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Abstract.  The main objective of this paper is the robust multi-objective optimization design of semi-active 

tuned mass damper (STMD) system using genetic algorithms and fuzzy logic. For optimal design of this 

system, it is required that the uncertainties which may exist in the system be taken into account. This 

consideration is performed through the robust design optimization (RDO) procedure. To evaluate the 

optimal values of the design parameters, three non-commensurable objective functions namely: normalized 

values of the maximum displacement, velocity, and acceleration of each story level are considered to 

minimize simultaneously. For this purpose, a fast and elitist non-dominated sorting genetic algorithm 

(NSGA-II) approach is used to find a set of Pareto-optimal solutions. The torsional effects due to 

irregularities of the building and/or unsymmetrical placements of the dampers are taken into account through 

the 3-D modeling of the building. Finally, the comparison of the results shows that the probabilistic robust 

STMD system is capable of providing a reduction of about 52%, 42.5%, and 37.24% on the maximum 

displacement, velocity, and acceleration of the building top story, respectively. 
 

Keywords:  semi-active control system; multi-objective optimization; robust design; genetic algorithm; 

fuzzy logic controller; earthquake excitation 

 

 

1. Introduction 
 

One of the most important tasks of structural engineers is to reasonably minimize undesired 

vibrations of structures due to environmental dynamic loads such as earthquake excitations. 

Various strategies and theories are investigated and developed to approach this goal over the years 

(Adhikari and Yamaguchi 1997, Alhan and Gavin 2004, Amezquita-Sanchez et al. 2014, Chooi 

and Oyadiji 2008, Rama Mohan Rao and Sivasubramanian 2008). Use of control systems is one of 

these methods to enhance the structural performance against vibration excitations. The Control 

systems are divided into four groups of passive, semi-active, active, and hybrid systems based on 

                                                           

Corresponding author, Associate Professor, E-mail: pourzeynali@guilan.ac.ir 
a
Master student 

b
Master student 

c
Assistant Professor 



 

 

 

 

 

 

Saeid Pourzeynali, Shide Salimi, Meysam Yousefisefat and Houshyar Eimani Kalesar 

the performance and rate of energy consumption and the type of their installation to the main 

structure (Datta 1996). 

Passive systems dissipate vibration excitations without using any external power source for 

operation and utilize the motion of the structure for this purpose. Since the properties of these 

types of control systems cannot be modified after installation, they are regarded as passive. These 

systems are simple, inexpensive, and reliable to suppress undesired vibrations of structures. 

Another advantage of these systems is their low costs of repair and maintenance. Passive tuned 

mass damper (TMD) system is one of these systems (Boudaoud et al. 2008, Fangfang et al. 2013, 

Cao and Li 2004, Pinkaew and Fujino 2001, Soong and Dargush 1997). 

An active control system may be defined as a system which typically requires a large power 

source for operation of electrohydraulic or electromechanical actuators which supply control 

forces to the structure. Control forces develop based on feedback from sensors that measure the 

excitation and/or the response of the structure (Symans and Constantinou 1999, Blachowski, 

2007). Active systems are more costly, complex, need careful maintenance; and furthermore, they 

need huge source of energy difficult to provide in severe earthquakes.  

The above limitations of passive and active control systems resulted in developing semi-active 

control systems. Semi-active control systems maintain the reliability of passive control systems 

while taking advantage of the adjustable parameter characteristics of an active control system 

(Mehrparvar and Khoshnoudian 2012, Symans and Constantinou 1999, Pneumatikos and 

Hatzigeorgious 2014). In these systems, the stiffness or damping ratio of the control device 

changes proportional to the relative displacement or velocity of the structure by receiving 

information from sensors in every second (Mulligan 2007). Therefore, they do not require large 

power supply, and they do not add additional energy to the main structure and guarantee stability 

of the system. In order to regulate the stiffness or damping ratio of these devices, fuzzy logic can 

be utilized. Semi-active tuned mass damper (STMD) system with variable damping is a kind of 

these systems investigated in the present study. 

Various studies confirm the efficiency of STMDs and show that the application of TMDs is 

much better when they behave as STMDs, especially in wind and earthquake excitations. 

Therefore, modeling procedure of the STMD system automatically includes modeling of the TMD 

system which uses the passive fluid viscous damper. The theory of TMD system has been used for 

the first time by Frahm in 1909 to reduce the movement of a structure subjected to monotonic 

harmonic forces. Hrovat et al. (1983) used STMDs for the control of tall buildings against wind 

pressure. Abe and Igusa (1996) developed analytical theory for optimum control algorithms for 

semi-active absorbers. Agrawal and Yang (2000) proposed particular tools namely semi-active 

algorithms to protect unstable structures subjected to near field earthquakes. Pinkaew and Fujino 

(2001) studied controlling effects of STMDs with different dampers for single-degree-of-freedom 

systems subjected to harmonic excitations. Lin et al. (2005) suggested a new semi-active control 

system that used variable damping and MR damping. Pourzeynali and Datta (2005) studied 

application of STMD system to control the suspension bridge flutter using fuzzy logic. 

In the present study, the robust STMD system is studied with variable damping produced by a 

semi-active fluid viscous damper. A passive fluid viscous damper is similar to the shock absorber 

in automobiles. The configuration of this damper includes a hydraulic cylinder filled with a 

damping fluid like silicone or oil and a piston head with a small orifice. As the damper strokes the 

damping fluid flows through the orifice at high speed from one side to the other and produces a 

damping pressure creating the damping force. An external bypass loop containing a controllable 

valve to a passive fluid damper provides a semi-active fluid damper. The behavior of the semi-
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active fluid damper is essentially similar to passive fluid damper except that the former has an 

external valve connecting two sides of the cylinder and modulates the output force. In this kind of 

damper, adjustable damping property makes it capable to generate wide range of damping force. 

