Present 0,9740 0,8092 0,6539 0,5671 0,4958 

4 112 

Matsunaga (2008) 1,3777 1,1166 0,8731 0,7885 0,6995 

Ait Atmane et al. (2010) 1,3777 1,1209 0,8751 0,7895 0,7012 

Present 1,3777 1,1461 0,9260 0,8155 0,7012 

5 201 

Matsunaga (2008) 1,5090 1,2163 0,9591 0,8588 0,7661 

Ait Atmane et al. (2010) 1,4907 1,1933 0,9466 0,8526 0,7587 

Present 1,4959 1,1935 0,9558 0,8600 0,7614 

6 103 

Matsunaga (2008) 1,6078 1,3091 1,0008 0,9050 0,8163 

Ait Atmane et al. (2010) 1,6466 1,3391 1,0440 0,9426 0,8381 

Present 1,6466 1,3410 1,0507 0,9443 0,8381 

5 

1 101 

Matsunaga (2008) 0,1120 0,08614 0,07356 0,06999 0,05686 

Ait Atmane et al. (2010) 0,1120 0,0860 0,07346 0,06984 0,05689 

Present 0,1119 0,0860 0,07371 0,07007 0,05697 

2 111 

Matsunaga (2008) 0,2121 0,1640 0,1383 0,1306 0,1077 

Ait Atmane et al. (2010) 0,2113 0,1740 0,1520 0,1369 0,1075 

Present 0,2117 0,1634 0,1387 0,1308 0,1077 

3 102 

Matsunaga (2008) 0,3874 0,3020 0,2502 0,2300 0,1967 

Ait Atmane et al. (2010) 0,3850 0,3000 0,2500 0,2300 0,1958 

Present 0,3861 0,3002 0,2512 0,2344 0,1965 

4 112 

Matsunaga (2008) 0,3897 0,3236 0,2607 0,2337 0,1979 

Ait Atmane et al. (2010) 0,3897 0,3236 0,2606 0,2324 0,1983 

Present 0,3896 0,3240 0,2618 0,2306 0,1983 

5 201 

Matsunaga (2008) 0,4658 0,3644 0,3000 0,2790 0,2365 

Ait Atmane et al. (2010) 0,4622 0,3674 0,3037 0,2794 0,2353 

Present 0,4639 0,3620 0,3014 0,2799 0,2361 

6 103 

Matsunaga (2008) 0,5511 0,4567 0,3668 0,3243 0,2798 

Ait Atmane et al. (2010) 0,5511 0,4568 0,3668 0,3243 0,2804 

Present 0,5511 0,4584 0,3704 0,3262 0,2805 

10 

1 101 

Matsunaga (2008) 0,02936 0,02246 0,01942 0,01861 0,01491 

Ait Atmane et al. (2010) 0,02934 0,02244 0,01941 0,01859 0,01493 

Present 0,02935 0,02244 0,01943 0,01861 0,01494 

2 111 

Matsunaga (2008) 0,05777 0,04427 0,03811 0,03642 0,02933 

Ait Atmane et al. (2010) 0,05770 0,04718 0,04210 0,03832 0,02936 

Present 0,05773 0,04422 0,03815 0,03644 0,02938 

3 102 

Matsunaga (2008) 0,1120 0,08614 0,07356 0,06999 0,05686 

Ait Atmane et al. (2010) 0,1120 0,08600 0,07346 0,06984 0,05689 

Present 0,1119 0,08597 0,07371 0,07007 0,05696 

4 112 

Matsunaga (2008) 0,1381 0,1063 0,09045 0,08588 0,07012 

Ait Atmane et al. (2010) 0,1380 0,1092 0,09455 0,08764 0,07006 

Present 0,1379 0,1060 0,09067 0,08600 0,07017 

5 201 

Matsunaga (2008) 0,1948 0,1620 0,1308 0,1153 0,09890 

Ait Atmane et al. (2010) 0,1948 0,1620 0,1308 0,1152 0,09916 

Present 0,1948 0,1621 0,1309 0,1153 0,09917 

6 103 

Matsunaga (2008) 0,2121 0,1640 0,1383 0,1306 0,1077 

Ait Atmane et al. (2010) 0,2113 0,1740 0,1520 0,1368 0,1075 

Present 0,2117 0,1634 0,1387 0,1308 0,1077 
a
Fully metallic plate (p=∞), MMM Eh /  . 
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7.2 Comparison studies 
 

In this section, various numerical examples are 

described and discussed for verifying the accuracy of the 

new present shear deformation plate theory in predicting the 

free vibration behavior of simply supported FG plates. For 

the verification purpose, the results obtained by the present 

theory are compared with other theories existing in the 

literature, such as the 2D higher order theory of Matsunaga 

(2008), the high order shear deformation theory of Ait 

Atmane et al. (2010) and the results obtained by Akhavan et 

al. (2009). 

In Table 1, the first six natural frequency parameters of 

the FG plate for different values of the power law p are 

compared with those of Matsunaga (2008) and Ait Atmane 

et al. (2010). “α” and “β” denote the wave numbers and “i” 

the mode order number which corresponds to displacement 

distributions in thickness direction. A good agreement is 

observed by the comparisons of the fundamental frequency 

parameter obtained by the present new shear deformation 

theory (with only four unknown functions) with other 

theories. 

