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Abstract.  A virtual parameter is introduced into the formulation of the previously published integration 

method to improve its stability properties. It seems that the numerical properties of this integration method 

are almost unaffected by this parameter except for the stability property. As a result, it can have second order 

accuracy, explicit formulation and controllable numerical dissipation in addition to the enhanced stability 

property. In fact, it can have unconditional stability for the system with the instantaneous degree of 

nonlinearity less than or equal to the specified value of the virtual parameter for the modes of interest for 

each time step. 
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1. Introduction 
 

Recently, a family of structure-dependent integration methods has been successfully developed 

for structural dynamics (Chang 2014), where a single free parameter p is employed to control its 

numerical properties. It was analytically shown that it can have the unconditional stability, second 

order accuracy and controllable numerical dissipation for a linear elastic system. In addition, it was 

also shown that it has high-frequency numerical damping to suppress or even eliminate the 

spurious oscillations of high frequency responses while the low frequency responses can be very 

accurately integrated. Furthermore, it was numerically illustrated that it is very computationally 

efficient in the step-by-step solution of an inertial problem when compared to the currently 

available dissipative, implicit integration methods, such as the Wilson θ method (Bathe and 

Wilson 1973), HHT -α method (Hilber et al. 1977), WBZ -α method (Wood et al. 1981), 

generalized -α method (Chung and Hulbert 1993), Bathe implicit method (Bathe and Noh 2012) 

and the methods developed by Zhou and Tamma (2006). Consequently, it seems that this family 

method is very competitive with the currently available integration methods. However, numerical 

experiments reveal that instability may occur in the step-by-step solution of a nonlinear system 

although it has been verified that it can have unconditional stability for a linear elastic system.  
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Hence, the stability analysis of this family method for a nonlinear system must be further 
conducted. 

 In general, the basic analysis of an integration method for a linear elastic system is performed 
for a complete a step-by-step integration procedure (Belytschko and Hughes 1983). However, this 
basic analysis technique for a linear elastic system cannot be applicable to a nonlinear system since 
the structural properties might vary per time step for a nonlinear system. In order to overcome this 
difficulty, the technique for the basic analysis of a nonlinear system has been proposed by Chang 
(2007, 2010), where a novel parameter, which is referred as the instantaneous degree of 
nonlinearity for a specific time step, is introduced to monitor the stiffness change at the end of the 
time step. Besides, the basic analysis for a nonlinear system is no longer conducted for a whole 
integration procedure but for a single time step. This is because that a whole integration procedure 
consists of each time step. This implies that the numerical properties of an integration method for a 
single time step can still provide the very useful information for a complete integration procedure. 
As a result, this technique is adopted in this study. 

 After the basic analysis of the previously published integration method for a nonlinear system, 
the cause of the instability will be revealed. Apparently, the application of this integration method 
to perform a nonlinear dynamic analysis will be inconvenient or even be limited due to instability. 
Hence, to overcome this difficulty, a virtual parameter is introduced into the general formulation 
of the integration method. It will be shown that an appropriate choice of this parameter can 
effectively avoid the stability problem. In addition, the numerical properties of this integration 
method can be preserved. All the details will be present in this work.  

 
 

2. Previously published method 
 
A family of dissipative, explicit, structure-dependent integration method has been developed 

for time integration and it can be expressed as 
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where m and c0 are the mass and viscous damping coefficient, respectively; ki is the stiffness at the 
end of the i-th time step. In addition, di, vi, ai and fi are the nodal displacement, velocity, 
acceleration and external force at the end of the i-th time step, respectively. The coefficients β0 to 
β3 are found to be 
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where ξ is a viscous damping ratio; Ω0=ω0(Δt) and mk /00   is the natural frequency of the 
system determined from the initial stiffness k0. In addition, p is the parameter to govern the 
numerical properties and D is found to be 
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1 4 1

p p
D

p p
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 
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                    (3) 

For brevity, the family of the previously published integration methods will be referred as PM 
since this method is controlled by the “p” parameter. 