Since a small power or source just used for closing or opening external valve, it can produce very 

large damping force without need of large input energy and can therefore operate on batteries 

(Pourzeynali and Mousanejad 2010).  

The main objective of this paper is to find the optimal values of the parameters of the STMD 

system as a kind of semi-active control device using genetic algorithms (GAs) and fuzzy logic to 

simultaneously minimize the building selected responses. Three non-commensurable objective 

functions namely: the maximum normalized displacement, maximum velocity, and maximum 

acceleration of each story level of the building are considered to be minimized simultaneously. For 

the numerical analysis, a reality 12-story building has been chosen. The torsional effects due to 

irregularities exist in the building and/or unsymmetrical placements of the dampers are taken into 

account through 3-D modeling of the building. 

Moreover, the optimal design of a system requires that the uncertainties, which may exist in the 

system, be taken into account in the dynamic analyses. This can be done by the robust design 

optimization (RDO) approach. This method is based on the non-deterministic optimization 

approach through which the probabilistic uncertainties can be considered for uncertain parameters 

and the stochastic optimal design processes can be performed for the system (Khalkhali et al. 

2016). The Hammersley Sequence Sampling (HSS) method which is a direct and simple numerical 

method is used in the present study to perform the RDO procedure. Finally, the robust optimal 

values of the STMD parameters are evaluated for the example building structure. 

 
 

2. Methods 
 

2.1 Mathematical modeling of the building 
 
For an n-story building structure with an STMD control system installed on its top floor and 

subjected to earthquake horizontal acceleration components, as shown in Fig. 1, the equations of 

motion can be given as (Cao and Li 2004) 

                        rddrddg ukutcltuRMtuKtuCtuM    (1) 

            tumtulmtuktutctum gxd

T

drddrddrdd
  }{  (2) 

where [M], [C], and [K] are the 3n×3n mass, damping, and stiffness matrices of the main structure, 

respectively; n is the number of stories; {u(t)} is the 3n×1 displacement vector of the building with 

respect to the ground; urd(t) is the relative displacement of the STMD with respect to the building 

top floor; md, kd and cd(t) are the mass, stiffness, and time dependent damping of the STMD; [R] is 

the 3n×3 influence matrix (Salimi 2011); and   tug
  shows the acceleration of earthquake acting 

on the base of the main structure.  

The simplest procedure to define mass properties of the building is to assume that the entire 

mass is concentrated at the center of mass of each floor (rigid floor assumption), and therefore, the 

mass matrix of the building is considered to be lumped matrix (Clough and Penzien 1993). The 

damping matrix of the building is also considered to be a linear combination of the mass and 
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Fig. 1 Example building model and the STMD mounted on its top floor 

 

 

stiffness matrices called as Rayleigh damping (Chopra 1995), for which the proportionality 

coefficients are calculated by assuming the modal damping ratio of the building fundamental mode 

and that of the middle mode are the same (Pourzeynali and Esteki 2009). 

The response of the building depends on its mode shapes and natural frequencies and can be 

estimated by considering the dominant modes of the building. Therefore, in this study to obtain the 

uncontrolled responses of the building, a classical modal analysis is performed. According to the 

Zuo and Nayfeh (2003) the first vibrational mode is dominant in earthquake excitation if modal 

frequencies are well-separated. In this study, the first three frequencies of the example building are 

very close, thus, the first three modes of the main structure in each direction are considered in the 

modal analysis of the building. Consequently, the displacement vector of the building can be 

expressed as 

       tqtu   (3) 

           
 
 
 
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
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tq

tq

3

2

1

321 ,  (4) 

where {ϕ}i is the ith mode shape of the building; and qi(t) is the ith generalized modal coordinate of 

the structure. 

Now, by selecting the generalized modal coordinates {q(t)}, stroke of the STMD mass block 

urd(t), and their time derivatives as the state variables, the state equations of the system can be 

expressed in the standard state-space form as the following 

            tuDtZAtZ g
   (5) 
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in which [A] is the system matrix; [D] is the disturbance matrix ; and {Z(t)} is the state vector 

(Salimi et al. 2011). 

In order to optimally design the parameters of the STMD system, its mass is assumed as a part 

of the total mass of the building (mt
Building) and expressed as 

t

Buildingd mmm  0  (6) 

where m0 is the mass ratio of the STMD system. In this research study the STMD control device is 

considered to be installed on the building top story and moves only in x direction and therefore, the 

application of STMD can absorb the entrance energy in this direction. Consequently, to design the 

STMD system, its frequency should be tuned close to the fundamental frequency of the building in 

x direction in which the control device is installed. Therefore, the frequency of the STMD, ωd, is 

expressed as 

 xd 1   (7) 

in which β is the frequency ratio of the STMD; and ω1x is the fundamental frequency of the 

building in x direction. Therefore, the damping coefficient of the STMD, cd(t), can be expressed as 

    )km(ttc dddd  2  (8) 

The parameters m0, and β are the design variables in the multi-objective optimization 

procedure. In this study, the time dependent damping ratio of the STMD system ξd(t), is evaluated 

using the fuzzy logic explained in the following section. 
 