As a second example and in order to validate the present 

method in the case of plates resting on elastic foundation, 

the results for the fundamental natural frequency parameter 

of isotropic thick plate with three different values of 

thickness-to-length ratios, three different values of Winkler 

elastic coefficient and three values of shearing layer 

coefficient are presented in Table 2. It can be seen that the 

results are in close agreement. 

It should be noted that for the values shown in Tables 1 

and 2, the results of the present method are obtained for the 

Voigt model. 

 

7.3 Parametric studies 
 

The impact of the micromechanical models on the 

estimated fundamental frequency of FG plates is studied in 

this section. 

In Fig. 3, the variations of non-dimensional fundamental 

frequencies of FG plate with the power law index p are 

given for different micromechanical models. Tree 

configurations are studied: plate without foundation, plate 

on Winkler foundation and plate resting on Pasternak 

foundation. It is seen from the figures that the increase of 

the power law index p produces a reduction of fundamental 

frequency values. 
In addition, whatever the type of foundation used, the 

model of Voigt gives higher results compared to other 
micro-mechanical models. While the other models provide 
substantially similar results. The presence of Pasternak 
foundation is increasing the fundamental frequency and this 
whatever the value of the power law index or the model. 
The presence of the Winkler foundation has little influence 
on the values of the fundamental frequency. 

Relative Percentage difference of fundamental 

frequency between micromechanical models versus power 

law index p is shown in Fig. 4. 

The discrepancy between the estimated fundamental 

frequency of FGMs by the Voigt, Reuss and other 

micromechanical models depends considerably on the 

 

 

 
Fig. 3 The effect of the power law index p on 

nondimensional fundamental frequency of FG square plates 

with different configurations of elastic foundation a/h=10. 

(a) FG plate without elastic foundation, (b) FG plate resting 

on Winkler foundation, (c) FG plate resting on Pasternak 

foundation 

 

 

power law index p. 

The discrepancy between the Voigt model and other 

micro-mechanical models for the estimated values of the 

fundamental frequency reaches a maximum of 12%  
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Fig. 4 Relative percentage difference of fundamental 

frequency between micromechanical models versus power 

law index p, a/h=10, a=b 
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Fig. 5 The effect of elastic foundation on nondimensionnal 

fundamental frequency of square FG plates for a range of 

the side-to-thickness ratio a/h. (a) comparison between 

Voigt-Reuss, (b) comparison between Tamura- Mori-Tanaka 

 

 

between Voigt and Reuss and it is 11% between Voigt and 

Mori-Tanaka. While between Voigt and other models  

Table 2 Comparison of the fundamental frequency 

parameter of isotropic square plate (α=β=1) 
2 /c c ca E    

Thickness to 

length ratio 
Kw , Kp 

Theory 

Akhavan 

et al. (2009) 

Ait Atmane 

et al. (2010) 
Present 

h/a=0,001 

0, 0 19,7391 19,7392 19,7391 

100, 10 26,2112 26,2112 26,2112 

1000, 100 57,9961 57,9962 57,9961 

h/a=0,1 

0, 0 19,0840 19,0658 19,0786 

100, 10 25,6368 25,6236 25,6328 

1000, 100 57,3969 57,3923 57,3955 

h/a=0,2 

0, 0 17,5055 17,4531 17,4899 

100, 10 24,3074 24,2728 24,2971 

1000, 100 56,0359 56,0311 56,0345 

 

 

namely LRVE and Tamura it does not exceed 8%. 

The second comparison shown in this figure is the 

discrepancy between the values of the fundamental 

frequency between the Reuss model and other 

micromechanical models. The difference is insignificant 

between Reuss and Mori-Tanaka and it reached a maximum 

of 5% between Reuss and other models. Therefore, the 

necessity of the proper micromechanical modeling of FGMs 

is evident to accurately estimate the fundamental frequency. 

Fig. 5 shows the non-dimensional fundamental natural 

frequency versus side-to-thickness ratio for simply 

supported square FG plate. As it can be seen, the 

fundamental frequency increases for small values of the 

ratio and then maintain a constant shape. In addition, 

Winkler foundation parameter affects very little the value of 

the fundamental frequency as compared to that of Pasternak 

parameter. From the figures (a) and (b), we can see that 

there is a discrepancy between the results provided by Voigt 

and Reuss, while the results of Tamura and Mori-Tanaka are 

substantially similar. 

This confirms what was already mentioned above that a 

proper micromechanical modeling of FGM should be 

defined. 

 
 
8. Conclusions 

 

A new higher order shear deformation theory was 

proposed to analyse dynamic behaviour of functionally 

graded plates resting on Winkler-Pasternak elastic 

foundations. Different micromechanical models were used 

to determine the effective properties of such plates.The 

equilibrium equations and associated boundary conditions 

of the plate are obtained using Hamilton’s principle. The 

Navier method is used for the analytical solutions of the FG 

plate with simply supported boundary conditions. The 

results obtained using this new theory, are found to be in 

excellent agreement with previous studies.  

Furthermore, the influences of plate parameters such as 

power law index, aspect ratio, elastic foundation parameters 

and the effect of micromechanical models on the natural 

frequencies of FG rectangular plate have been 
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comprehensively investigated. 

From these results and comparisons between different 

micromechanical models, it has been found significant 

differences between some models. This proves the need for 

a proper micromechanical modelling of FGMs to accurately 

estimate the fundamental frequency. 

Finally, we can say that the proposed model has great 

significance for design engineers dealing with plates resting 

on elastic foundation in obtaining the desired frequency 

parameters for their application. 
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