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1. Introduction 
 

The implementation of supplemental damping on the 

buildings is based on the concept of the designated energy 

dissipation. The energy does not dissipate primarily from 

the main structural members by their plastic behavior, but 

from the damping devices. These systems activate only due 

to horizontal loading and are easily replaced after potential 

damage (Karavasilis 2016, Withle et al. 2012, Seo et al. 

2014, Symans et al. 2008, Constantinou et al. 1993, 

Whittaker et al. 1993). Passive energy dissipation systems 

such as viscous and viscoelastic dampers contribute to 

increasing the effective damping of the structure and hence 

to reducing its seismic demand. The application of passive 

energy dissipation systems as a method to enhance the 

seismic response of structures has been studied since early 

1990. At the same time the first regulations for the usage of 

such systems were presented by Whittaker et al. 1993). 

The control of the demanded displacement of the 

structure due to the seismic designed must be necessary, 

with or without considering additional damping systems. 

Therefore, provisions regarding the analysis methods of 

such buildings have been added to regulations like FEMA 

368 and FEMA 273 for new and existing buildings 

accordingly. The Nonlinear Dynamic Procedure (NDP) 

seems to be the most accurate analysis method since all the  
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contemporary regulations accept the nonlinear behavior of 

the structure, both for the seismic design and assessment. 

Despite the reliability of the NDP even though the 

uncertainties related with those (Whittaker et al. 2001), 

simplified static procedures like the Linear Static Procedure 

(LSP) (FEMA 273, FEMA 368) and Nonlinear Static 

Procedure (NSP) (FEMA 273) were introduced by the 

regulations. 

From the simplified procedures the linear is appropriate 

for the seismic design and the nonlinear is more suitable for 

the seismic evaluation of an existing structure (Whittaker et 

al. 2003). Although the accuracy of the simplified methods 

has been examined extensively for both elastic (Whittaker 

et al. 2003, Sadek et al. 2000, Ramirez et al. 2001, 2003, 

Pavlou and Constantinou 2004 a, b) and inelastic methods 

(Tsopelas et al. 1997, Ramirez et al. 2002a, b), seismic 

assessment of structures which are expected to respond 

nonlinearly can be provided with more accuracy by the NSP 

as it takes into consideration the actual nonlinear response 

of the structural members (Tsopelas et al. 1997). 

NSP introduced by FEMA 274 (Method 2) is based on 

the Capacity Spectrum Method (CSM) which was initially 

developed by Freeman (Freeman et al. 1975, Freeman 

1978). In nearly most alternatives of NSP which were 

investigated throughout the years, the performance point of 

the structure is calculated by an repetitive process so as to 

equilibrates the demand with the capacity given initially the 

pushover curve (capacity) and the elastic demand spectra 

with damping ratio ξ=5%. An equivalent SDOF is 

considered throughout this operation with period T=Teq and 

viscous damping ξ=ξeq. The equivalent damping ξeq is 

specified as the sum of the inherent damping (ξo), the 

additional damping due to the damping devices (ξD) and the 
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hysteretic damping expressed in terms of equivalent viscous 

damping (ξhyst). Damping Reduction Factors (B) for certain 

values of the effective damping, are used to decrease the 

elastic spectra. The values of the B factor are provided in 

the literature (Sadek et al. 2000, Ramirez et al. 2002a, 

Palermo et al. 2013) and in the seismic codes. 

An alternative CSM, for structures without additional 

damping, by using inelastic spectra, have been examined by 

Fajfar and Gašperšič (1996) and Fajfar (1999), as well as 

Chopra and Goel (1999a, b). This method differs from the 

classical CSM as the reduction of the capacity spectra is 

performed through relationships between the strength 

demand reduction factor of the structure R and the ductility 

μ. These types of relationships are referred to as R–μ–T and 

there are many proposed in the literature (Miranda and 

Bertero 1994, Vidic et al. 1994, Hidalgo and Arias 1990, 

Riddell and Newmark 1979). Except of Ridell and 

Newmark (1979) and Palermo et al. (2013) who proposed 

R–μ–Τ relationships for systems with higher values of 

viscous damping, the rest of the studies proposed R–μ–Τ 

relationships for damping ratio 5%, while Ramirez et al. 

(2002a) associates the elastic displacement with the 

expected inelastic, taking into account the additional 

damping not by using the R–μ–Τ relationships but through a 

coefficient C1. 

Considering that for stiff structural systems and in the 

case of high values of ductility, the inelastic spectra are 

more accurate than the elastic one (Fajfar and Gašperšič 

1996, Fajfar 1999, Chopra and Goel 1999a, b), a CSM 

based on constant ductility inelastic spectra has been 

introduced, in order to evaluate the seismic response of 

structures equipped with elastic viscous dampers. In order 

to perform this method, the determination of the effective 

damping due to supplemental viscous damping devices is a 

basic requirement. As such, a simplified modal viscous 

damping is examined and the accuracy of this method is 

justified by comparing the results with those obtained by 

the FEMA relationships. Moreover, to determine the elastic 

demand of high damping systems, damping reduction 

factors (B) are presented, as well as R–μ–Τ relationships for 

systems with damping ratio up to 50%. Furthermore, 

pseudo-velocity correlation factors are introduced. Finally, 

the proposed CSM using high damping-inelastic spectra is 

performed into a four and six-storey RC and steel frame 

respectively. 

 

 

2. CSM for structures equipped with viscous 
dampers based on inelastic spectra 
 

In the present study a CSM based on constant ductility-

yield point inelastic spectra has been adopted, in order to 

estimate the expected deformations of structures with 

supplemental viscous damping. According to the procedure, 

the performance point result by the relationship between the 

strength reduction factor R with the displacement ductility 

of the system μ. Therefore, the effective damping of the 

structure must be limited to the sum of the inherent 

damping (ξo) with the additional damping due to the 

damping devices (ξD), neglecting the hysteretic damping 

expressed in terms of equivalent viscous damping (ξhyst). 

The above sum may be cited as ξeff. Thus, simplified modal 

viscous damping is examined for the determination of the 

additional damping due to the damping devices (ξD). The 

modal viscous damping is calculated by transforming the 

equation of motion of a MDOF system with viscous 

dampers, to its eigenvectors without damping. 