2.2 Fuzzy Logic Controller (FLC) 
 
In this paper, a fuzzy logic controller regulates the damping ratio of the STMD system. For the 

first time, Fuzzy set theory was proposed by Zadeh in 1965 (Zadeh 1965). Nowadays, fuzzy 

systems are used in a wide range of science and technology such as control, signal processing and 

etc. The main part of a fuzzy system is a knowledge database which is composed of IF-THEN 

rules based on classical control theories. A fuzzy system consists of four parts, namely: fuzzifier, 

fuzzy rule base, inference engine, and the defuzzifier. The fuzzy rule base in this paper is based on 

a Mamdani linguistic fuzzy model written as 

BisyTHENAisxANDAisxIFR ii
i

2211:  (9) 

where, x1 and x2 are input linguistic variables; y is the output linguistic variable. A1i, A2i, and B are 

the values for input and output linguistic variables, respectively. Herein, x1 and x2 are the 

displacement and velocity of the building top floor, respectively; and y is the damping ratio of the 

STMD system. The design of a fuzzy system involves decisions about a number of important 

design parameters that should be determined before the actual system starts. These parameters are 

fuzzy sets in the rules, the rules themselves, scaling factor in input and output, inference methods, 

and the defuzzification procedures (Deb et al. 2002). Because of a crisp number for real 

application, defuzzifier maps the system output from the fuzzy domain into the crisp domain. The 

center of area (COA) and the mean of maximum (MOM) are the two most commonly used 

methods in generating the crisp system output (Holland 1975). In this study, the center of area 

method is selected to produce the crisp system output in discrete universe of discourse (Shin and 
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Xu 2009) 

 
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

 (10) 

where n is the number of the discreet elements in the universe of discourse; xi is the value of 

discrete element; and μA(xi) offers the corresponding membership function value at the point ix . 

To achieve a fuzzy system with minimum design variables, the ideas proposed by Park et al. 

(1995) are used. In this method, the membership functions are considered as triangular functions; 

and since often the behavior of the dynamic systems such as vibratory buildings is symmetric, the 

number of membership functions should be odd and symmetric with respect to the vertical axis. 

Therefore, five triangular membership functions are considered for each input and output variables 

(Fig. 2). In order to design these membership functions, it is assumed that all universes of 

discourses are normalized to lie between -1 and 1, and the first and last membership functions 

have their apexes at -1 and 1, respectively. Also, the apex of each triangle is in one point with the 

tip base of two lateral triangles, and as respected, the universe of discourse is laid between -1 and 

1, so the position of the apexes of each triangular membership function (Ci) can be found with the 

parameter Ps and the number of membership functions as below 

nni
N

n
n

i
C

Ps

i ...,,1,0,...,,
2

1
, 











  (11) 

where N is the number of membership functions. It can be concluded that if Ps is less than one the 

apexes are spaced out and if Ps is more than one, then the apexes are closed together in the center. 

Fig. 2 depicts five membership functions with three different Ps values. 
 

 

 
Fig. 2 Membership functions with different Ps 
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Another design challenge of fuzzy systems is to find the rule bases of the system. There are 

different strategies to get the rule bases, which mostly are based on the experience and knowledge 

of human beings, but, intelligent design methods such as design with genetic algorithms consider 

some characteristic parameters to design the rule bases. In the present study, according to Park et 

al. (1995), two characteristic parameters are used from which one is the spacing parameter Pi for 

the inputs and the output, and the other is the angle θ for the output. The spacing parameter Pi 

determines the layout of different values of the inputs towards the origin (zero point). Therefore, 

the space parameter Pi grids the rule base space, so that these lines divide this space into different 

regions with the number of output linguistic variables. If the values of the inputs are considered as 

BN1, SN2, Z3, SP4 and BP5, and the distance between SP and Z is a, and that of the SP and BP is b, 

then the parameter Pi is defined as (Fig. 3) 

a

b
iP  (12) 

Since the input variables are symmetric, therefore, the distance between the SN and Z, and that 

of the SN and BN are also a and b, respectively. According to Eq. (12), if Pi is more than one, then 

the SP value is close to zero, while if Pi is less than one, then the value of SP is far from the zero, 

and if Pi is equal to one, then the inputs are placed with the same intervals with respect to each 

other and zero. These concepts are shown in Fig. 4.  

The angle θ is measured with respect to the horizon for the grid lines which divide the rule base 

space into different regions for the value of output linguistic variables. For example, in Fig. 4, the 

angle θ is 45 degrees for all cases. In this method, it will be assumed that if the inputs are zero, 

then the output is also zero, and if the inputs have their maximum value, then the output is also 

maximum. By considering above assumptions, the output linguistic variable places in various 

regions according to Fig. 4. As a result, for each combination of input linguistic variables, proper 

output is equal to the amount which is located in the desired area. As an example, according to Fig. 

4(b), if the first input is SP and the second input is BN, then the output is SN. Consequently, in this 

research, the design variables are {Ps}, {Pi}, θ, m0, β and ξd(t) which should be designed by multi-

objective optimization method. 

 
 

 
Fig. 3 Definition of the Pi parameter 

 

                                           

1Big Negative 
2Small Negative 
3Zero  
4Small Positive 
5Big Positive 
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Fig. 4 Rule base construction with a) Pi=1, b) Pi>1, c) Pi<1 

 

 

2.3 Robust design of the Semi-Active Tuned Mass Damper (STMD) system 
 
In many engineering problems, due to uncertainties may exist in the system, the mathematical 

model considered in the analyses and the actual ones are different. Performance of these systems 

can be sensitive to these uncertainties, even though the design has been accomplished optimally. 