 
 

3. Basic analysis for nonlinear system 
 
In order to conduct the basic analysis of PM for a nonlinear system, a parameter is introduced 

to monitor the stiffness change and is called the instantaneous degree of nonlinearity (Chang 
2007). It is defined as the ratio of the stiffness at the end of the i-th time step over the initial 
stiffness and is 

0

i
i

k

k
                                  (4) 

It is clear that δi=1 implies the instantaneous stiffness at the end of the i-th time step equal to 
the initial stiffness. Whereas, the case of δi >1 implies that the instantaneous stiffness is larger than 
the initial stiffness at the end of the i-th time step; and the case of 0<δi<1 implies that the 
instantaneous stiffness is less than the initial stiffness. 

After introducing δi to monitor the stiffness change, the use of PM to calculate the free 
vibration response of a single degree of freedom system can be expressed as 

1 1i i i X A X                              (5) 

 
 

 
Fig. 1 Variation of spectral radius with Δt/T0 
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where iX =[di, (Δt)vi, (Δt)2ai]
T is defined; and 1iA  is the amplification matrix of PM at the end 

of the (i+1)-th time step. Notice that 1iA  might vary for each time step for a nonlinear system. 
As a result, the explicit expression of 1iA  is found to be 
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where B=1-(p-3)/(p+1)ξΩ0.  
The characteristic equation of the matrix 1iA  can be obtained from 1

0
i

  A I . As a 
result, it is found to be 
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3  AAA                           (8) 

where λ is an eigenvalue of 1iA . It is very complicated to explicitly derive the coefficients A1, A2 

and A3. However, the numerical properties of PM can be numerically obtained from Eq. (8) 
without using the explicit expressions of the coefficients A1, A2 and A3.  

The variations of spectral radii with Δt/T0 for different instantaneous degree of nonlinearity δi 
and δi+1 as well as different p values are plotted in Fig. 1. It is apparent that there are many 
combinations of δi and δi+1 for simulating a variety of nonlinear cases. However, for brevity but 
without losing generality the cases of δi=δi+1=δ=0.5, 1.0 and 2.0 are considered since δi is, in 
general, close to δi for the consecutive time steps in an integration procedure. In addition, the cases 
of p=1, 0.75 and 0.50 are considered. The spectral radius is always less than or equal to 1 for δ=0.5 
and 1.0 and finally approaches a constant smaller than or equal to 1 while it becomes greater than 
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1 for δ=2.0 and finally tends to a constant greater than 1. It is revealed by further numerical 
experiments that the spectral radius is always less than or equal to 1 for δ≤1 while it becomes 
greater than 1 for δ>1. Hence, it can be concluded that PM is unconditionally stable for δ≤1 while 
it is conditionally stable for δ>1. 

 
 

4. A virtual parameter 
 
Since PM can only have conditional stability for δ>1.0, its application to conduct a nonlinear 

dynamic analysis may be inconvenient or even limited. There is a motive to improve the stability 
properties of PM by virtually introducing a parameter σ into the coefficients of β0 to β3. The 
motivation of this technique and implementation details will be presented in this section. 

It was shown in the previous section that PM is unconditionally stable in the range of δ≤1 while 
it becomes conditionally stable in the range of δ>1. On the other hand, in the formulation of PM, 
only the coefficients β0 to β3 are functions of the initial stiffness k0. Both combines to imply that 
PM can have unconditionally stable only if the instantaneous stiffness k is equal to or less than the 
initial stiffness k0, i.e., δ≤1. Hence, based on this characteristic, the unconditional stability range of 
PM can be enlarged if the initial stiffness is visually modified from k0 to σk0 by the virtual 
parameter σ. As a result, the unconditional stability range alters from k≤k0 to k≤σk0 since PM is 
unconditionally stable only if δ≤1 is satisfied. Hence, it is implied that an unconditional stability 
range can be enlarged if σ is chosen to be greater than 1. Whereas, it will be shrunk if 0<σ<1 is 
adopted.  

To apply the virtual parameter σ to PM, its formulation can also be expressed as shown in Eq. 
(1). However, the coefficients β0 to β3 must be modified and become 
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where D becomes 
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Notice that although the numerators of β2 and β3 remain unchanged as shown in Eq. (9), their 
denominator D varies. 