Given the elastic demand spectra usually with 5% 

damping, elastic demand spectra with ξeff damping ratio can 

be determined by applying damping reduction factors (B). 

Then, the inelastic demand spectrum for damping ratio ξeff 

can be constructed by the use of R–μ–Τ equations. Finally, 

the performance point can be estimated by inelastic spectra, 

in a yield point response spectra format as it developed by 

Aschheim and Black (2000). 

Specifically, a modal analysis is initially required in 

order to specify the dynamic characteristics of the structure. 

Provided that the dynamic structural response could be 

described by the fundamental mode, the capacity spectrum 

method can be applied. As explained above, the 

determination of the effective damping is expressed by the 

following relationship 

eff D     (1) 

The capacity of the structure is given by the pushover 

curve, which has to be converted to an equivalent bilinear 

capacity spectrum. To define the demand, the first step is to 

construct the elastic spectrum for damping equal to the 

effective damping of the structure ξeff. The modification of 

the elastic spectrum with 5% damping to the spectrum with 

damping ratio ξeff is performed with the use damping 

reduction factors (B) as follows (Ramirez et al. 2002a) 
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where Sa (T,5%) and Sd (T,5%), is the demanded 

acceleration and displacement respectively for 5% damping 

ratio, Sa (T,ξeff) and Sd (T,ξeff) is the demanded acceleration 

and displacement respectively for damping ratio ξeff and   

B (T,ξeff) is the damping reduction factor for damping ratio 

ξeff. 

In case that the elastic demand spectrum intersect the 

capacity spectrum to it elastic region, the structure is 

expected to response elastically. Otherwise, constant 

ductility-yield point inelastic spectra using the R–μ–Τ 

relations have to be constructed. The demanded ductility of 

the structural systems is estimated throughout the intersect 

point of the inelastic spectrum with the capacity spectrum at 

the yield point. The inelastic spectra are defined by the 

following relationships (Miranda and Bertero 1994, Chopra 

and Goel 1999 a, b) 
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where Sa,el (T,ξeff) is the demanded acceleration for elastic 

response and damping ratio ξeff, Sa,y (T,ξeff) is the demanded 

acceleration at yielding and damping ratio ξeff, Sd,el (T, ξeff) 

and Sd,y (T, ξeff) the spectral displacements respectively and  

338



 

Capacity spectrum method based on inelastic spectra for high viscous damped buildings 

 

 

R (μ, T,ξeff) is the strength reduction factor for displacement 

ductility demand μ and damping ratio ξeff.  

The calculation scheme of the proposed CSM for 

buildings equipped with viscous dampers, as it is in detail 

described above, can be summarized in Fig. 1. 

The calculation of the damping devices developing 

forces are of great importance. As the viscous dampers are 

velocity depended devices, the estimation of the dampers 

ends’ relative velocity is essential. Given the spectral 

velocity Sv of the fundamental structural mode, the 

dampers’ developing forces are given by the equation 

 *
, cosD i v ij i iF S T C   (4) 

where FD,i is the damping force of the device i, Γ* is the 

participation factor of the fundamental mode, θi is the angle 

to the horizontal of the device i, Ci is the damping 

coefficient of the device i and φij is the 1st modal ordinate 

between the ends of the damper i. 

However, the pseudo-velocity spectra (PSv) are in 

common used, instead of the velocity spectra (Sv). 

Nevertheless, these values are not equivalent at the whole 

period range of the spectra. In that view, Sadek et al. (2000) 

examined 72 horizontal seismic excitations for damping 

ratios ξ=2–60%, concluding that spectral velocity may be 

considered equal to the spectral pseudo-velocity at the 

period region nearby the period value Τ=0.5 s. The same 

remark has been highlighted also by Hatzigeorgiou and 

Pneumatikos (2013). For that reason, a velocity corrective 

factor (Bv) is introduced, in order to estimate with 

increasing accuracy the spectral velocities, as presented in 

Eq. (5) 




V
V

v

PS
S  (5) 

In the following subsections of this section, all the 

parameters which are presented above, are thoroughly 

defined. Particularly, an alternative method of specifying 

the effective period of the structure (ξeff), as well as 

relationships to determine the damping reduction factors 

(B) are presented. Moreover, the introduced strength 

reduction factors (R–μ–T) and the adopted velocity 

correlation factors (Bv) for different levels of damping 

ratios and displacement ductility ratios are given. 

 

2.1 Effective damping 

 
 
2.1.1 Conventional assumptions of equivalent 

damping ratio 
The methodology which is extensively used and adopted 

by FEMA 274 and 368 to calculate the effective viscous 

damping of a structural system with additional damping is 

presented below. The total amount of the viscous damping 

is estimated through the ratio of the dissipated energy per 

circle of motion WDiss divided by the work of the restoring 

forces of an equivalent elastic oscillator WR (FEMA 273, 

Ramirez et al. 2001, Chopra 2001) 

1

4
 Diss

eff

R

W

W



 (6) 

In the case of linear viscous dampers, the above relation 

can be written 
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where cj is the damping coefficient of the j device, θj is the 

devices’ angle to the horizontal, φrj is the relative modal 

ordinate, Teff is the period corresponding to the lateral 

stiffness for the ductility ratio μ. From Eq. (7) it can be 

observed that the level of the additional damping depends 

on the effective period of the equivalent elastic oscillator. 

Relations based on Eq. (6) are also used when nonlinear 

damping is assumed (Diotallevi et al. 2012, Landi et al. 

2014). 
 

2.1.2 Alternative derivation of effective damping 
A simplified modal viscous damping which is calculated 

by transforming the equation of motion of a MDOF system 

with viscous dampers to its eigenvectors without damping is 

examined. The response of a damped MDOF oscillator can 

be computed by the superposition of equivalent SDOF 

oscillators’ responses under harmonic vibration. In such 

case the eigen value problem is described by the expression 

 2
0 m c k     (8) 

The above constitutes a square eigen value problem 

resulting in complex eigen values and eigenvectors. Due to 

the fact that the solution of this problem requires eight times 

more calculations than without considering damping 

(Chopra 2001), an approximate method to estimate the 

response of MDOF oscillators has to be used. After 

transforming the equation of motion of a damped system 

  
Fig. 1 Flowchart diagram of the calculation scheme 
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with the eigenvectors of motion of the system without 

damping, the equation of motion in terms of modal 

coordinates is 

* * *
( )   

*
M q C q K q L

g
u t  (9) 

where Μ* = ΦΤ m Φ is the generalized mass matrix, C* = 

ΦΤ c Φ is the generalized damping matrix, K* = ΦΤ k Φ is 

the generalized stiffness matrix and L* = ΦΤ m δ is the 

excitation vector.  