Therefore, the optimal design of a system requires that the uncertainties, which may exist in the 

system, be taken into account. This can be done by the robust design optimization (RDO) 

procedure. This method is based on the non-deterministic optimization approach through which 

the probabilistic changes can be considered for uncertain parameters, and the designer performs 

the stochastic optimal design process for the system. Therefore, the robust design involves some 

probabilistic metrics often called random variables (Ray and Stengel 1993). In RDO approach, the 

optimally evaluated random variables related to the stochastic performance of the system are 

expected to be less sensitive to the random variation of the uncertain parameters. 

A great amount of research activity exist for simulation of the stochastic behaviour of uncertain 

systems, and the Monte Carlo simulation (Wang and Stengel 2002, Crespo and Kenny 2005, Smith 

et al. 2005; Pnevmatikos and Thomos 2014, Pnevmatikos and Hatzigeorgiou 2014) is the most 

prominent method used in many robust design methods. Monte Carlo simulation (MCS) is a direct 

and simple numerical method but can be computationally expensive. In this method, random 

samples are generated assuming some pre-defined probabilistic distributions for uncertain 

parameters. The system is then simulated with each of these randomly generated samples, and the 

percentage of cases produced in failure region, defined by a limit state function, approximately 

reflects the probability of failure (Crespo and Kenny 2005).  

In order to improve the precision of this method, the number of simulation should approach to 

the infinity, but it leads to computationally expensive problems. Therefore, there have been many 

research activities on sampling methods to reduce the number of samples keeping a high level of 

accuracy. Alternatively, many researches use the quasi-MCS known as Hammersley Sequence 

Sampling (HSS) (Crespo and Kenny 2005, Smith et al. 2005). In the present study, HSS method 

has been used to generate samples for the probability estimation of failures. 

The goal of RDO is to minimize the mean value E(X) of the random variable X and its variance 

σ2(X). Therefore, the mean and its variability should be minimized simultaneously (Hajiloo et al. 
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2007). In this paper, in order to minimize the mean and variance simultaneously, the objective 

function for each random variable X is considered as 

   
2
0

2

0 

 X

E

XE
J   (13) 

in which the mean and the variance of the random variable are normalized by desired mean (E0) 

and desired variance (
2
0 ) which can be chosen by the designer. If some data for random variable 

X is available, then the values of E0 and 0 can easily be calculated using the standard statistical 

analysis, otherwise those can be chosen from the literature. 

 

 

3. Results and discussion 
 
3.1 Numerical study 
 
In order to investigate the performance of the proposed control device in reducing the responses 

of the building structures under earthquake excitations, a 12-story steel building having plan 

dimensions of 15 m×15.5 m is selected. This building is modeled as a 3-D frame to show more the 

realistic behavior of the building and the control system in earthquake events. The typical plan and 

3-D frame of the building are shown in Fig. 5. 

This building is analyzed under the application of worldwide earthquake accelerogrames. For 

this purpose, necessary correction processes are performed on the uncorrected accelerogrames, 

including a band-pass filtering of low- and high-frequency noises, as well as the instrumental and 

base-line corrections. All the corrected accelerogrames are scaled such that they are the 

representative of accelerogrames compatible with a design response spectrum (IBC 2006). In the 

present study, 16 worldwide strong ground motion accelerogrames with the effective duration 

more than 10 seconds are selected according to IBC 2006 and used in the time history analyses. In 

Table 1, for brevity, only seven important accelerogrames out of these 16 reference accelerogrames 

are presented. 

Now, using the state-space equation of the building without any control system Eq. (5) when 
 

 

Table 1 The earthquake accelerogrames considered in this study 

No. Earthquake Date 

Effective 

Duration 

(sec) 
Magnitude 

(Ms) 

Corrected 

PGA 

(g) 

Total 

Duration 

(sec) 

Nearest fault 

Distance 

(km) 
T L 

1 Kobe 1995 13.16 12.87 6.9 0.694 40.96 26.4 

2 Cape Mendocino 1992 20.79 19.85 7.1 1.497 44 44.6 

3 Whittier Narrows 1987 12.72 12.56 5.7 0.333 32.06 69.7 

4 Morgan Hill 1984 21.28 19.02 6.1 0.405 36 54.1 

5 San Fernando 1971 17.77 16.04 6.6 0.136 29.74 81.6 

6 Northridge 1994 18.43 19.71 6.7 0.877 34.99 71.1 

7 Coalinga 1983 21.38 20.19 6.5 0.733 40 55.2 
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Table 2 Top Story maximum uncontrolled responses 

Earthquakes Dis Vel Acc 

Kobe 10.6 0.48 2.54 

Cape Mendocino 15.44 0.60 2.56 

Whittier Narrows 2.85 0.12 1.99 

Morgan Hill 6.23 0.3 2.78 

San Fernando 3.72 0.15 1.35 

Northridge 9.91 0.4 2.47 

Coalinga 16.8 0.69 3.69 

Average responses 10.6 0.46 2.82 

Note: Dis=displacement (cm), Vel= velocity (m/s) and Acc=acceleration (m/s2) 

 

 
Fig. 5 Typical plan and 3-D frame of the example building 

 

 

the parameters of the STMD system are eliminated from the related equations) the uncontrolled 

responses of the building are calculated under the application of the all 16 reference earthquake 

accelerogrames. The maximum responses of the building for 16 accelerogrames are evaluated 

from which, for brevity, only the results of 7 reference accelerogrames of the Table 1 are presented 

in Table 2. Moreover, the average values of the maximum responses corresponding to all 16 

accelerogrames are provided in the last row of the table. 
 