In order to gain an insight into the stability conditions of PM with the inclusion of the virtual 
parameter σ, the variation of upper stability limit with the instantaneous degree of nonlinearity is 
plotted in Figs. 2 and 3 for p=0.1 and 0.5, respectively. It is manifested from Fig. 2 that the 
unconditional stability range is found to be δ≤1, δ≤2 and δ≤3 corresponding to the value of σ=1, 2 
and 3 for the different viscous damping ratios of ξ=0, 0.1 and 0.2. This implies that the 
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Fig. 2 Variation of upper stability limit with δ for PM with p=1.0 

 

 
Fig. 3 Variation of upper stability limit with δ for PM with p=0.5 

 
 

introduction of σ into PM can extend its unconditional stability range from δ≤1 to δ≤σ and it 
becomes conditionally stable in the range of δ>σ. The case of σ=1 implies that there is no inclusion 
of the virtual parameter σ for PM. Very similar phenomena are also found in Fig. 3 for the case of 
p=0.5. However, it is seen in this figure that the virtual parameter σ seems to extend the 
unconditional stability range to be larger than that of δi+1≤σ. In fact, it is to extend from δ≤1 to 
δ≤ , where  ≥σ. Notice that there is a bifurcation point in the curves for ξ=0.1 and 0.2 in Fig. 3, 
where the real, distinct principal eigenvalues bifurcate into complex conjugate eigenvalues. Both 
Figs. 2 and 3 confirm that the virtual parameter σ can alter the unconditional stability range from 
δ≤1 to δ≤σ. This implies that a large value of σ leads to a large unconditional stability range. Since 
it is seldom experienced that the instantaneous stiffness of a real structure is larger than twice of 

302



 
 
 
 
 
 

A virtual parameter to improve stability properties for an integration method 

the initial stiffness, i.e., δ>2. Thus, the case of δ≤2 is considered in this study since this range may 
be large enough for practical applications. 

 
 

5. Numerical properties of PM with virtual parameter 
 
The coefficients of β0 to β3 for PM are modified after introducing the virtual parameter σ. 

Although this parameter can enhance the stability properties of PM, the other numerical properties 
of PM might also be affected by this parameter. Hence, the numerical properties of PM with the 
inclusion of σ must be further evaluated.  

 
5.1 Spectral radius 
 
The variations of spectral radii with Δt/T0 for PM with σ=2 are shown in Fig. 4. The spectral 

radius is always less than or equal to 1 for each curve of this figure. This is consistent with the 
analytical prediction that the application of the virtual parameter σ to PM can extend the 
unconditional stability range from δ≤1 to δ≤σ. In general, each curve has a unit spectral radius for 
small Δt/T0 while it decreases gradually and finally tends to a certain constant less than 1. It is also 
found that the constant value decreases with the decrease of p for given δ and Δt/T0. Whereas, it 
decreases with the increase of δ for given p and Δt/T0 if p≠1.0.  

 
5.2 Relative period error 
 
Variations of relative period errors with Δt/T0 are shown in Fig. 5. In general, the relative 

period error increases with the increase of Δt/T0 as δ and p are given. Period elongation is 
generally found for PM and its amount increases with the decrease of p for a given δ while it is 

 
 

 
Fig. 4 Variation of spectral radius with Δt/T0 for PM with σ=2 
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Fig. 5 Variation of relative period error with Δt/T0 

 

 
Fig. 6 Variation of numerical damping ratio with Δt/T0 

 
 

decreased with the increase of δ for a given p. It is also found that the relative period error for the 
case of σ=2 is, in general, larger than that of the case of σ=1 for a small value of Δt/T0 for the given 
p and δ values. Numerical experiments also reveal that the increase of σ results in the increase of 
period distortion. Thus, although a large σ can extend the unconditional stability range from δ≤1 to 
δ≤σ, it leads to more period distortion. In this figure, the relative period error is small for 
Δt/T0≤0.05 for σ=1 while Δt/T0≤0.025 may be needed for σ=2 to have roughly the same period 
distortion. Consequently, the increase of σ value will increase the unconditional stability range but 
will sacrifice the numerical accuracy. 
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5.3 Numerical damping 
 
