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Abstract.  A simplified approach of assessing torsionally balanced (TB) and torsionally unbalanced (TU) 

low-medium rise buildings of up to 30 m in height is presented in this paper for regions of low-to-moderate 

seismicity. The Generalised Force Method of Analysis for TB buildings which is illustrated in the early part 

of the paper involves calculation of the deflection profile of the building in a 2D analysis in order that a 

capacity diagram can be constructed to intercept with the acceleration-displacement response spectrum 

diagram representing seismic actions. This approach of calculation on the planar model of a building which 

involves applying lateral forces to the building (waiving away the need of a dynamic analysis and yet 

obtaining similar results) has been adapted for determining the deflection behaviour of a TU building in the 

later part of the paper. Another key original contribution to knowledge is taking into account the strong 

dependence of the torsional response behaviour of the building on the periodic properties of the applied 

excitations in relation to the natural periods of vibration of the building. Many of the trends presented are not 

reflected in provisions of major codes of practices for the seismic design of buildings. The deflection 

behaviour of the building in response to displacement controlled (DC) excitations is in stark contrast to 

behaviour in acceleration controlled (AC), or velocity controlled (VC), conditions, and is much easier to 

generalise. Although DC conditions are rare with buildings not exceeding 30 m in height displacement 

estimates based on such conditions can be taken as upper bound estimates in order that a conservative 

prediction of the displacement profile at the edge of a TU building can be obtained conveniently by the use 

of a constant amplification factor to scale results from planar analysis. 
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Contemporary seismic codes of practice including Eurocode 8 (EN 1998-1 2004) considers 
dynamic analysis to be the (default) reference method of assessment of structural response 
behaviour given that most commercial structural analyses packages which are widely available 
worldwide have a structural dynamics analysis capability. The number of structural engineers who 
are involved in designing structures for earthquakes is increasing as more countries are becoming 
urbanised and are introducing seismic design codes of practice to manage the risk. However, many 
engineers are not knowledgeable with the fundamentals of structural dynamics and do not possess 
adequate analytical skills to perform such dynamic analyses.  

A traditional method of analysis namely the lateral force method (terminology used by 
Eurocode 8 (EN 1998-1 2004)) was originally developed to offer designers an option to simplify 
the analysis of the building by the use of prescribed equivalent static forces to emulate seismic 
actions. Building structures that may be analysed by such a prescriptive procedure would need to 
fulfil very stringent requirements on vertical and horizontal regularity. Consequently, this lateral 
force method as stipulated by codes of practices cannot be applied to the great majority of building 
structures in practice. 

Alternative viable simple techniques of assessment in support of numerically intensive 
computations are in demand given that a simplified behavioural model is able to: (i) provide 
independent, and reliable, predictions and (ii) foster a better understanding of the fundamentals 
and portray behavioural trends to guide preliminary design.  

In regions of low-to-moderate seismicity the design and analysis of building structures within 
the framework of the current codes of practices are typically based on linear elastic behaviour 
when the behaviour factor, or structural modification factor, is used to take into account the 
capacity reserve in the structure when excited beyond the yield limit. The simplified methods of 
analysis to be introduced in this paper are aimed at approximating results from analyses as 
required by the code assuming elastic response behaviour of both torsionally balanced (TB) and 
torsionally unbalanced (TU) building structures.  

The simplified methods to be introduced herein involves representing earthquake ground 
motions in the acceleration, velocity and displacement formats, and the acceleration-displacement 
response spectrum (ADRS) diagram (Section 2). The code lateral force method has been extended 
to incorporate the use of the ADRS diagram to achieve improved accuracies of the estimated 
seismic actions on a TB building structure. The introduced method of analysis is given the name: 
Generalised Force Method of analysis. A nine-storey building supported by a frame-wall system is 
used as an example for illustration (Section 3). This planar analysis approach has been adapted for 
determining the deflection behaviour of a TU building at the critical edge (Section 4) and finally, 
the introduced analysis method is verified by the use of a worked example (Section 5). 
 
