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Abstract.  The effectiveness of 100/30, 100/40 and SRSS directional combination rules on the response of 

asymmetric setback buildings is examined. Because of the irregularity in setback buildings, the maximum 

seismic response would be correlative with the direction of earthquake. To verify the directional 

combination rules of mode superposition methods, the time history analyses of setback buildings to real 

earthquake records are carried out. Example analyses have been used to compare the validty and accuracy of 

SRSS and percentage methods for frame and dual frame-wall systems. 
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1. Introduction 
 

For architectural reasons many multistory buildings are designed with setbacks. Setback 

usually means discontinuity and termination of partial bending resistance members, which will 

lead to inappropriate load transfer and sudden change of lateral stiffness. The part of the structure 

above the setback level is identified as the tower and the part below as the base. To provide a 

tapering effect along the height, a building may have multiple setbacks, each starting at different 

levels. Depending on the location of the tower relative to the base, one can also classify setback 

buildings into buildings with symmetric setbacks and asymmetric setbacks. 

In design, it is necessary to estimate the force distributions among the load-resisting elements 

when such structures are subjected to lateral loadings. Due to sudden change in stiffness at the 

setback, the load distribution is often complex in the neighborhood of the setback level. When the 

setback is asymmetric, further complication will arise due to the torsional effect. The good 

prediction of internal forces is important for seismic design of such buildings. 

It is known that the excitation angle of the ground motion is one of the important parameters 

that directly affects the seismic demand on a building. Since analyzing a building with all possible 

excitation angles is impractical, combination rules have been used for design. 

The critical orientation of the earthquake components as well as the ways of combining their 
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individual effects have been of interest to the civil engineering profession. Penzien and Watabe 
(1975) stated that the three components of an earthquake are uncorrelated along a set of axes 
generally denoted as principal axes. The major principal axis is horizontal and directed toward the 
epicenter, the intermediate axis is horizontal and perpendicular to the orientation of the major 
component, and the minor principal axis is vertical. The critical response could be obtained when 
these components are applied. Rosenblueth (1980) stated “lack of correlation of the principal 
accelerograms insures that responses are also uncorrelated”. Smeby and Der Kiureghian (1985) 
observed that, for response spectra analysis of linear structures, when the two horizontal principal 
components are not along the structural principal axes, the effect of correlation is small and that if 
the two horizontal components have identical or nearly identical intensities, then the effect of 
correlation disappears. Newmark (1975) and Rosenblueth and Contreras (1977) proposed the 
Percentage Rule to approximate the combined response as the sum of the 100% of the response 
resulting from one component and some percentage () of the responses resulting from the other 
two components. To combine the two horizontal components, Newmark (1975) suggested  to be 
40% and Rosenblueth and Contreras (1977) suggested  to be 30%. 

More recently, many other studies attempted to evaluate the effectiveness of combination 
methods for different types of structures. Gonzalez (1992) proposed a method that include 
earthquake directional effects on the seismic analysis of building. Three linear buildings with 
different structural characteristics were analysed considering actual earthquake acceleration 
records and acceleration response spectra, and acceleration design spectra. Reyes-Salazar et al. 
(2004), studied both the 30% and the SRSS rules by using time history analysis and complex 
multi-degree of freedom (MDOF) systems. Cacciola et al. (2004) proposed a simplified procedure 
for evaluation of correlation coefficients and peak factors consistent with the power spectral 
density of seismic excitation. The procedure is based on an approximate analytic expression for 
direct evaluation of the power spectral density of the excitation consistent with any prefixed 
response spectrum, and the evaluation of the consistent correlation coefficients and peak factors by 
using analytical expressions. Lopez et al. (2004) investigated the CQC3 response for determining 
the critical response of structures to two horizontal and the vertical seismic components with 
arbitrary design (or response) spectra. Gao et al. (2004) presented the methods of multi-component 
seismic response analysis for curved bridges. Because of the interaction between bending and 
torsion resulted from the irregular plane, the maximum seismic response of curved bridges would 
be correlative with the input angle of earthquake. The employable domain and limitation of SRSS3 
method is well defined from the intensive study of CQC3 method and SRSS3 method. Salazar et 
al. (2004) performed a numerical study on steel frames by using nonlinear analyses. The numerical 
study indicates that The Square Root of the Sum of the Squares (SRSS) and the 30-percent (30%) 
combination rules may underestimate the combined effect. Li and Song (2004) presented a modal 
combination method for earthquake-resistant design of structures to multidimensional seismic 
excitations. With the assumption that an earthquake is a stationary random vibration, the 
correlation among the input components is considered in the proposed method. Maleki and Bisadi 
(2006) investigated the effects of seismic force direction on the responses of slab-girder skewed 
bridges in response spectrum and time history linear dynamic analyses and also examined the 
combination rules for orthogonal earthquake effects, such as the 100/ 30, 100/40 percentage rules 
and the SRSS method.  