Fig. 6 shows the variations of numerical damping ratios with Δt/T0 for PM. It is clear that there 

is no numerical dissipation for the case of p=0.1 for both σ=1 and 2. Whereas, the case of p=0.5 
generally leads to favorable numerical dissipation except for the case of σ=1 and δ=2. In general, 
the numerical damping ratio increases with Δt/T0 and finally approached a constant value for PM 
with p=0.5 as δ≤1 while a negative damping ratio is found for the case of σ=1 and δ=2. This is 
because that instability occurs for σ=1 and δ=2. As a summary, a favorable numerical dissipation 
property can be obtained from PM with an appropriate value of σ≥1 and the choice of 1/2≤p<1.0 if 
δ≤σ is satisfied during the integration procedure. 

 
5.4 Overshooting 
  
Overshooting is adverse to an integration method (Goudreau and Taylor 1972, Hilber and 

Hughes 1978). The behavior as Ωi→∞ gives an indication of the behavior of the high frequency 
mode for a system where the values of Δt/Ti are large for the high-frequency modes. Employing 
Eq. (5) with the matrix 1iA , one can have the following equations for the limiting condition of 
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   (11) 

Notice that both di+1 and vi+1 are independent of σ in this equation. Thus, it is implied that the 
overshooting behaviors of PM are not affected by the virtual parameter σ. The first line of this 
equation reveals that there is s no overshoot in displacement for any member of PM while it 
generally has a tendency to overshoot linearly in Ω0 in the velocity equation due to the initial 
displacement term.  

In order to examine the overshoot behavior of PM affected by σ, the discrete displacement and 
velocity responses are obtained from PM with p=1 and 0.5 for σ=2. The free vibration response to 
the initial conditions d0=1 and v0=0 is calculated with the time step of Δt/10T0. To simulate the 
system with different stiffness characteristic, the stiffness is assumed to be in the form of 
k=k0(1+θu2). Hence, the cases of θ=0, -0.1 and 1 will lead to δ=1, δ<1 and δ>1 for each time step 
correspondingly. Numerical results are shown in Fig. 7. For comparison, the results obtained from 
the constant average acceleration method (AAM) (Newmark 1959) are also plotted in this figure. 
The velocity term is normalized by the initial natural frequency of the system in order to have the 
same unit as displacement. It is seen in Figs. 7(a), 7(c) and 7(e) that PM with p=1 or 0.5 for σ=2 
shows no overshoot in displacement for δ=1, δ<1 and δ>1. However, a significant overshoot in 
velocity is found in Figs. 7(b), 7(d) and 7(f). As a summary, the phenomena of overshoot both in 
displacement and velocity for PM with p=1 or 0.5 for σ=2 are consistent with the analytical results 
shown in Eq. (11). 
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Fig. 7 Comparisons of overshoot responses for PM 
 
 

6. Numerical illustrations 
 
Notice that the implementation details of PM is almost unaffected by the application of the 

virtual parameter σ into its formulation. An example is used to examine the numerical properties of 
PM. In fact, the numerical properties of unconditional stability, accuracy and numerical damping 
are addressed. For brevity, the specified values of p and σ corresponding to PM1 to PM4 are listed 
in Table 1. In addition, their unconditional stability range and numerical damping property are also 
shown in this table. In the following numerical illustration, a two-story shear-beam building is 
considered and is shown in Fig. 8. The bending stiffness of each story is 

 2

0 1k k h u    
                            (12) 

where k0 is the initial stiffness and Δu is a story drift. The nonlinear stiffness term will appear for 
h≠0. Based on the initial stiffness matrix, the natural frequencies of the system are found to be 

(1)

0 3.16   and (2)

0 1000.00   rad/sec; and their corresponding modal shapes are 

1 2
4 4

1 1

10 10
 



          
      

                      (13) 

It is clear that the two modes are widely separated from each other. Meanwhile, in order to 
simulate the system with δ=1, δ<1 and δ>1, three sets with different values of h1 and h2 are 
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Fig. 8 A 2-story shear-beam type building 
 