3.2 Design of STMD system 
 
In the present study, the STMD system with variable damping produced by a semi-active fluid 

viscous damper is investigated. A fuzzy logic controller (FLC) is utilized to regulate the variable 

damping ratio of the STMD system. In this system, the variable damping ratio is represented in the 

following form 

   1212
0

0
2

xx
STMD

STMDSTMD u,ut 


   (14) 

356



 

 

 

 

 

 

Robust multi-objective optimization of STMD device to mitigate buildings vibrations 

where ξ0STMD is the nominal damping ratio of the STMD system; λ is a fuzzy function with values 

between -1 and 1; and ux12 and 12xu  are the displacement and velocity of the building top story, 

respectively. The performance of the control system is optimized using the multi-objective genetic 

algorithms. For this purpose, the parameters m0, β, ξ0STMD, {Ps}, {Pi} and θ are chosen as the 

design parameters which to be optimally calculated using genetic algorithms. For doing this, three 

non-commensurable objective functions namely: maximum normalized displacement, maximum 

normalized velocity, and maximum normalized acceleration of each story level of the building are 

selected to minimize, simultaneously, by multi-objective optimization. These objective functions 

can be expressed as the following 
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(15) 

where i=1,…,12 indicates the number of floors of the building; and  tDc

i
,  tDuc

i
,  tV c

i
, 

 tV uc

i
,  tAc

i
 and  tAuc

i
 are the displacement, velocity and acceleration of each floor of the 

building in controlled and uncontrolled cases, respectively. 
It is impossible to illustrate the trade-off point when more than two objective functions are 

considered. To overcome this difficulty, several multidimensional visualization methods are 

proposed in the literature. One of these methods which leads to comprehensive analysis of the 

Pareto front is called Level Diagrams method (Blasco et al. 2008) and is used here to visualize the 

Pareto fronts of the multi-objective optimization. In this method, each point of Pareto fronts must 

be normalized to bring it between 0 and 1 based on its minimum and maximum values (Blasco et 

al. 2008) as presented in the following 

321 ,,i,JminJ,JmaxJ
i

m

ii

M

i
      m

i
M
i

m
ii

i
JJ

JJ
J




  (16) 

The distance of each Pareto front point from the origin can be used for comparison. Here, the 

Euclidean norm of all objective functions 







  

3

1

2

2 i
iJJ  is used for this purpose. To 

represent the Pareto front, Y axis represents the Euclidean norm of all objective functions and X 

axis specifies each objective function; therefore, each objective function has its own graphical 

representation whilst Y axis of all graphs would be the same.  

The Pareto fronts for Coalinga earthquake resulted from this analysis are shown in Fig. 6. It is 

obvious from the figure that these three objective functions are in conflict with each other. The 

maximum responses of the building (maximum displacement, velocity, and acceleration) at each 

story level obtained using the optimal values of the STMD design parameters are shown in Table 3 

for 7 earthquake accelerogrames (for brevity). In the last row of the table, the average values of the 

maximum responses obtained from the results of 16 reference accelerogrames are also shown for 

comparison with the uncontrolled ones. 

It can be seen from the table that the average values of maximum displacement, velocity, and 

acceleration of the top story of the building controlled by STMD system in comparison with the 

uncontrolled ones are approximately reduced to about 34.53%, 34.78%, and 28.72%, respectively. 
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Fig. 6 2-Norm Level Diagrams of Pareto front of the STMD for Coalinga earthquake (a) J1, (b) J2 and (c) J3 

 

Table 3 Top Story maximum controlled responses with STMD system 

Earthquakes Dis Vel Acc 

Kobe 4.17 0.19 1.29 

Cape Mendocino 8.64 0.31 1.25 

Whittier Narrows 1.45 0.08 1.54 

Morgan Hill 3.80 0.18 2.08 

San Fernando 1.67 0.08 0.77 

Northridge 5.53 0.28 1.71 

Coalinga 7.23 0.35 2.47 

Average responses 5.91 0.26 1.91 

Note: Dis=displacement (cm), Vel= velocity (m/s) and Acc=acceleration (m/s2) 

 

Table 4 The optimal values of the STMD design parameters and the corresponding values of the objective 

functions for 7 reference accelerogrames 

Earthquakes 
Design parameters and objective functions 

0m    STMD0  
1J  2J  3J  

2|||| J  

Kobe 2.81 0.832 6.9 0.39 0.39 0.51 0.09 

Cape Mendocino 2.85 1.187 5.45 0.56 0.52 0.49 0.67 

Whittler Narrows 2.14 0.956 26.5 0.51 0.64 0.77 0.59 

Morgan Hill 2.9 1.003 11.3 0.61 0.62 0.75 0.62 

San Fernando 2.48 0.912 34.33 0.45 0.53 0.57 0.44 

Northridge 2.87 0.875 13.83 0.56 0.70 0.69 0.48 

Coalinga 2.99 1.033 6.6 0.43 0.50 0.67 0.69 

Average 2.71 0.97 13.88 - - - - 

 

 

The optimal values of the STMD design parameters and the corresponding objective function 

values for the optimum point with the lowest value of ||J||2 for 7 earthquake excitations are given in 

Table 4. Furthermore, the optimal values of the fuzzy controller design parameters and the 

maximum value of the optimal damping ratio of the STMD system, ξmax, are presented in Table 5. 