 
2. Response spectrum presented in different formats 
 

Response spectrum models which are usually presented by codes of practices for the structural 
design of buildings are normally presented in the acceleration format which shows the correlation 
of the response spectral acceleration demand (of single-degree-of-freedom systems possessing 5% 
critical damping) with their natural period of vibration. The commonly adopted response spectrum 
format of the flat-hyperbolic form has since been further developed by many major codes of 
practices (AS1170.4 2007, NZS1170.5 2004, EN 1998-1 2004) into three zones as presented 
schematically in Fig. 1(a). This three zone response spectrum model can be parameterised in terms 
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Simplified elastic design checks for torsionally balanced and… 

for low-medium rise TB and TU buildings. 
The simplified assessment method to be presented later in this paper was guided by an 

alternative modelling strategy which essentially is an extension of the analysis procedure presented 
for TB buildings in the earlier part of the paper (Section 3). The objective was to capture the trend 
of increases in the displacement demand of critical elements in the building with the variation in 
values of the design parameters. To achieve this modelling objective the following steps were 
undertaken as presented in the later part of this section: 

• Justify the adoption of a very simplified form of modelling to be employed for parametric 
studies for torsional response behaviour (Section 4.1), 

• Analyse the frequency behaviour and ratio of translation and rotation associated with the two 
coupled vibration modes (Section 4.2), 

• Derive expressions for the displacement time-histories at the stiff and flexible edges of the 
floor model in order that the torsional response behaviour can be simulated readily on MATLAB 
or EXCEL (Section 4.3), 

• Identify the maximum displacement demand trends of the two edges for acceleration, velocity 
and displacement controlled conditions and have the results presented in the form of the 
displacement ratio (that has been normalised with respect to the displacement of the corresponding 
TB building (Sections 4.4). 
 

4.1 Single-storey building model and justifications 
 

The nature of the analyses and the choice of the input parameters were based on the following 
considerations: 

(i) The torsional response behaviour of regular TU building models as obtained from 3D 
analyses were found to be reasonably represented by similar analyses undertaken on suitably 
chosen simple single-storey models as commented in the literature review by Anagnostopoulos et 
al. (2015). Similar comparative analyses have also been undertaken on a wider form of multi-
storey buildings that were supported jointly by structural walls and moment resisting frames (Lam 
et al.1997). It was concluded that the envelope of results obtained from the multi-storey and single 
story models were generally consistent provided that higher modes effects in the building could be 
neglected. In view of these observations and the fact that this paper is concerned with buildings of 
up to 30 m in height (where higher mode effects are less critical) analytical results to be presented 
in the later part of the paper were derived from simple models comprising only a single-storey 
floor plate. 

(ii) Given that the objective of the analytical investigation was to derive a simplified 
assessment method to provide estimates of the displacement demand which matches with results 
from elastic modal analyses (as stipulated by most current codes of practices) building models to 
be employed for investigations in this study were of linear elastic behaviour. The distinction of a 
flexible-base model from a fixed-base model was accordingly not as critical.  Excitations were 
represented in the form of a design response spectrum consistent with code procedure as opposed 
to time-history analyses involving the use of accelerograms. 

(iii) The floor plan of building models employed in the investigation had a uni-axial 
asymmetrical arrangement of lateral resisting elements. Horizontal excitations were applied in a 
direction which was normal to the axis of symmetry of the building on plan. Building models with 
uni-axial asymmetry has been shown to be able to provide conservative estimates for the torsional 
response behaviour of buildings with bi-axial asymmetry (Tsicnias 1981, Stathopoulos and 
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Simplified elastic design checks for torsionally balanced and… 

Parameter “b” is used to characterise the torsional stiffness properties of the model. The higher 
the b value the higher the torsional stiffness of the lateral supporting elements in relation to their 
collective translational stiffness (imagine that the simplified model of the building is supported 
only by a pair of frames then 2b is the frame spacing, and b is the perpendicular offset of the frame 
from the CR position). Parameter “B” which is not to be confused with “b” has been defined in the 
above and in Fig. 10. The value of B (as defined above) is 1.25 (for square plate) and can be up to 
1.75 (for rectangular floor plate with a very high aspect ratio) times the mass radius of gyration (r).  