Rigato and Medina (2007) examined the influence of the ground motion for a single-storey 
structure subjected to bi-directional ground motions. 

Lucchini et al. (2011) investigated the torsional response of a two-way aymmetric single-story 
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building under biaxial excitations by using nonlinear dynamic analysis. In this study ground 
motions of increasing intensities, characterized by varying angles of incidence, were used to show 
the evolution of the seismic behavior with the increase of the inelastic demand. 

Kostinakis et al. (2013) presented the effectiveness of the percentage combination rules for the 
determination of the maximum value of any response parameter under two horizontal seismic 
components within the context of linear response history analysis. They analized several 
reinforced concrete buildings subjected to eight bi-directional seismic motions and compared the 
maximum response values computed by the 100/30 and the 100/40 rule to the maximum response 
over all incident angles produced by analytical formulas. Muscolino et al. (2013) proposed a 
damping-adjusted combination rule for the response spectrum analysis of base-isolated buildings. 
Kostinakis et al. (2013) evaluated the selection of sectional forces needed for the design of R/C 
frames by means of nonlinear dynamic analysis. They designed a single-story building by using 
four different procedures based on the results of linear response history analysis. They performed 
nonlinear dynamic analyses under bi-directional ground motions for different seismic intensity. 
Fontara et al. (2015) investigated the influence of the orientation of the ground motion reference 
axes, the seismic incident angle and the seismic intensity level on the inelastic response of 
asymmetric reinforced concrete buildings.Cantagallo et al. (2015) investigated the impact of the 
earthquake incident angle on the structural demand and the influence of ground motion selection 
and scaling methods on seismic directionality effects. They evaluated seismic directionality effects 
by subjecting reinforced concrete structures to different scaled and un-scaled records oriented 
along nine incidence angles, whose values range between 0 and 180 degrees, with an increment of 
22.5 degrees. Kostinakis et al. (2015) studied the combined influence of seismic orientation and a 
number of parameters characterizing the structural system of Reinforced Concrete (R/C) buildings 
on the level of expected damages. In this study it is reported that the damage level of the buildings 
is strongly affected by the incident angle of the ground motion. 

The objective of this study is to investigate the effectiveness of 100/30, 100/40 and SRSS 
combination rules for design of setback buildings. Effectiveness is determined by comparing the 
obtained results with the exact results. The exact results in this study refers to the linear real 
ground motion analysis results. 

 
 

2. Combination rules 
 
Design codes generally specify two combination rules, -percentage and SRSS respectively. 

Let Rx and Ry denote the response of interest due to the same ground motion acting along the 
structural axes X and Y, respectively. The -percentage combination rule approximates Rc as the 
sum of 100% of the response resulting from the input in one direction and some percentage, , of 
the responses resulting from the inputs in the other direction. The combination that yields the most 
critical estimate of the total response is used for design. Thus, in -percentage combination rule 
the design response are taken as the larger of following  

 c X YR R R  or  c X YR R R  (1)

The most common percentage rules are the 100/30 (=0.30) and 100/40 (=0.40) rules. The 
100/30 rule was developed by Rosenblueth and Contreras (1) and is considered in several codes. 
The 100/40 rule was proposed by Newmark and is now included in various codes e.g., ASCE. 
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According to the SRSS rule, the combined response is given by 

2 2 c X YR R R  (2)

The basic assumption of the SRSS rule is that there is no correlation between the horizontal 
components. 

The accuracy of the combination rules can be studied by comparing the results with the 
reference responses obtained from time history analysis. The above methods are all based on 
spectral mode superposition method. The maximum responses calculated by these simplified 
methods are approximate. It is necessary to compare the results with the exact results calculated by 
the time history analysis. The real earthquake records can be applied in time history analysis in 
order to verify these spectra based methods. 

 
 

3. Case study 
 
In order to investigate the effectiveness of combination rules on design of setback buildings 

numerical examples have been conducted for two different set of structural systems. The first set 
of buildings are frame systems, and the second set of buildings are dual frame-wall systems. In 
each set, 9 typical buildings with 8 stories and 5×3 bays are considered. The plan views and 
elevation of systems  are depicted in Fig. 1.  