Moreover, Fig. 7 compares the time histories of the controlled and uncontrolled responses of 
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the building top story for Coalinga earthquake and for the optimum point with the lowest value of 

||J||2. This figure shows that the STMD system properly reduces the building seismic responses.  

The fuzzy tuned damping ratio of the optimum STMD device for the trade-off point (min ||J||2) 

is shown in Fig. 8 for Coalinga earthquake. It is clear from the figure that the maximum value of 

the STMD damping ratio is about 8.5%, which is in a reasonable range. In optimal design 

procedure of the STMD system, the optimal values of its parameters for each reference 

accelerograme are calculated separately. Therefore, the final decision about the optimal values of 

the design parameters must be made based on the different values obtained for separate 

 
 

Table 5 The values of the optimum parameters of the fuzzy controller for 7 different earthquake excitations 

and the maximum value of the STMD damping ratio (ξmax) 

Earthquakes 
Design parameters of the fuzzy controller 

1SP  2SP  3SP  1iP  2iP  3iP    max  

Kobe 0.80 0.77 1.06 1.10 0.74 0.65 35 8.03 

Cape Mendocino 0.86 0.66 0.81 0.60 0.70 1.25 126 7.17 

Whittler Narrows 0.87 0.85 0.60 0.97 0.87 0.57 43 32.79 

Morgan Hill 0.76 0.77 1.35 1.00 1.13 1.22 50 14.24 

San Fernando 0.77 0.85 1.71 0.85 0.89 1.49 17 41.21 

Northridge 0.87 0.81 0.78 1.03 1.21 1.25 17.5 17.55 

Coalinga 0.84 0.98 0.75 1.05 0.70 0.95 86.4 8.36 

 

 
Fig. 7 Comparison of the controlled and uncontrolled responses of the building top story for Coalinga 

earthquake: (a) displacement, (b) velocity, and (c) acceleration 
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accelerogrames. For this selection, three methods explained in the following, are examined to 

obtain the optimal value of any design parameter: 

I. The expected mean value calculated for the reference accelerogrames: 
n

x
E

i
 , where E  

is the expected mean value; xi is the optimal value of the parameter obtained for each 

accelerograme; and n is the number of total accelerogrames. 

II. The expected mean value + one standard deviation σ: E+1σ 

III. The weighted mean value, for which the reduction ratio of controlled displacement to 

uncontrolled one is selected as the weighting coefficient. 

The results of optimal values of the STMD design parameters calculated by applying these 

three methods are shown in Table 6. 

In order to determine the final values of the STMD parameters among these three groups, the 

average values of the maximum displacement, velocity, and acceleration of each story level 

calculated by applying the 16 reference earthquake accelerogrames and the optimal values of the 

parameters are presented in Table 7. By comparing the response values given in the table, it can be 

concluded that the first method is more effective to determine the design parameters of the STMD 

system and provides significant reduction in the structural responses. Consequently, the final 

optimal values proposed for the STMD design parameters are 

%88.13,97.0,%71.2 00  STMDm   

    35.47,98.0,86.0,89.0,92.0,79.0,84.0  is PP  

According to Table 7, the results obtained from the first method give reduction ratios (as 

mentioned earlier) about 34.53%, 34.8% and 28.72% for the maximum values of displacement, 

velocity, and acceleration of the building top story with STMD system, respectively. 
 

 

 
Fig. 8 Time history diagram of the fuzzy tuned damping ratio of the STMD system corresponding to trade-

off point for Coalinga earthquake 

 

Table 6 The final optimal values of the STMD design parameters obtained using the proposed three methods 

 

STMD Parameters 

0m    STMD0  1SP  2SP  3SP  1iP  2iP  3iP    

First Method 2.71 0.97 13.88 0.84 0.79 0.92 0.89 0.86 0.98 47.35 

Second Method 2.95 1.10 23.37 0.96 0.88 1.24 1.04 1.03 1.27 82.55 

Third Method 2.72 0.96 14.11 0.84 0.80 0.95 0.91 0.85 0.97 47.54 
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Table 7 The average values of the maximum responses of the building for three methods 

%88.13,97.0,%71.2 00  STMDm   

The First Method 
Stories of the building 

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 

Average 

values 

maxD  0.22 1.00 1.49 2.00 2.54 3.11 3.71 4.34 4.99 5.63 6.27 6.94 

maxV  0.01 0.04 0.06 0.09 0.11 0.13 0.16 0.19 0.22 0.24 0.27 0.30 

maxa  0.07 0.29 0.43 0.58 0.74 0.91 1.08 1.27 1.45 1.64 1.82 2.01 

 

%37.23,1.1,%95.2 00  STMDm   

The Second Method 
Stories of the building 

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 

Average 

values 

maxD  0.24 1.05 1.57 2.11 2.68 3.27 3.90 4.57 5.25 5.93 6.61 7.31 

maxV  0.01 0.04 0.07 0.09 0.11 0.14 0.16 0.19 0.22 0.25 0.27 0.30 

maxa  0.07 0.29 0.43 0.58 0.74 0.90 1.08 1.26 1.45 1.63 1.82 2.01 

 

%11.14,96.0,%72.2 00  STMDm   

The Third Method 
Stories of the building 

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 

Average 

values 

maxD  0.23 1.01 1.50 2.02 2.56 3.13 3.72 4.36 5.02 5.67 6.31 6.99 

maxV  0.01 0.04 0.06 0.09 0.11 0.13 0.16 0.18 0.21 0.24 0.27 0.30 

maxa  0.07 0.29 0.44 0.59 0.74 0.91 1.08 1.27 1.46 1.64 1.83 2.02 

Note: Dmax=maximum displacement (cm), Vmax=maximum velocity (m/s) and amax=maximum acceleration 

(m/s2). 