To the equation above the generalized damping matrix is 

not necessarily diagonal resulting to n coupled SDOF 

oscillators (Chopra 2001). As the data out of the diagonal 

can be omitted, the equation of motion of the equivalent 

SDOF oscillator corresponding to the k mode of a MDOF 

system with linear viscous dampers and viscoelastic 

behavior of it structural members can be written 

* * * * *
( )     q q q

k k k k k g
C K u t  (10) 

where Μk
* = φk,i·mij·φk,j, is the generalized mass of the k 

mode; Ck
* = φk,i·cij·φk,j, is the generalized damping of the k 

mode; Κk
* = φk,i·kij·φk,j, is the generalized stiffness of the k 

mode; Lk
* = φk,i·mij·δj, is the excitation vector of the k 

mode. 

Assuming that the response of the MDOF system can be 

described satisfactorily by the 1st mode, the effective 

damping of the equivalent SDOF is 

*
1

* *2
1 11,2 /
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

oeff

eff

C

M
 


 (11) 

where ξο is the critical damping ratio of the structure 

without dampers, C1* = φ1,i·cij·φ1,j is the generalized 

damping of the first mode,  
2

* * *

1,eff 1 1
M M    is the 

effective modal mass of the first mode, Γ1
* = L1

*/ Μ1
* is the 

participation factor of the first mode and ω1 is the natural 

vibration frequency of the first mode. 

The data cij of the matrix CD, describes the damping 

force at the i degree of freedom where a unit of velocity is 

enforced to the degree of freedom j. The damping force is 

given by the expression 

sgn( )  D // / /F u u
a

Dc  (12) 

where cD is the damping coefficient of the damper, α is the 

exponential coefficient with values ranging from 0.1 to 1, 

/ /u  is the relative translational velocity between the ends of 

the damper and sgn is the signum function that provides the 

correct sign for the damping force. 

Assuming an oscillator with n DOF where each mass mi 

is connected with the previous mass with a viscous damper 

that has damping coefficient ci and angle θi to the 

horizontal, the damping matrix CD can be computed as 

follows: 

By moving each time a DOF with a unit of velocity 

1iu  whereas all the others DOF remain restrained, the 

dampers velocity in parallel to its direction is 

cos cos
//,i i

u = u =
i i
   (13) 

and the corresponding force  

   cos sgn( ) cos    d,i iF u u
a

i i i ic c    (14) 

while the horizontal projection of the damper force is 

   1 1cos sgn( ) cos 
    dx,i iF u u

a
i i i ic c    (15) 

From the equilibrium of all the forces applied to each 

mass mi due to the dampers, the contents of the damping 

matrix CD are given by the relationship 

For i = j    1 1
, 1 1cos cos 

    a a
i j i i i iC c c   (16a) 

For j = i+1 or i-1  1
, cos    a

i j j jC c   (16b) 

For all the other cases , 0i jC   (16c) 

The above relationships, known by the literature, are 

presented for the sake of completeness. The effective 

damping of Eq (7), which is calculated by Eq. (6), is 

equivalent with the proposed effective damping of Eq. (11), 

although they are computed based on different assumptions. 

 

2.2 High damping spectra 
 
2.2.1 Elastic high damping spectra 
For the application of the CSM, the spectra of the 

examined excitation must be defined. The most accurate 

way to define an elastic spectra is to integrate the 

differential equation of motion throughout the time. 

Nevertheless, reduction factors are usually used to reduce 

the elastic spectra that correspond to 5% damping ratio in 

order to take into consideration either the additional 

damping influence or the inelastic response. In the case of 

high damping elastic spectra the reduction has been 

performed by using damping reduction factors, defined as 

follows (Ramirez et al. 2002a) 

( ,5%)

( , )
 d

d

S T
B

S T 
 (17) 

where Sd (T,5%), is the demanded displacement for 5% 

damping ratio and Sd (T,ξ) is the demanded displacement for 

damping ratio ξ. 

Several expressions of the reduction factor B are already 

presented in the literature and regulations (FEMA274, 

FEMA 368, EC-8, Sadek et al. 2000, Ramirez et al. 2002a, 

Palermo et al. 2013). Most of them are specified by bilinear 

or trilinear models. The common feature of all the proposed 

models is that the reduction factor remains constant beyond 

the period values that correspond to the constant 

acceleration area of the response spectra.  

Analyses were performed using a set of 20 ground 

motions (Table 1) which have been scaled to the EC-8 

response spectra for soil type C. It can be observed that the 

reduction did not remain constant above the area of the 
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Table 1 Earthquake events used in this study 

 Date Earthquake Ms Station Component 

1941 Northern Calif-01 6.40 Ferndale City Hall 315 

1951 Imperial Valley-03 5.60 ElCentro Array #9 000 

1952 KernCounty 7.36 Taft Lincoln School 021 

1961 Hollister-01 5.60 Hollister City Hall 271 

1966 Parkfield 6.19 Cholame – Shandon Array #12 050 

1967 Northern Calif-05 5.60 Ferndale City Hall 314 

1968 BorregoMtn 6.63 ElCentro Array #9 180 

1971 SanFernando 6.61 Castaic – Old Ridge Route 291 

1973 PointMugu 5.65 Port Hueneme 270 

1976 Friuli Italy-01 6.50 Barcis 000 

1978 SantaBarbara 5.92 Cachuma Dam Toe 250 

1978 TabasIran 7.35 Dayhook L1 

1979 Imperial Valley-06 6.53 Brawley Airport 225 

1980 Livermore-01 5.80 APEEL 3E Hayward CSUH 146 

1980 Mammoth Lakes-01 6.06 Long Valley Dam (Upr L Abut) 090 

1980 VictoriaMexico 6.33 Cerro Prieto 315 

1981 Taiwan SMART1(5) 5.90 SMART1 O07 EW 

1981 Westmorland 5.90 Parachute TestSite 225 

1984 MorganHill 6.19 San Juan Bautista_ 24 Polk St 213 

1986 Mt. Lewis 5.60 Halls Valley 090 

 

 

Table 2 Values of Eq. (22) factors a, b and c 

 
ξ 

 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

a 1.46 1.92 2.34 2.82 3.40 4.16 5.26 7.09 10.71 80.40 

b -0.15 -0.20 -0.24 -0.27 -0.30 -0.33 -0.36 -0.40 -0.44 -0.55 

c -2.56 -1.75 -1.45 -1.28 -1.15 -1.04 -0.93 -0.83 -0.74 -0.59 

 

 

constant spectral acceleration but it tends to descend (Fig. 