 
4.2 Frequency and displacement-rotation behaviour of the coupled modes of vibration 
 
A building model featuring uniaxial asymmetry will have every translational mode of vibration 

resolved into two coupled torsional modes of vibration. Thus, the example (asymmetrical) single-
storey building model features two coupled modes of vibration, and not just a single mode, even 
though the model is a rectangular floor plate. The two coupled modes are increased to three if the 
model features bi-axial asymmetry (i.e., asymmetry in both directions). The dynamic response 
behaviour of the structure in natural (free) vibration is not a simple harmonic function (as in the 
case of a symmetrical single-storey model) but the sum of two harmonics each of which is 
associated with a coupled torsional mode of vibration. The first mode has a natural angular 
frequency (Ωj=1) which is lower than that of the corresponding symmetrical building model (x) 
whereas the second torsional mode of vibration has angular natural frequency (Ωj=2) which is 
higher than x. Values of the two frequency ratios j=1,2 as defined by Eq. (4) are summarised in 
Fig. 11 

Ω , ,  (4a)

where 

1
2

1
2

 (4b)

It is shown that the value of 1 is always smaller than unity whereas the value of 2 is always 
greater than unity. Frequency values of the two coupled modes can be very close (i.e., values of 
both modes are close to unity) when the value of br (i.e., b/r) is also close to unity, and more so for 
small eccentricity values. The values of both and were obtained as solution to an eigenvalue 
problem forming part of the modal dynamic analysis of the building model the details of which 
have been illustrated in Appendix A. It is shown that the value of the eccentricity parameter er 
(i.e., e/r) can have some effects on the dynamic response behaviour on the building system but its 
extent of influence depends highly on the value of the other parameter br (b/r) and the mode of 
vibration. Another important outcome of the dynamic modal analysis is the shape of deflection of 
the building in natural vibration. With the analysis for torsional behaviour (of a single-storey 
building model) the “deflection shape” as obtained from modal analysis is essentially the amount 
of rotation of the floor plate in the horizontal plane associated with each of the two vibration 
modes. It was found that the amount of rotation of the building floor is dependent on the value of 
and the offset of the centre of rigidity (CR) of the building from the centre of mass (CM) as 
illustrated by the schematic diagrams of Figs. 12(a) and 12(b). 

Relationships defining the normalised displacement value at the CM and CR positions for the 
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1 1
B

,
 

(7c)

	 1
1

,
 

where 

, (7d)

Eqs. (7a)-(7c) can be re-written into Eqs. 8(a)-8(d) 

1
1 ,

	

 

 

(8a)

1
1 ,

 (8b)

1
1

1 ,

	

 (8c)

where 

2 1
 (8d)

A computer program operated on common platforms like EXCEL, or MATLAB, is well 
capable of simulating the dynamic torsional response behaviour of an asymmetrical building 
model by the use of Eqs. (7a)-(7d) or Eqs. (8a)-(8d). 

 
4.4 Trends for edge displacements 
 
A response spectrum represents the maximum response of a single-degree-of-freedom system 

to an earthquake ground motions from time-history analyses. Results from analyses of the TU 
systems are presented in terms of the displacement ratio (o).  is the maximum displacement of 
the TU systems at the edges and o is the maximum displacement of the equivalent TB systems 
(TB systems with angular natural frequency equal to the uncoupled angular natural frequency of 
the TU systems). o can be represented by the response spectral displacement RSD(T, ) where T 
is the uncoupled natural period of the TU systems. 

The displacement ratio (o) is expressed as functions of dimensionless parameters er 
(representing offset of the CM from the CR) and br (representing the rigidity of the system in 
resisting rotation) for acceleration, velocity, and displacement controlled conditions. The  

754



 
 

behavi
presen
static f
by Eq.

The di
a recta
displac
provid
close t
to use 
 

4.4
The

is repr
of vib
spectru
value d

where 
design

Sub
(SRSS
design
shown
by em
2013).
determ

Fig. 13 E

iour of the d
nted under se
force at the C
 (9) 

isplacement r
angular plan
cement ratios

de estimates 
to 1.8. In situ
Eq. (9) whic

4.1 Edge disp
e maximum 
resented by th
ration (Tj) a
um (Fig. 14)
defined by E

RSAmax is th
n response sp
bstituting Eq
S) combinati
nated positio
n that reasona

mploying the 
 Maximum 

mined using 

Simplified e

Edge Displace

displacement 
eparate sub-
CM. The dis

ratio based o
n with a v
s are shown 
of the maxi

uations wher
ch is generall

splacement t
estimated di
he response 
and damping
), the value 

Eq. (10) 