 

 

3.3 Robust design of the STMD system with uncertain parameters 
 
The dynamic behavior of a building depends on its natural frequencies and mode shapes. 

Moreover, the damping of the structure has an important role in reducing the seismic responses of 

the building. These two are the most important parameters of the structures which could be 

affected by different sources. Therefore, in this study, it is assumed that the stiffness matrix and the 

structural damping ratio of the building may be different from those considered in the 

deterministic analyses, and consequently, should be treated as the uncertain parameters by 

assuming pre-defined probabilistic distributions. Therefore, in order to minimize the performance 

degradation of the control system from its ideal deterministic position, the uncertainties which 

exist in these parameters must be taken into account through a stochastic robust design 

optimization (RDO) approach. The control system which is designed by stochastic robust 

optimization approach is then less sensitive to random variation of the uncertain parameters. 

There are many probability distribution functions representing a variety of conditions. In this 

study, the well-known standard Beta distribution with shape coefficients a=b=2 has been used for 

which the PDF is expressed as (Montgomery 2003) 
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   xIxx
baB

y
ba

)1,0(

11 1
),(

1    (17) 

where B(.) is the Beta function; and the indicator function I(0,1)(x) ensures that only the values of x 

in the range of (0,1)
 
have non-zero probability.  

In this research study, to perform stochastic RDO procedure, the stiffness and damping ratio of 

the building are considered as the uncertain random variables with maximum ±20% variation 

around their numerical values. For the accomplishment of this procedure, the building uncertain 

stiffness matrix, [Ku], and that of the damping ratio, ξu, are defined as the following 

   KKu 1  (18a) 

   xIxx
baB

y
ba

)1,0(

11 1
),(

1    (18b) 

where [K] and ξ are the deterministic values of the stiffness matrix and damping ratio of the 

building; and the uncertainty coefficients α1 and α2 , with mean values of 1 and coefficient of 

variations (COV) of ±20%, are considered to incorporate the uncertainties which exist in [K] and 

ξ. The coefficients α1 and α2 follow the probabilistic beta distribution given in Eq. (17). It is noted 

that in Eq. (17) the value of x varies between 0 and 1, while the uncertainty coefficients α1 and α2 

vary between 0.8 and 1.2. This incompatibility is accomplished through the computer 

programming procedure. In this study, the Hammersley Sequence Sampling (HSS) method is used 

to simulate the probabilistic behavior of the building. The advantage of this method in comparison 

with the Monte Carlo method is that this method uses the specified pattern with a uniform 

distribution to generate the random numbers between 0 and 1; therefore, better results can be 

achieved with fewer samples (Hajiloo et al. 2007). This simulation and mapping procedure is 

depicted in Fig. 9, when uncertain variable x varies between 0 and 1 following the standard beta 

distribution. In this figure, y1 and y2 are the random numbers uniformly distributed between 0 and 

1. 
 

 

 
Fig. 9 The Hammersley method simulation 
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In the present study, to perform the stochastic RDO procedure using HSS approach, 50 pairs of 

uniformly distributed random variables are simulated between 0 and 1 using which 50 pairs of 

random uncertainty coefficients α1 and α2 are simulated through a similar mapping procedure 

shown in Fig. 9 by considering a beta distribution for these two variables. Then, using these 50 

pairs of coefficients α1 and α2, 50 pairs of uncertain stiffness matrix, [Ku], and damping ratio, ξu, 

are being simulated resulting in 50 buildings with different stiffness matrix and damping ratio. 

Now, these 50 buildings are analyzed under the application of 16 reference earthquake 

accelerogrames. The average values of maximum responses of these buildings top story level for 

the 16 reference accelerogrames are provided in Table 8. These results will be used for comparison 

with the controlled responses of the robust STMD system in the next sections. 

For the stochastic robust design optimization of the STMD system, three objective functions 

are defined as follows 
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where, E0i and 
2

0i  are the desired mean and variance of each random variable, respectively, 

which can be chosen by the designer. For example, the deterministic values of the objective 

functions for trade-off point (the point with lowest ||J||2) are used as the E0i in which for Coalinga 

earthquake are given as: E01=0.43, E02=0.5, E03=0.67. Furthermore, in order to have the minimum 

variation, the values of 
2

0i  are considered as 0.001. In multi-objective optimization process 

using NSGA-II approach (Deb et al. 2002), the above three objective functions should be 

simultaneously minimized to get the perfect performance of the control system. Similar to the 

previous sections, 2-Norm Level Diagrams of Pareto fronts for Coalinga earthquake are shown in 

Fig. 10 for the robust STMD system. It can be seen from the figure that there is a conflict between 

J1 and J3. It means that the STMD system with lower displacement has higher acceleration. The 

same confliction can be found from Fig. 10 between J2 and J3. The squared point in Pareto front 

which has the lowest value of the 2-norm of the Level Diagram has the low value of each objective 

function; therefore, it is considered as an outstanding optimum point. The parameters of this 

optimum point and the mean and variance of each random variable, as well as the values of the 

STMD design parameters obtained for Coalinga earthquake are given in Table 9. 