 
Fig. 9 Displacement responses of System-A 

 
Table 1 Four specific members of PM 

Member p   Unconditional Stability Range Numerical Damping 

PM1 1.0 1 1   No 

PM2 0.5 1 1   Yes 

PM3 1.0 2 2   No 

PM4 0.5 2 2   Yes 

 
 
specified and they are 

 System-A 1 2 0h h   1   for each mode and time step 

 System-B 1 2 0.5h h    1   for each mode and time step 
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 System-C 1 2 1h h   1   for each mode and time step 

These three systems are subjected to the same applied loads as shown in Fig. 8. For 
comparison, the displacement response obtained from NEM with Δt=0.001 sec is considered as a 
reference solution for comparison. Meanwhile, numerical results are also obtained from PM1 to 
PM4 with Δt=0.05 sec for all the three systems. Figs. 9 to 11 show the numerical results for 
System-A, System-B and System-C, respectively. 

 
6.1 Responses to System-A 
 
Since h1=h2=0 is taken for System-A, thus this system is a linear elastic system. In Fig. 9, it 

seems that PM1 to PM4 can generally provide reliable solutions for the top story. Whereas, for the 
bottom story, only PM2 and PM4 can give acceptable results while those obtained from PM1 and 
PM3 are unacceptable. It is indicated that PM1 to PM4 can have unconditional stability for δ=1 
since they all lead to stable solutions and the value of (2)

0 ( )t   is as large as 50. Notice that the 
second mode is a very high frequency mode; and it contributes significantly to the bottom story 
while its contribution to the top story is negligible, which can be manifested from ϕ2 as shown in 
Eq. (13). In addition, the time step of Δt=0.05 sec is able to accurately integrate the first mode 
while it will lead to a very significant period distortion for the second mode. Since there is no 
contribution from the second mode to the top story, thus PM1 to PM4 can give accurate results for 
the top story. It is apparent that the results obtained from PM1 and PM3 for the bottom story are 
contaminated by the second mode. Since the numerical damping of PM2 and PM4 can be used to 
filter out the spurious oscillations of the second mode very early, the results obtained from PM2 
and PM4 for the bottom story are reliable. 

 
 

 
Fig. 10 Displacement responses of System-B 
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Fig. 11 Displacement responses of System-C 

 
 
6.2 Responses to System-B 
 
In order to show that System-B always leads to δ<1 and System-C always leads to δ>1 for each 

mode and each time step, the technique to evaluate the instantaneous degree of nonlinearity for 
each mode is described next. It is recognized that a nonlinear multiple degree of freedom system 
cannot reduce to uncoupled single degree of freedom systems for a complete integration 
procedure. However, it can be done for each time step and thus the numerical properties for the 
solution of a nonlinear single degree of freedom system can be used to these uncoupled single 
degree of freedom systems. This relies upon the natural frequencies of the modes of interest in 
each time step since the instantaneous degrees of nonlinearity for these modes can be determined 
from these frequencies. In fact, the instantaneous degree of nonlinearity at the i-th time step for the 
j-th mode can be calculated by the following equation after finding the natural frequency of the 
j-th mode at the i-th time step 

2
( )

( )

( )

0

j
j i

i j





 

  
 

                             (14) 

where ( )

0

j  and ( )j

i  are the natural frequencies of the j-th mode based on the initial stiffness and 
the stiffness at the end of the i-th time step. Based on Eq. (14), the time histories of the 
instantaneous degree of nonlinearity for the two modes of System-B and System-C are plotted in 
Figs. 12 and 13, respectively. 

Fig. 12 reveals that 
(1)

i  varies between 0.7 and 1.0 and 
(2)

i  varies between 0.6 and 1.0. 
Hence, it is confirmed that δ<1 for each mode and each time step for System-B. Consequently, the 
unconditional stability of PM1 to PM4 for δ<1 is indicated since they lead to stable results 
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Fig. 12 Time history of instantaneous degree of nonlinearity for System-B 

 

 
Fig. 13 Time history of instantaneous degree of nonlinearity for System-C 

 
 
although the results obtained from PM1 and PM3 significantly deviate from the reference 
solutions. Since the phenomena and the causes of these phenomena for the numerical results 
obtained from PM1 to PM4 are very similar to those found in Fig. 9, thus they will not elaborated 
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here again. 
 