,

e highest res
pectrum. 
q. (10) into 
ion rule pr
ns. Although
ably accurat
simpler SRS
displacemen
the followin

elastic design

ement Ratios 

ratios is hig
headings for
placement ra

∆
∆

on Eq. (9) is p
ery high as
in Figs. 13, 
mum displac
e the value o
ly applicable

trends in acc
splacement v
spectral disp

g ratio (). 
of response 

max

sponse spectr

Eqs. (8a)-(8
ovides an e
h more rigo
e estimates o
SS combinat
nt estimates 
ng relationsh

 
 
 
 
 
 

n checks for to

according to r

ghly depende
r comparison
atio based on

1

presented in 
spect ratio.
15, 17 and 1
cement at th

of Br of the b
e (whilst Fig.

celeration co
value of a sin
placement RS
In the acce
spectral dis

,

ral accelerati

8c) and app
estimate of 

orous combin
of the maxim
tion rule wit
at CM, CR

hips for com

rsionally bala

results from st

ent on such c
n with resul
n applying a

 

Fig. 13 assu
These beha

19. It is noted
he edges of 
uilding is dif
. 13 only app

ontrolled con
ngle-degree-
SD(Tj,) whi
leration con

splacement c

2

ion demand a

lying square
f the maxim
nation rules 
mum displac
th this form 

and at the 
mparison wit

anced and… 

 
tatic analyses 

conditions an
lts based on 
a static force 

uming Br=B/r
avioural tren
d that these f
a TU system
fferent to 1.8
plies to cases

nditions 
of-freedom s
ich is functio

ntrolled regio
can be taken

 

as defined by

e-root-of-the
mum displac

could be ad
ement dema
of analysis 
two edges +

th based on 

(Br=1.8) 

nd hence resu
simply app
at the CM i

/r of 1.8 to re
nds with th
figures are m
m that has B
8 it is recomm
s where Br=1

system (UΩj,

on of natural
on of the re

n to be equal

y the flat par

e-sum-of-the-
cement dem
adopted it ha
and can be o

(Lumantarn
+B and –B 
simply app

ults are 
lying a 
s given 

(9)

epresent 
e edge 

meant to 
Br value 
mended 
.8). 

(max)) 
l period 
esponse 
l to the 

(10)

rt of the 

-square 
mand at 
as been 
btained 
a et al. 
can be 
lying a 

755



static f

At the 

Fig

o a
the edg
CR (th
flexibl
rigidity
behavi

TU
reachin
to indi
whethe
of high
15(a). 
elemen
b/r≤1.0
show 
Howev




 

force at CM 

two edges w

gs. 15(a) and 

as obtained u
ges is on the
he “stiff side
le edges of th
y of the bu
iour than the

U models with
ng a very hig
icate that su
er lateral for
h displaceme
Codes of pr

nts for provi
0 as irregula
a gradual, 

ver, the trend

Nelson 

(Fig. 13) 

At	 						

At	 								

which are off

∆
∆

15(b) presen

using Eq. (11
e far side of t
e”). It is sho
he TU buildi
uilding whic
 eccentricity
h values of b
gh value. Gr

uch condition
rce method o
ent demand, 
ractices (e.g
iding adequa
ar. Graphs in
monotonic, 

ds are still ve

F

T.K. Lam, Joh

						
∆
∆

							
∆
∆

fset by the am

max
,

nt two sets o

c) for the tw
the CR (the “
own in Figs.
ng is highly 

ch is shown
 properties. 
b/r lower tha
raphs associa
ns should be
or dynamic a
and counter 
., Eurocode 

ate torsional 
n solid lines 

increase in
ery different 

Fig. 14 Accele

 
 
 
 
 
 

hn L. Wilson a

max
,

max
,

mount +B an

1

1

of estimates 

wo edges assu
“flexible side

15(a) and 1
dependent o

n to be muc
 
an unity are 
ated with b/r
e prohibited 
analysis meth

intuitive, be
8 (EN 1998
rigidity to th
 which are a

n displacem
to statical be

eration contro

and Elisa Lum

1
1

1

d –B from th

1

of the edge 

uming that B
e”) and the o
15(b) that th
on the value o
ch more inf

shown to ha
r≤1.0 are acc
in the desig

hod has been
ehaviour in su
8-1 2004) en
he building a
associated w
ent demand
ehaviour as s

olled condition

mantarna 

1
 

1
 

he CM 

 

displacemen

Br (=B/r) is e
other edge is 
he displacem
of b/r repres
fluential to 

ave the displ
cordingly sho
gn of a build
n employed f
uch conditio
ncourage the
and classify 

with higher b
d with incre
shown in Fig

ns 

nt ratio 

equal to 1.8. 
s on the near 

ment at the st
senting the to

torsional co

lacement rat
hown in dotte
ding irrespec
for analysis i

ons as shown
e use of orth

buildings in
b/r values (b
easing eccen
g. 13. 