 
 

Fig. 1 Schematic floor plan and elevation of a typical set-back building 
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For the typical buildings the height of each storey is 3.0 meters and the spans of each bay are 6 
meters in both directions. The dimensions of the structural elements are determined using a 
preliminary design process according to TS500 and Turkish Seismic Code 2007. The slab 
thickness is taken as 140 mm. The beam dimensions are (width/height) 250 mm/600 mm. Column 
dimensions of the building are 600 mm×600 mm for all columns of the lower 4 stories and 500 
mm×500 mm for upper stories. In dual frame-wall systems the wall thickness is chosen as 250 
mm. 

Seismic parameters used in the analyses and the design of typical buildings are as follows, the 
expected earthquake ground motion is defined by TSC2007 design spectrum with an effective 
peak ground acceleration of 0.40 g (Ao=0.40), building importance factor I=1.0, behavior factor 
R=8 (high ductility level) for frame systems, R=6 for dual frame-wall systems. The soil class is 
assumed as a hard soil.  

It is assumed that super dead load on slabs is 1.2 kN/m2, and live load is 2.0 kN/m2. An 
additional distributed load which represents the partition wall loads on beams is assumed 6 kN/m. 

As shown in Fig. 2, one of the studied buildings correspond to buildings regular in elevation,  
 
 
Table 1 Characteristics of the selected earthquakes 

No 
PEER 

Record No 
Mag. Year Earthquake Station 

Site 
Class 

PGA 
(g) 

PGV
(cm/s)

1 953 6.7 1994 Northridge Beverly Hills- 14145 Mulhol D 0.52 63 

2 960 6.7 1994 Northridge 
Canyon Country- W Lost 

Cany 
D 0.48 45 

3 1602 7.1 1999 Duzce, Turkey Bolu D 0.82 62 

4 1787 7.1 1999 Hector Mine Hector C 0.34 42 

5 169 6.5 1979 Imperial Valley Delta D 0.35 33 

6 174 6.5 1979 Imperial Valley El Centro Array #11 D 0.38 42 

7 1111 6.9 1995 Kobe, Japan Nishi-Akashi C 0.51 37 

8 1116 6.9 1995 Kobe, Japan Shin-Osaka D 0.24 38 

9 1158 7.5 1999 Kocaeli, Turkey Duzce D 0.36 59 

10 1148 7.5 1999 Kocaeli, Turkey Arcelik C 0.22 40 

11 900 7.3 1992 Landers Yermo Fire Station D 0.24 52 

12 848 7.3 1992 Landers Coolwater D 0.42 42 

13 752 6.9 1989 Loma Prieta Capitola D 0.53 35 

14 767 6.9 1989 Loma Prieta Gilroy Array #3 D 0.56 45 

15 1633 7.4 1990 Manjil, Iran Abbar C 0.51 54 

16 721 6.5 1987 Superstition Hills El Centro Imp. Co. Cent D 0.36 46 

17 725 6.5 1987 Superstition Hills Poe Road D 0.45 36 

18 829 7.0 1992 Cape Mendocino Rio Dell Overpass - FF D 0.55 44 

19 1244 7.6 1999 Chi-Chi, Taiwan CHY101 D 0.44 115 

20 1485 7.6 1999 Chi-Chi, Taiwan TCU045 C 0.51 39 

21 68 6.6 1971 San Fernando LA-Hollywood Stro FF D 0.21 19 

22 125 6.5 1976 Friuli, Italy Tolmezzo C 0.35 31 
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For building types 7,8 and 9, a similar behavior is observed like building type 6. 
The percentage of underestimation and overestimation for displacements and story shears are 

given in Table 1 to Table 4 for different combination rules.  
It is observed from Figs. 3-20 that results obtained from the percentage rules depend upon the 

assumed orientation of the structural axes. If these axes are oriented differently from that shown in 
Fig. 1, different values for responses will be computed by the percentage rules. The critical 
orientation of the structure axes predicted by these rules can only be found by trial and error, 
requiring many dynamic analyses. There is not a single specific angle of incidence for each 
building which maximize response, and each response gets the maximum value of each of its 
response by a specific angle of incidence. This angle is not the same for various earthquakes. 

Generally highest underestimations are observed in 100/30 combination rule. Among the 
combination  rules 100/40 rule has the smallest probability of underestimation of story shears and 
displacements. In some cases 100/40 rule slightly overestimate the response. 