6.3 Responses to System-C 
 
It is seen in Fig. 13 that 

(1)

i  varies between 1.0 and 1.35 and (2)

i  varies between 1.0 and 1.6. 
Hence, it is confirmed that δ>1 for each mode and each time step for System-C. Figs. 11(a) and 
11(b) reveal that the results obtained from PM1 and PM2 blow up very early. This is consistent 
with the analytical results, which reveal that PM1 and PM2 can only have unconditional stability 
for δ≤1 while they become conditionally stable for δ>1. Thus, the violation of the upper stability 
limit is responsible for the numerical instability for PM1 and PM2. On the other hand, in Figs. 
11(c) and 11(d), it is seen that PM3 and PM4 result in stable solutions. This attests to that the 
application of σ=2 to PM can enlarge the unconditional stability range from δ≤1 to δ≤2. In 
addition, PM4 gives reliable solutions for both top and bottoms stories; while PM3 only provides 
reliable solution for the top story while the result for the bottom story deviates from the reference 
solution. This can be explained by next. Since PM3 has no numerical damping to suppress the 
second mode response, thus the bottom story response is contaminated by this response. On the 
other hand, the numerical damping of PM4 is able to effectively filter out the second mode 
response and thus PM4 leads to a reliable solution. 

 
 

7. Summarized numerical properties 
 
After introducing the virtual parameter σ=2 into PM, it can have unconditional stability in the 

range of δ≤2, which is large enough for practical applications. Thus, the stability problem no 
longer limit the application of this integration method or cause any inconvenience. Notice that all 
the other numerical properties of PM are unaffected by this modification. Hence, the modified PM 
can integrate unconditional stability, explicit formulation, second-order accuracy and controllable 
numerical damping together. As a result, it is very competitive to the traditional implicit 
integration methods, such as the Newmark method, HHT-α method, WBZ-α method and 
generalized-α method. When compared to these implicit integration method, the most important 
improvement of this integration method is the simultaneous integration of explicit formulation and 
unconditional stability. In general, it will involve no nonlinear iterations due to the explicit 
formulation of each time step while there is no limitation on step size due to unconditional 
stability. Thus, a relatively large time step might be adopted to carry out the time integration 
without involving an iteration procedure. On the other hand, an iteration procedure is often 
involved for each time step for the implicit integration methods although they can also have 
unconditional stability. Notice that it is very time consuming for involving the nonlinear iterations 
of each time step. Consequently, PM is much more computationally efficient when compared to 
these implicit integration methods. It has been shown in the reference (Chang 2014) that the CPU 
time consumed by PM may be as small as 1% of that consumed by the constant average 
acceleration method for a 1000-degree-of-freedom system. Since this improved integration method 
can have desired numerical dissipation, such as that possessed by the HHT-α method, WBZ-α 
method and generalized-α method, thus it is very promising for solving inertial problems, where 
the total response is dominated by low frequency modes while high frequency responses are of no 
interest. 
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8. Conclusions 
 
It is numerically illustrated and analytically verified that the previously published integration 

method may lead to numerical instability in the solution of a nonlinear system. In fact, it is shown 
that this integration method can only have unconditional stability for δ≤1 and it will become 
conditionally stable for δ>1. Consequently, its application may become inconvenient or limited in 
practical applications. In order to overcome this difficulty, a virtual parameter σ is introduced into 
the formulation of this integration method to improve its stability properties. As a result, its 
unconditional stability range is effectively extended from δ≤1 to δ≤σ. It seems that the choice of 
σ=2 is good enough for practical applications since it is very rare to encounter that for an actual 
structure, whose instantaneous stiffness is as large as twice of that of the initial stiffness. This 
improved stability property is very important for practical applications since it can avoid the need 
to consider the stability problem. It is worth noting that the other numerical properties of this 
modified integration method are not altered by this modification. Consequently, it can have 
unconditional stability, second-order accuracy, explicit formulation and favorable numerical 
dissipation. 
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