(11a)

(11b)

(11c)

,
 or 

One of 
side of 

tiff and 
orsional 
oupling 

tio o 

ed lines 
ctive of 
in view 

n in Fig. 
hogonal 
n which 
b/r>1.0) 
ntricity. 

756



 
 
 
 
 
 

Simplified elastic design checks for torsionally balanced and… 

 
(a) Stiff edge 

 
(b) Flexible edge 

Fig. 15 Displacement ratio of TU buildings in acceleration controlled conditions (Br =1.8) 

 
 

Figs. 15(a) and 15(b) may be used for finding the value of the displacement ratio o where 
value of Br is close to 1.8. In situations where the value of Br is very different to 1.8 it is 
recommended to use Eq. (8d) to calculate the value of j, and then Eq. (11c) to calculate the value 
of o
 

4.4.2 Trends of edge displacement in velocity controlled conditions 
In the velocity controlled region of the response spectrum (Fig. 16), the value of response 

spectral displacement may be estimated using Eq. (12) 
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Table 4 Displacement values of TB estimated using the Code Lateral Force Method 

Level o 
(mm) 

8 45 

7 39 

6 32.7 

5 26.1 

4 19.6 

3 13.3 

2 7.7 

1 3.2 

 
Table 5 Displacement values of TB estimated by the Generalised Force Method 

Level o 
(mm) 

8 34 

7 29 

6 24 

5 20 

4 15 

3 10 

2 6 

1 2 

 
Table 6 Displacement values estimated using the Generalised Force Method 

Level 
O (mm) 

by Generalised Force method 
(TB) 

 (mm) 
by Generalised Force Method (TU) 

Flexible edge (×1.73) Stiff edge (×0.55) 

8 34 59 19 

7 29 51 16 

6 24 43 13 

5 20 34 11 

4 15 26 8 

3 10 17 5 

2 6 10 3 

1 2 4 1 

 
 
details in Appendix B. The displacement demand estimated by the Generalised Force Method (as 
outlined in Section 3) is 24 mm based on planar analysis of the building ignoring plan asymmetry. 
The building displacement profile is represented by the listed values in Table 5. 
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6. Conclusions 
 

The Generalised Force Method of Analysis for undertaking design checks for both TB and TU 
low and medium rise buildings has been derived, and verified, in this paper. 

In the proposed procedure a TB building is first subject to the code lateral force analysis 
method for obtaining an initial estimate of the seismic inertia forces. The code procedure has been 
extended by the analysis of the deflection profile of the building and in identifying the effective 
displacement, effective stiffness and effective mass in order that a relationship representing the 
behaviour of the building can be constructed in the form of a capacity diagram. The response 
spectrum of the earthquake actions was then presented in the format of an acceleration-
displacement response spectrum (ADRS) diagram which was overlaid onto the capacity diagram. 
The displacement and acceleration demand of the building was then taken as the intercept of the 
capacity diagram with the ADRS diagram. It is shown that the (more accurate) estimate of the 
seismic demand as indicated by the intercept of the two diagrams was much less conservative than 
the initial estimate as stipulated by the code lateral force method. The method of analysis as 
introduced herein is called the Generalised Force Method. 

For a TU building the torsional rigidity parameter (b/r) and eccentricity parameter (e/r) are to 
be identified. TU buildings with weak torsional rigidity (i.e., b/r≤1.0) should be prohibited from 
design irrespective of results from dynamic analyses unless performance is satisfactory under DC 
conditions. The displacement demand of a medium rise TU building in which b/r≥1.0 may be 
derived from planar analysis as per the procedure introduced in Section 3. The displacement 
profile so obtained from the translational only analysis has to be amplified by a factor which is 
defined by: 

(i) Eq. (11c) or Figs. 15(a) and 15(b) for acceleration controlled conditions 
(ii) Eq. (13c) or Figs. 17(a) and 17(b) for velocity controlled conditions 
(iii) Eq. (15c) or Figs. 19(a) and 19(b) for displacement controlled conditions 
Refer Table 7 for a summary of all the steps involved in the analysis method. 
The effects of bi-directional excitations would also need to be taken into account by the use of 

the 100%/30% rule or SRSS combination rule. 
The recommended Generalised Force Method for estimating the displacement profile of a TU 

building has been verified by comparison with results from the dynamic analyses of irregular 
building models. Such verification analysis undertaken for an example building is presented. 
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Appendix A 
 