The average values of the optimized stochastic responses of top story level of the 50 buildings 

simulated for the robust design of the STMD system (corresponding to the point having the lowest 
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Fig. 10 2-Norm Level Diagrams of Pareto front of the robust STMD for Coalinga earthquake 

 

 

value of the ||J||2) are presented in Table 10 for 7 accelerogrames. Moreover, in the last row of the 

table the ensemble average values of these responses for all 16 accelerogrames are given which 

can be used for the comparison with those of the uncontrolled ones. This table shows that the 

average values of the stochastic displacement, velocity, and acceleration of the top story of the 

building obtained for robust design of the STMD system in comparison with those of the 

uncontrolled ones are approximately reduced to about 52%, 42.5%, and 37.24%, respectively; 

while these reduction ratios obtained from deterministic analysis are about 34.53%, 34.8%, and 

28.72%, respectively. 

Furthermore, the values of the design parameters of the STMD device evaluated during the 

RDO procedure of this system, and the corresponding objective function values for optimum point 

with the lowest value of ||J||2 for 7 earthquake excitations are presented in Table 11. It is seen from 

the table that the stochastic average optimal values of the design parameters m0, β and ξTMD are 

obtained as 2.37%, 0.92, and 16.9% respectively; while from deterministic analysis these values 

are obtained about 2.71%, 0.97, and 13.38%, respectively. 

Moreover, Fig. 11 compares the time histories of the robust controlled and uncontrolled 

responses of the building top story for Coalinga earthquake and for optimum point with the lowest 

value of ||J||2. This figure also shows that the robust STMD system is an appropriate device to 

control the building seismic responses. 

The stochastic time history responses of the building top floor for the above mentioned 

optimum robustly designed STMD system is shown in Fig. 12. In this figure, the dashed lines 

show the stochastic responses of the building top floor calculated for 50 simulated sample 

buildings, and the solid line shows the mean values of these responses. It is evident from the figure 

that all the individual stochastic responses corresponding to 50 sample buildings and their mean 

value are very close to each other. It means that the robust design of control system significantly 

reduces the effect of uncertainties which exist in the structure leading to a control system with less 

sensitivity to the uncertainties of the system. 

In order to compare the results of the deterministic and robust optimization design methods, the 

50 sample buildings simulated in previous sections are analyzed by considering the optimal values 

of the STMD design parameters (m0, β, and ξ0TMD) obtained from these two methods. For this 

purpose, the above 50 sample buildings are analyzed by considering the optimal STMD system for 

the trade-off point (the point with the minimum value of ||J||2) in each earthquake excitation. The 

PDFs of the normalized maximum responses of the 50 sample buildings are shown in Fig. 13 
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Fig. 11 Comparison of the robust controlled and uncontrolled responses of the top story of the building for 

Coalinga earthquake: (a) displacement, (b) velocity, and (c) acceleration 

 

 
Fig. 12 Stochastic response of the top floor for the trade-off point (dashed lines are each sample response 

and solid line is mean of the responses) 
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Fig. 13 The PDFs of each objective function for Coalinga earthquake 

 

 
Fig. 14 Variance of the stochastic response 

 

for the final optimal STMD design parameters for the two cases of the robust and deterministic 

designs of the STMD system for Coalinga earthquake. It is clear from the figure that with the 

robust design of the STMD system the variation of each objective function from its mean value is 

very low in comparison with that of the deterministic design, indicating that the robust design is 

more reliable than the deterministic one. 

Moreover, to show the supremacy of the robust design, the variances of the top story responses 

of the simulated buildings are shown for the trade-off points of the robust and deterministic 

designs in Fig. 14. It is seen from the figure that the stochastic behavior of the uncertain system 

can have less variation if and only if the system is designed robustly. Finally, from the above 

discussion it is obvious that the robust design is necessary to achieve a safe design compatible with 

the variation in parameters and conditions of the system. 
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4. Conclusions 
 

The main objective of this paper is to find the optimal values of the parameters of the STMD 

system as a kind of semi-active control device using genetic algorithms (GAs) and fuzzy logic. For 

this purpose, three non-commensurable objective functions namely: the maximum displacement, 

velocity, and acceleration of each story level of the building are chosen to minimize 

simultaneously. For the numerical analysis, a reality 12-story building has been chosen. The 

torsional effects due to irregularities which exist in the building and/or unsymmetrical placements 

of the dampers are taken into account through the 3-D modeling of the building. Moreover, in the 

optimal design procedure of a system, it is required that the uncertainties which may exist in the 

system be taken into account in the dynamic analyses. In the present study, this consideration is 

performed through the robust design optimization (RDO) procedure. Hammersley Sequence 

Sampling (HSS) method, which is a direct and simple numerical method, is used to perform the 

RDO procedure. Finally, the robust optimal values of the STMD design parameters are evaluated 

for the example building structure. Based on the multi-objective GAs of this work, the point which 

has the lowest value of the Euclidean norm of all objective functions is used to compare the 

application of this device. The numerical studies of this research work lead to the following 

conclusions:
  

1. In this study, by performing both deterministic multi-objective optimization procedure and 

probabilistic robust design optimization (RDO) procedure, the optimum values of the design 

parameters for STMD control system are obtained for the two cases. 

2. It is observed that the robust optimization of the STMD system provides more reduction on 

building responses in comparison with that of its deterministic design.  

3. It is found that with the robust design of the STMD system, the variation of each objective 

function from its mean value is very low in comparison with that of the deterministic design, 

indicating that the robust design is more reliable than the deterministic one. 
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