 
 
Table 2 Maximum Relative Difference for Story Shears in X Direction 

  Underestimation %   Overestimation %  

Type 100/30 100/40 SRSS 100/30 100/40 SRSS 

1 9.55 2.61 1.69 10.60 16.05 8.86 

2 8.58 1.66 4.57 13.52 16.23 9.70 

3 3.39 --- --- 18.73 21.72 14.68 

4 7.58 0.59 0.04 14.68 17.76 10.87 

5 9.94 3.59 5.39 15.25 19.12 12.33 

6 *8.39 *2.05 *3.54 11.83 16.24 9.89 

7 *8.20 *1.67 *2.63 11.97 14.81 8.25 

8 *15.09 *9.42 *11.45 9.76 14.37 8.62 

9 12.91 8.62 7.93 13.85 18.84 12.66 

*Values are obtained from dual wall-frame system 
 
Table 3 Maximum Relative Difference for Story Shears in Y Direction 

  Underestimation %   Overestimation %  

Type 100/30 100/40 SRSS 100/30 100/40 SRSS 

1 13.95 7.35 6.47 7.34 12.66 5.64 

2 15.09 8.58 7.70 4.18 9.31 2.54 

3 12.50 5.78 4.86 11.61 17.10 9.86 

4 *14.53 *7.97 *7.10 6.30 11.53 4.63 

5 *11.48 *4.68 *3.73 6.94 12.20 5.26 

6 *11.49 *4.70 *3.79 10.45 14.31 8.70 

7 *15.67 *9.22 *8.39 4.42 9.56 2.78 

8 *17.15 *10.78 *9.87 3.44 8.53 1.81 

9 *16.20 *10.51 *10.10 11.45 14.21 9.69 

*Values are obtained from dual wall-frame system 
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Table 4 Maximum Relative Difference for Story Displacements in X Direction 

  Underestimation %   Overestimation %  

Type 100/30 100/40 SRSS 100/30 100/40 SRSS 

1 14.06 7.45 6.51 3.40 8.49 1.77 

2 10.87 4.02 3.04 8.97 14.33 7.25 

3 10.27 3.38 2.39 14.82 20.5 13.00 

4 8.53 1.49 0.49 7.11 12.38 5.42 

5 15.91 9.44 8.52 0.33 5.26 --- 

6 12.88 6.17 5.22 0.90 5.87 0.68 

7 12.19 5.44 4.48 3.2 8.27 1.57 

8 25.16 19.40 18.57 1.36 6.35 --- 

9 17.37 11.01 10.11 4.27 9.40 2.63 

 
Table 5 Maximum Relative Difference for Story Displacements in Y Direction 

  Underestimation %   Overestimation %  

Type 100/30 100/40 SRSS 100/30 100/40 SRSS 

1 12.28 5.53 4.57 3.35 8.44 1.72 

2 7.68 0.58 0.42 7.69 12.98 5.99 

3 2.55 --- --- 13.68 19.28 11.89 

4 17.38 11.02 10.12 0.76 5.71 --- 

5 15.49 8.98 8.06 1.34 6.32 --- 

6 15.93 9.47 8.55 1.20 6.18 0.39 

7 14.17 7.57 6.63 5.72 10.93 4.06 

8 19.31 13.10 12.22 5.87 11.09 4.21 

9 13.78 7.15 6.20 1.45 6.45 0.14 

 
 
In case where setback that can be regarded as a vertical irregularity and torsional irregularity 

exists in a building, combination rules may underestimate displacement and story shears. 
 
 

4. Conclusions 
 
Setback usually means discontinuitiy and termination of partial bending resistance members, 

which will lead to inappropriate load transfer and sudden change of lateral stiffness. The 
nonuniform vertical mass distribution caused by setback may have a significant influence on the 
response to seismic loading. For asymmetric setback structure, torsion effect might be remarkable. 

In this study the effectiveness of the combination rules, the 100/ 30, 100/ 40, and the SRSS 
method that are commonly used in the response spectrum analysis are examined. For this purpose 
nine buildings were analyzed. The lateral displacement and story shear response values  produced 
by combination rules were compared to the time-history analysis results of setback buildings. 
Twenty-two ground motions records are selected and applied to the analytical models in various 
excitation angles. 
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While the numerical values are valid for the structural systems and ground motions used in the 
present study, the general conclusions can be expanded to all setback buildings. When compared 
with time history analysis results, the results of 100/40 percentage rule are reasonable, and in some 
cases are conservative. Thus , this paper suggests the use of 100/40 combination rule for the 
analysis of asymmetric setback buildings. And also the effect of different input angles cannot be 
neglected for seismic design of setback buildings. It may be not reasonable for the practical 
engineering design if this factor is neglected. 
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