2). Thus, in the present study the construction of a single 

continuum expression for the damping reduction factors 

that could take into account their reducing tendency at the 

higher values of periods is attempted. 

The maximum acceleration of an oscillation with 

damping ratio ξ, larger than 5%, is smaller, due to the larger 

damping of the system. To specify the reduced seismic 

demand, it can be assumed that the variation of the  

Table 3 Values of equations (24) factors a, b and c 

 
ξ 

 
0.05 0.10 ≥ 0.20 

a 0.31 0.25 0.24 

b -0.97 -0.47 -0.13 

c 1.00 0.95 0.94 

 

 

maximum potential energy between the systems with 

damping ratio 5% (ΕP,0.05) and ξ (ΕP,ξ) would be equal with 

the energy that is dissipated due to an increase of the 

damping by Δξ (ΕD,Δξ) (Eq. (18)). 

,0.05 , ,
 

P P D
E E E

   (18) 

Therefore, the value of the dissipated energy due to the 

increase of the damping by Δξ must be defined. 

Considering a forced vibration by an harmonic external 

force P(t)!=!Po·sin(ωt), the dissipated energy under one 

cycle of loading due to viscous damping ξ* = Δξ is (Chopra 

2001) 

2

2 2 2

0

* * *
2    D D o o

n

E f du c u dt c u ku


 

  


 (19) 

Combining the Eqs. (17)-(19) results to 

0.05 1 4 nSa T
B

Sa T

      (20) 

where T is the period of the harmonic external force P(t) 

and Tn the natural period of the oscillator. 

As the term Τ is difficult to specify mainly due to the 

uncertainties of the ground motions and the non-harmonic 

shape of a natural ground motion, a set of 20 ground 

motions were used to conclude to a function of the general 

form f (T, ξ) in order to describe the ratio Τn/T. By 

calibrating the Eq. (20) to the analytical results, the 

reduction factor of the spectra are given by the following 

relationships 

0.05 1 4 ( 0.05) ( , )   
a

a

S
B f T

S 

    (21) 

( , ) a e e
 
 
 
 

 

T T
b c

T Tf T    (22) 

where a, b and c are based on the damping levels and they 

are listed in the Table 2 and To is the period that 

corresponds to the beginning of the constant spectral 

velocities area. 

Fig. 3 displayed comparatively the damping reducing 

factors from Eq. (20) and the mean reduction calculated 

from the 20 ground motions by time history analysis. A 

special characteristic of the proposed continuum nonlinear 

expression is that it can be applied to the whole range of the 

spectra periods, while it describes the descending reducing  

 

Fig. 2 Mean reduction of the elastic spectra due to damping. 
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factor beyond the constant spectral acceleration area. 

Mentioned above, the reduction factor B values results 

by scaled, over the EC-8 spectrum, ground motion records. 

Despite the fact that the scaling may affect the results, the B 

factor (Eq. (21)) can be used for excitations compatible with  

 

 

the EC-8 spectra, due to the fact that is defined based on 

that. Moreover, B reduction factor could have a generalized 

application as it is parameterized over the period value To, 

which is determined by any code spectra. 

The values of damping reduction factor B corresponding  

   

   

   

  

Fig. 3 Reduction factor B diagrams 
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for long period structures are similar with those presented 

by Pavlou and Constantinou (2004 a, b) for near fault 

ground motions. It seems that these values are affected by 

the selection of the ground motions. However, that is not a 

considerable issue as long period structures has to be 

assessed using dynamic time history analyses due to the 

participation of higher order modes on the seismic response. 

Notwithstanding the B values corresponding to high period 

structures are not essential, the Eq. (21) can be used for the 

initial design and estimation of the contribution of the 

implemented dampers. 

 

2.2.2 Constant ductility inelastic high damping 
spectra 

 

 

In the case of structures that respond in the inelastic 

range, the application of the CSM requires the inelastic 

spectra of the examined excitation. As in the case of elastic 

response spectra, the most accurate way to define the 

inelastic spectra is to integrate the differential equation of 

motion throughout the time. Nevertheless, in practice, 

strength reduction factors (R) are usually used to reduce the 

elastic spectra. The strength reduction factor defined as the 

ratio of elastic demand strength (Fel) to inelastic demand 

strength (Fy) as follows (Miranda and Bertero 1994, Chopra 

and Goel 1999 a, b) 

,

,

 
a elel

y a y

SF
R

F S
 

(23) 

  

  

  

Fig. 4 Strength reduction factors R, by the analysis (solid line) and by the proposed relationships (dash line) 
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Regarding the inelastic spectra, a number of different R–

μ–T relationships have been presented in the literature 

(Miranda and Bertero 1994, Vidic et al. 1994, Hidalgo and 

Arias 1990, Riddell and Newmark 1979, Chopra 2001). 

However, as noticed above, the viscous damping ratio of all 

these models was assumed to be between 1-10%. By the 

implementation of passive dissipation control systems the 

damping of the equivalent SDOF system can reach 30% of 

the critical damping. Thus, in order to examine the effect of 

the high damping on the inelastic constant ductility spectra, 

analyses with the same set of ground motions were 

performed for damping ratio with the range ξ = 5-50% and 

ductility values μ = 1.5, 2, 2.5, 3 and 4. Subsequently, the 

main reduction factor was determined for each level of 

damping and ductility. The main reduction factors for the  

 

 

inelastic spectra for damping values ξ = 0.05-0.5 are 

presented in Fig. 4. 