Dynamic equations of equilibrium and eigenvalue analysis 
 
For completeness this section presents details of how the eigenvalues (j) and eigenvectors 

(normalised displacement xr and ) as presented in the earlier sections of the paper were derived. 
Equation of translational equilibrium 

0 (A1a)

Equation of rotational equilibrium (taking moment about CM) 

0  (A1b)

Equation of translational equilibrium 

0 (A2a)

Divide both sides of equation by M and r 

0 (A2b)

Given that ; ; 	  

0 (A2c)

Equation of rotational equilibrium (taking moment about CM) 

0 (A3a)

0 (A3b)

Divide both sides of equation by M and r2 and given that  

0 (A3c)

Given that  

0 (A3d)

0 (A3e)

Recall the reduced equations of dynamic equilibrium 

1 0
0 1

1 0
0

 (A4a)

1
Ω 1 0

0 1
0
0

 (A4b)
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Where 21,jΩ   are the natural angular velocities of the coupled modes of vibration (i.e., the 
eigenvalues) 

Let 		
1

0		 

1 0 (A4c)

Solution for values of 2
j can be obtained by solving the roots of a quadratic equation. 

It can be shown using the elementary expression: 
√

 that 

1
2

1
2

 (A4d)

Solution for the eigenvector is accordingly obtained as follows 

1 1 0
0

 (A5a)

1 	 0 
1

or
1

 (A5b)

 
 
Appendix B 
 

Calculation of effective displacement, mass, stiffness and natural period of the TB model 
 

  

Mass, 5,816	tonnes 

     0.23g 0.85 5816 11153	kN  

      is taken as 0.85  

Distribution of base shear  

∑
  

∑

∑ .
31	mm  

∑

∑
4244	tonnes  

354924	kN/m  2 0.7	s 
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Level mi (kg) zi (m) mi zi Fi (kN) i mi i
2 mi i 

8 675359 26.2 17694406 2293.627 45 1367601975 30391155 

7 719185.4 23 16541264 2144.151 39 1093880993 28048231 

6 719185.4 19.8 14239871 1845.835 32.7 769017756.4 23517363 

5 719185.4 16.6 11938478 1547.518 26.1 489916286.3 18770739 

4 751277.5 13.4 10067119 1304.944 19.6 288610764.4 14725039 

3 737925 10.2 7526835 975.6614 13.3 130531553.3 9814403 

2 737925 7 5165475 669.5715 7.7 43751573.25 5682023 

1 755555 3.8 2871109 372.1658 3.2 7736883.2 2417776 

sum 5815598 86044556 11153.47 4191047785 1.33E+08 

 

 
 

Level i (mm) by Code lateral force 
method 

i (mm) by Generalised Force method  
(=24/32×di) 

8 45 34 

7 39 29 

6 32.7 24 

5 26.1 20 

4 19.6 15 

3 13.3 10 

2 7.7 6 

1 3.2 2 

 
 

Appendix C 
 

Determination of eccentricity, torsional stiffness and edge displacement ratio of the TU 
model 
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34.04 19.3	
	11.8	m	

. .
 17.8	m	

0.65 
 

Given the value of , 2 and e find the value of o which corresponds to the displacement 
demand when the lateral load is applied at the centre of stiffness of the building. 
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Simplified elastic design checks for torsionally balanced and… 

Step 2: Finding eccentricity (er) and torsional stiffness (br) continued 
 
Take = when the load is positioned at e/r(er)=0.65 
Result is /o=1.6, Br(=B/r)=1.68  
Find value of br (= b/r) using Eq. (9)  

∆
∆

1  

	

∆
∆ 1

1.35 

Result is b/r = 1.35  
Find  using Eq. (4b) 

1
2

1
2

 

0.85,							 1.59 
Find  using Eq. (8d) 

 . 

0.43,							 2.34 
Find the displacement ratio using Eq. 13(c) 

∆
∆

max
,

1

1
1

 

For the flexible edge 
∆

∆
	= 1.73, for the stiff edge 

∆

∆
 = 0.55 
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