The single expression of the reduction factor spectra for 

different levels of damping and ductility are based on the 

Hidalgo and Arias (1990) relationship and is given by the 

following equation 

0

T
R 1  

a exp( )
1

 




T
T b T

c






 (24) 

where To is the period that corresponds to the beginning of 

the constant spectral velocities area and a, b and c rely on 

the damping ratio and are listed in Table 3. 

  

  

  

Fig. 5 Corrective factor Bv for different ductility and damping levels 
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The damping level did not affect significantly the form 

of the reduction spectra for the construction of the constant 

ductility inelastic spectra. It is obvious that for damping 

ratios higher than 20% the reduction remains constant.  

It can be seen by Fig. 4, that for low damping ratios 

(ξ!=!0.05), the assumption of equal displacements, 

comparing the elastic and the inelastic response, of long 

period structures is verified. On the other hand, assuming 

high damping ratios (ξ > 0.10), that assumption leads to 

non-conservative results(R < μ). The above remark is taken 

into account by the c factor of Eq. (24), as for long period 

structures the strength reduction factor take values R = c·μ. 

 
2.2.3 Velocity corrective factors 
In order to design the energy dissipation systems the 

estimation of the devices forces are of great importance. 

The prediction of the dampers ends’ relative velocity is 

necessary to calculate the damping force as viscous 

dampers are velocity-depended devices. The most 

simplified method to calculate it is by using the pseudo-

velocity spectra (PSv) of the equivalent SDOF oscillator.  

After that, the velocity values are distributed to the 

structure storeys based on the 1st mode. The PSv can be 

computed by the displacement spectra given the  

 

Table 5 Earthquakes and applied scale factors 

Earthquake Component Scale Factors 

Northern Calif-01 315 x1 x1.25 x1.50 x1.75 x2 x3 

Kern County 21 x1 x1.25 x1.50 x1.75 x2 x3 

Northern Calif-05 314 x1 x1.25 x1.50 x1.75 x2  

San Fernando 291 x1 x1.25 x1.50 x1.75 x2x3  

Santa Barbara 250 x1 x1.25 x1.50 x1.75 x2 

 

 

relationship 

 V dPS S  (25) 

while for the inelastic systems, 

  V el dPS S   (26) 

where ωel is the structures’ natural circular frequency of 

vibration and μ = 1 for elastic seismic response. 

However, even for elastic systems, the assumption of the 

equivalence between the velocity spectra (Sv) and the 

pseudo velocity spectra (PSv) is valid for oscillators with 

period values near to T = 0.5s (Sadek et al. 2000). For 

period values larger than T = 0.5s and as the damping ratio  
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Fig. 6 Examined frame structures 
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increases, this assumption leads to underestimation of the 

developed velocities, whereas for lower periods it leads to 

overestimation. Owing to this, a corrective factor (Bv) is 

introduced by using the ground motions of Table 1. Bv is 

equal to the pseudo velocity spectra divided by the velocity 

spectra (Eq. (27)). 

el dV
v

V V

SPS

S S

 
    (27) 

The expression of the Bv calculated by a regression 

analysis is presented in Eq. (28), and is demonstrated for 

different values of damping ratios and ductility in Fig. 5. 

2
4 5 62

1 2 3( )
a a a

v a a a T
    

     (28) 

where α1-α6, are coefficients listed in Table 4 for different 

damping ratio levels. 

According to the results depicted in Fig. 5, it can be 

observed that as the demanded ductility and the effective 

damping ratio increase, the corrective factor Bv is increased 

for stiff structures and decreased for long-period ones. 

Particularly, for structures with damping ratio ξ = 0.05 and 

ductility μ = 1 the Bv ranges from 1.3 to 0.9, while for  

 

 

demanded ductility μ = 4, ranges from 1.7 to 0.7. In 

addition, for structures with damping ratio ξ = 0.20, Bv take 

values from 2.25 to 0.6 and from 2.4 to 0.5, for demanded 

ductility μ = 1 and μ = 4 respectively.  

 

 

3. Verifying the proposed methodology 
 

To examine the performance of the CSM by using 

inelastic constant ductility-high damping spectra to MDOF 

systems with linear viscous dampers, two frame buildings 

were considered. A four-storey reinforced concrete frame 

building, designed according to EC-2 and EC-8 provisions, 

and a six-storey steel frame building, designed according to 

EC-3 and EC-8 provisions, were analyzed (Fig. 6). 

Regarding the damping systems, elastic viscous dampers 

were assumed with a damping constant of C = 2000kN s/m, 

placed at 26.56o from the horizontal for the RC building, 

and C = 3000 kN s/m, placed at 18.56o from the horizontal 

for the steel one. The dampers are implemented at the 

central opening of each floor for both cases.  

Performing the process described by the Eqs. (16a)-

(16c) the matrix CD is calculated (Fig. 6). Applying Eq. (7) 

introduced by FEMA for elastic response and the proposed  
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Fig. 7 Comparison of time history analyses spectral displacements and dampers’ forces to the proposed method ones for the 

constant and adaptive damping assumptions (4-storey frame left and 6-storey frame right) 
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Table 6 Interstorey drifts ratios DriftPush/DriftTH of the 4-

Storey RC frame 

 

 

Eq. (11), the effective damping of the examined frames 

were estimated from both equations equal to ξeff = 20.8% 

and ξeff = 16%, for the RC frame and the steel frame 

respectively. By this, the two methods seem to be 

equivalent despite the fact that the calculations are based on 

different assumptions. 

However, according to Eq. (7), the effective damping 

must be revaluated according to the effective period when 

the structure responds inelastically. Assuming that when 

CSM are performed based on inelastic spectra, any 

alteration of the effective damping due to the shift of the 

effective period is taken into account through the level of 

ductility, the consideration of an adaptive effective damping 

seems redundant. In order to evaluate that assumption, both 

constant and changing effective damping are considered. 

To assess the effective damping calculation with a 

higher value of accuracy the Performance Point is defined 

by using the ground motion inelastic spectra and not the 

approximate relationships Β(Τ, ξ) and R–μ–T presented 

above. For this reason, a total of 28 time history analyses 

(TH) were performed for each frame. Table 5 presents the 5  

Table 7 Interstorey drifts ratios DriftPush / DriftTH of the 6 - 
Storey Steel frame 

Scale Factors x1 x1.25 x1.5 x1.75 x2.00 x3 

N
o
rt

h
er

n
 C

al
if

-0
1
 

 
Driftpush/DriftTH 

st
o
re

y
 

1 0.88 (0.88) 0.88 (0.88) 0.90 (0.90) 0.98 (0.97) 0.97 (0.95) 0.91 (0.88) 

2 0.93 (0.93) 0.93 (0.93) 0.94 (0.94) 1.03 (1.01) 1.02 (1.00) 0.91 (0.88) 

3 0.97 (0.97) 0.97 (0.97) 0.97 (0.97) 1.04 (1.02) 1.04 (1.03) 0.90 (0.87) 

4 1.02 (1.02) 1.02 (1.02) 1.02 (1.02) 1.10 (1.08) 1.13 (1.11) 1.00 (0.97) 

5 1.06 (1.06) 1.06 (1.06) 1.09 (1.09) 1.19 (1.17) 1.23 (1.20) 1.16 (1.13) 

6 1.09 (1.09) 1.09 (1.09) 1.13 (1.13) 1.25 (1.22) 1.28 (1.26) 1.35 (1.31) 

 

 
Average = 1.04 (1.03) Std. Deviation = 0.12 (0.11) 

K
er

n
 C

o
u
n
ty

 

st
o
re

y
 

1 0.98 (0.98) 1.05 (1.05) 1.04 (1.02) 1.11 (1.04) 1.14 (1.04) 1.13 (1.10) 

2 0.97 (0.97) 1.03 (1.03) 0.99 (0.97) 1.01 (0.95) 1.02 (0.93) 0.99 (0.96) 

3 0.96 (0.96) 1.00 (1.00) 0.92 (0.9) 0.93 (0.88) 0.94 (0.86) 0.90 (0.88) 

4 0.95 (0.95) 1.00 (1.00) 0.94 (0.92) 0.96 (0.91) 0.97 (0.89) 0.93 (0.91) 

5 0.94 (0.94) 1.01 (1.01) 1.00 (0.98) 1.05 (0.99) 1.09 (0.99) 1.05 (1.02) 

6 0.94 (0.94) 1.01 (1.01) 1.02 (1.01) 1.14 (1.07) 1.23 (1.12) 1.26 (1.22) 

 
 

Average = 1.02 (0.98) Std. Deviation = 0.08 (0.07) 

N
o
rt

h
er

n
 C

al
if

-0
5
 

st
o
re

y
 

1 0.92 (0.92) 0.93 (0.93) 0.93 (0.92) 0.94 (0.9) 0.95 (0.90) - 

2 0.94 (0.94) 0.98 (0.98) 0.99 (0.97) 0.98 (0.94) 0.98 (0.93) - 

3 0.97 (0.97) 0.98 (0.98) 0.97 (0.95) 0.94 (0.90) 0.93 (0.89) - 

4 1.00 (1.00) 0.98 (0.98) 0.97 (0.95) 0.96 (0.92) 0.95 (0.91) - 

5 1.02 (1.02) 0.95 (0.95) 0.97 (0.95) 0.97 (0.93) 0.99 (0.94) - 

6 0.92 (0.92) 0.92 (0.92) 0.96 (0.94) 1.01 (0.97) 1.07 (1.02) - 

 

 
Average = 0.96 (0.94) Std. Deviation = 0.03 (0.03) 

S
an

 F
er

n
an

d
o
 

st
o
re

y
 

1 0.89 (0.89) 0.89 (0.89) 0.90 (0.90) 0.94 (0.93) 0.99 (0.97) 1.12 (1.01) 

2 0.94 (0.94) 0.94 (0.94) 0.94 (0.94) 0.99 (0.98) 1.04 (1.02) 1.00 (0.90) 

3 0.98 (0.98) 0.98 (0.98) 0.97 (0.97) 1.01 (1.00) 1.05 (1.03) 0.91 (0.82) 

4 1.01 (1.01) 1.01 (1.01) 1.01 (1.01) 1.06 (1.05) 1.01 (0.99) 0.93 (0.84) 

5 1.03 (1.03) 1.03 (1.03) 1.04 (1.04) 1.11 (1.10) 1.04 (1.02) 1.04 (0.93) 

6 1.04 (1.04) 1.04 (1.04) 1.05 (1.05) 1.12 (1.11) 1.05 (1.03) 1.21 (1.09) 

 

 
Average = 1.01 (0.99) Std. Deviation = 0.07 (0.07) 

S
an

ta
 B

ar
b
ar

a 

st
o
re

y
 

1 0.86 (0.86) 0.87 (0.87) 0.97 (0.96) 1.00 (0.99) 1.06 (1.02) - 

2 0.92 (0.92) 0.92 (0.92) 1.02 (1.01) 1.04 (1.03) 1.00 (0.97) - 

3 0.98 (0.98) 0.98 (0.98) 1.09 (1.08) 0.95 (0.94) 0.93 (0.9) - 

4 1.04 (1.04) 1.06 (1.06) 1.09 (1.08) 0.93 (0.92) 0.92 (0.89) - 

5 1.09 (1.09) 1.10 (1.10) 0.99 (0.98) 0.94 (0.93) 0.95 (0.92) - 

6 1.12 (1.12) 1.12 (1.12) 0.98 (0.97) 0.95 (0.94) 0.98 (0.95) - 

 

 
Average = 1.00 (0.99) Std. Deviation = 0.07 (0.08) 

  
Total Average = 1.01 (0.99) Total Std. Deviation = 0.08(0.08) 

 
Table 8 Total Average and Std. Dev. values of the analyses 

  
SdPush/SdTH DriftPush/DriftTH FD,Push/FD,TH 

4
-

S
to

re
y
 

Average 1.04 (0.99) 0.99 (0.95) 1.03 (0.99) 

Std. Dev. 0.08 (0.08) 0.11 (0.10) 0.09 (0.09) 

6
-

S
to

re
y
 

Average 0.99 (0.98) 1.01 (0.99) 0.90 (0.89) 

Std. Dev. 0.03 (0.04) 0.08 (0.08) 0.12 (0.14) 

 

 

ground motions along with their scale factors used to verify  

Scale Factors x1 x1.25 x1.5 x1.75 x2.00 x3 

N
o
rt

h
er

n
 C

al
if

-0
1
 

 
Driftpush/DriftTH 

st
o
re

y
 

1 0.99 (0.99) 0.97 (0.97) 0.95 (0.94) 0.94 (0.90) 1.00 (0.89) 0.89 (0.77) 

2 0.98 (0.98) 0.96 (0.96) 0.98 (0.97) 1.01 (0.97) 1.12 (1.00) 1.15 (1.00) 

3 1.02 (1.02) 1.01 (1.00) 1.04 (1.03) 1.08 (1.02) 1.19 (1.07) 1.24 (1.08) 

4 0.94 (0.94) 0.93 (0.92) 0.94 (0.93) 0.93 (0.88) 0.88 (0.79) 1.00 (0.87) 

 

 
Average = 1.01    (0.95) Std. Deviation = 0.09 (0.08) 

K
er

n
 C

o
u
n
ty

 

st
o
re

y
 

1 0.99 (0.99) 1.03 (1.02) 1.07 (1.07) 1.16 (1.13) 1.13 (1.08) 0.78 (0.71) 

2 0.98 (0.98) 1.00 (1.00) 1.06 (1.06) 1.17 (1.14) 1.16 (1.11) 1.01 (0.91) 

3 1.00 (1.00) 1.02 (1.02) 1.08 (1.08) 1.2 (1.17) 1.19 (1.13) 1.13 (1.02) 

4 0.89 (0.89) 0.91 (0.91) 0.96 (0.96) 1.06 (1.03) 1.01 (0.96) 0.98 (0.88) 

 

 
Average = 1.04   (1.01) Std. Deviation = 0.10 (0.10) 

N
o
rt

h
er

n
 C

al
if

-0
5
 

st
o
re

y
 

1 0.95 (0.95) 0.88 (0.88) 0.84 (0.81) 0.81 (0.75) 0.79 (0.71) - 

2 0.95 (0.95) 0.92 (0.92) 0.95 (0.92) 0.99 (0.91) 1.01 (0.91) - 

3 0.98 (0.98) 0.98 (0.98) 1.02 (0.99) 1.07 (0.99) 1.11 (0.99) - 

4 0.88 (0.88) 0.87 (0.87) 0.88 (0.85) 0.80 (0.74) 0.61 (0.55) - 

 

 
Average = 0.91   (0.88) Std. Deviation = 0.11 (0.12) 

S
an

F
er

n
an

d
o

 

st
o
re

y
 

1 0.96 (0.96) 0.92 (0.92) 0.95 (0.90) 1.00 (0.92) 0.96 (0.87) 0.80 (0.70) 

2 0.96 (0.96) 0.97 (0.96) 1.05 (0.99) 1.16 (1.06) 1.15 (1.05) 1.03 (0.91) 

3 1.01 (1.00) 1.03 (1.02) 1.11 (1.05) 1.24 (1.13) 1.25 (1.13) 1.11 (0.98) 

4 0.91 (0.91) 0.91 (0.90) 0.84 (0.80) 1.01 (0.92) 1.00 (0.91) 0.89 (0.79) 

 

 
Average = 1.01   (0.95) Std. Deviation = 0.11 (0.10) 

S
an

ta
 B

ar
b
ar

a 

st
o
re

y
 

1 1.06 (1.06) 1.04 (1.02) 0.83 (0.82) 0.80 (0.73) 0.77 (0.68) - 

2 1.02 (1.02) 1.10 (1.08) 0.94 (0.92) 0.98 (0.90) 1.00 (0.89) - 

3 1.01 (1.01) 1.15 (1.13) 1.03 (1.02) 1.08 (0.99) 1.12 (0.99) - 

4 0.87 (0.87) 0.99 (0.98) 0.94 (0.92) 0.93(0.85) 0.94 (0.83) - 

 

 
Average = 0.98   (0.94) Std. Deviation = 0.10 (0.11) 

  Total Average = 0.99 (0.95) Total Std. Deviation = 0.11 (0.10) 
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the proposed methodology. Incremental factors were used in 

order to investigate the method performance at different 

levels of ductility. 

The results of the CSM are presented in Fig. 7 and 

Tables 6-8. In Tables 6-8 the results are listed in pears, 

where the first value is calculated according to the constant 

damping and the second in the parenthesis according to the 

adaptive damping assumption. Fig. 7 depicts the peak 

spectral displacements SdPush and SdTH and dampers forces 

FD,Push and FD,TH obtained by the TH analyses, as well as the 

estimated displacements by the CSM analyses. In Tables 6 

and 7, the ratios of each floors’ interstorey drifts, 

DriftPush/DriftTH are presented. 

As expected, concerning the effective damping ratio 

calculation, when the performance point corresponds to 

ductility value μ = 1 the CSM results are similar. When the 

structure develops displacement ductility μ > 1 the CSM  

 

 

results start to differ between each other. As the demanded 

ductility increases, the variation of the results are notably 

increases too. Regarding the assumption of the changeable 

effective damping it could lead to non-conservative results, 

as the usage of the effective period of the equivalent SDOF 

oscillator overestimates the effective damping in the case of 

high ductility demands. This is observed by the ratios of the 

peak displacements SdPush/SdTH for large displacements that 

results in 0.99 instead of 0.94 for the 6-storey frame and 

1.01 instead of 0.91 for the 4-storey frame. The same results 

are implied observed Table 8 with the total average values 

of the analysis. 

Moreover, the alteration of the effective damping leads 

to even more non-conservative results in terms of 

interstorey drifts. As inter-srorey drifts constitute a crucial 

criteria that define the structural members’ seismic demand 

levels, this underestimation is of major importance (Tables  

  

  

  

Fig. 8 Displacement demand determination of the 4-storey frame 
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6-7). In this view, as the CSM is based on relationships that 

combine the strength demand reduction factor (R) with the 

ductility level (μ) without considering an equivalent SDOF 

elastic system with stiffness Keff, the constant effective 

damping methodology forms a more compatible method. 

Consider ing that elastic  viscous dampers are 

implemented in the structure it could be essential to specify 

the damping forces of the dampers. The spectral velocity Sv 

of the inelastic spectra corresponding to the period of the 

oscillator has been used to calculate the damping forces. 

The damper forces are given by Eq. (4). The ratios of the 

damping forces obtained by the CSM by them obtained by 

the TH analyses FD,Push/FD,TH are presented for each analysis 

in Fig. 7. Comparing the results of the TH analyses with 

both assumptions of effective damping, the results are very 

satisfactory in the case of 4-storey frame but it seems to be  

 

 

underestimated in the case of 6-storey frame. This variation 

may be due to the contribution of higher modes. 
Based on the overall results in terms of peak 

displacements, interstorey drifts and damping forces (Table 
8), it can be easily recognizable that the introduced CSM 
estimates in an acceptable grade, the nonlinear seismic 
response of structures equipped with viscous dampers. 

In order to evaluate also the approximate relations of 

reducing the elastic spectra due to high damping (Eqs. (20)-

(22)), as well as the R–μ–T relations (Eq. (23)) for the 

construction of the high damping constant ductility spectra, 

this process was applied for the mean spectrum for each 

scale factor. The results are displayed in Table 9. The 

calculation of the performance point can be observed in 

Figs. 8 and 9. A graphic method was applied by defining the 

ductility of the demand spectra that crosses the bilinear  

  

  

  

Fig. 9 Displacement demand determination of the 6-storey frame 
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Table 9 Results using the R – μ – T relationships 

Scale Factor 
 

x1 x1.25 x1.5 x1.75 x2.00 x3.00 Average 

Sd / Sd,Ave 
4-storey 0.91 0.95 0.99 1.00 1.03 1.41 1.05 

6-storey 0.87 0.88 0.88 0.91 0.94 0.92 0.90 

Sd / Sd,Max 
4-storey 0.80 0.83 0.87 0.84 0.82 1.29 0.91 

6-storey 0.80 0.81 0.80 0.80 0.80 0.80 0.80 

μ 
4-storey 1.00 1.00 1.18 1.39 1.63 2.64 - 

6-storey 1.00 1.00 1.00 1.08 1.25 1.80 - 

Bv 
4-storey 1.06 1.06 1.04 1.02 1.01 0.94 - 

6-storey 0.84 0.84 0.84 0.83 0.81 0.75 - 

Sv 
4-storey 0.40 0.51 0.60 0.67 0.73 1.00 - 

6-storey 0.59 0.75 0.89 1.03 1.13 1.47 - 

Fd / Fd,Ave 
4-storey 0.90 0.95 1.00 0.98 0.96 0.95 0.96 

6-storey 0.85 0.86 0.87 0.89 0.88 0.85 0.87 

Fd / Fd,Max 
4-storey 0.82 0.84 0.90 0.87 0.86 0.89 0.86 

6-storey 0.73 0.75 0.77 0.79 0.79 0.77 0.77 

 

 

capacity spectra at the yield point. Using the proposed 

relations leads to notable estimation of the top displacement 

compared with the average and the maximum results 

obtained by the TH analyses. The results of both methods 

estimate with a satisfactory accuracy the TH results.  

Moreover, the viscous dampers forces are calculated 

using the Eqs. (27)-(28), to correct the PSv values. By the 

CSM, the ductility of the equivalent SDOF system are 

available and as such the dampers forces are given by the 

following equation 

 *
, cosD i el d v ij i iF S B C     (26) 

The Bv factors for each ductility levels are listed to the 

Table 9. Moreover, Table 9 displays the ratio of the viscous 

dampers’ median forces calculated by the corrected PSv, by 

the average (Fd,Ave) and maximum (Fd,Max) forces computed 

by the TH analyses. Finally, the total average of the ratios 

Fd /Fd,Ave and Fd /Fd,Max are shown. 

It can be observed that the PSv values are similar to Sv in 

the case of 4 - storey frame. Mentioned above, for structures 

period near to 0.5s the PSv are nearly equal to Sv. Thus, as 

the period of the examined structure is T = 0.61s, the result 

was expected to be the present. On the other hand, in the 

case of 6 - storey frame, due the longer period compared to 

the RC frame (T = 1.69 s) the PSv are less than Sv, thus the 

application of the velocity corrective factors is necessary. 

 
 
4. Conclusions 
 

In the present study capacity spectrum method with the 

use of high damping constant ductility spectra to assess the 

response of RC frame buildings with viscous dampers was 

investigated. The definition of the structures’ effective 

damping ratio (ξeff) and a method of reducing the elastic 

spectra corresponding to 5% damping ratio in order to result 

in inelastic constant ductility and high damping spectra 

were the main objectives of this paper. Moreover, 

applications of the proposed methodology on a RC 4-storey 

and 6-storey steel frame with viscous dampers were 

presented. 

Regarding the reducing of the elastic spectra to 

construct high damping spectra, a continuum nonlinear 

expression was indicated, which can be applied to the whole 

range of the spectra periods. A particular feature of the 

proposed relationships is that it could describe the 

descending reducing factor beyond the constant spectral 

acceleration area. 

As done for the elastic spectra a continuous R – μ – T 

relationship was proposed for the inelastic spectra taking 

into consideration the effect of the damping level. The fact 

that has to be mentioned is that the damping level does not 

notably affect the reduction spectra. In fact, the reduction 

remains constant for damping ratio values higher than 20%. 

Once the viscous dampers are velocity-depended 

devices, the accurate estimation of the dampers ends’ 

relative velocity are of great importance in order to 

calculate the damping forces. Owing to this, an expression 

that relates the Sv with the PSv is presented by introducing a 

corrective factor (Bv) which is affected by the damping ratio 

and the demanded ductility of the structure. 

Applying the proposed CSM based on constant ductility 

inelastic spectra indicates that, the assumption of the 

modified effective damping depending on the ductility level 

could result in damping overestimation that leads to non-

conservative results according to the structural assessment.  

Throughout the analysis of two frame building equipped 

with viscous dampers, the CSM seems to estimate with 

great accuracy the top displacement, the inter storey drifts 

and the dampers forces. Following that, the whole 

calculation scheme provides an efficient, simplified, and 

easy to apply method which evaluates the nonlinear 

response of structures with supplemental viscous damping. 
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