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Abstract.  An analytical solution based on the neutral surface concept is developed to study the free 

vibration behavior of simply supported functionally graded plate reposed on the elastic foundation by taking 

into account the effect of transverse shear deformations. No transversal shear correction factors are needed 

because a correct representation of the transversal shearing strain obtained by using a new refined shear 

deformation theory. The foundation is described by the Winkler-Pasternak model. The Young’s modulus of 

the plate is assumed to vary continuously through the thickness according to a power law formulation, and 

the Poisson ratio is held constant. The equation of motion for FG rectangular plates resting on elastic 

foundation is obtained through Hamilton’s principle. Numerical examples are provided to show the effect of 

foundation stiffness parameters presented for thick to thin plates and for various values of the gradient index, 

aspect and side to thickness ratio. It was found that the proposed theory predicts the fundamental frequencies 

very well with the ones available in literature. 
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1. Introduction 
 

The technique of grading ceramics along with metals initiated by the Japanese material scientist 

in Sendai has marked the beginning of exploring the possibility of using FGMs for various 

structural applications (Koizumi 1997). Since then, an effort to develop high performance heat-

resistant materials using functionally gradient technology. FGMs are therefore composite materials 

with a microscopically inhomogeneous character. Continuous changes in their microstructure 

distinguish FGMs from conventional composite materials. Functionally graded materials (FGM) 

structures are those in which the volume fractions of two or more materials are varied 

continuously as a function of position along certain dimension(s) of the structure to achieve a 

required function. Typically, FGMs are made from a mixture of ceramic and metal. It is difficult to  
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obtain an exact solution of the nonlinear equations to develop efficient mathematical models to 
predict the static and dynamic response of a plate. Thus far, only a few exact solutions have been 
investigated. However, with progress in science and technology, a need arises in engineering 
practice to accurately predict the nonlinear static and dynamic responses of a plate.  

Plates supported by elastic foundations have been widely adopted by many researchers to 
model various engineering problems during the past decades. To describe the interactions of the 
plate and foundation as more appropriate as possible, scientists have proposed various kinds of 
foundation models (Kerr 1964). The simplest model for the elastic foundation is the Winkler 
model, which regards the foundation as a series of separated springs without coupling effects 
between each other, resulting in the disadvantage of discontinuous deflection on the interacted 
surface of the plate. This was later improved by Pasternak (Pasternak 1954) who took account of 
the interactions between the separated springs in the Winkler model by introducing a new 
dependent parameter. From then on, the Pasternak model was widely used to describe the 
mechanical behavior of structure-foundation interactions (Xiang 1994, Zhou 2004). 

Several investigations have been presented for the analysis of FG plates and beams. Reddy 
(2000) use theoretical formulation, Navier’s solution and finite element model for the FG plate 
under thermomechanical loads. Bourada et al. (2015) study simple shear and normal deformations 
theory for functionally graded beams. Mentari et al. (2012) use an analytical solution of the static 
governing equations of exponentially graded plates. Joodaky et al. (2013) analyze the thin skew 
plates made of both isotropic and functionally graded materials based on elasticity and neutral 
surface theory of FGMs, resting on Winkler foundation, with various combination of clamp. 
Senthil et al. (2002) provide an exact solution for three-dimensional deformations of a simply 
supported functionally graded rectangular plate subjected to mechanical and thermal loads on its 
top and/or bottom surfaces. Tounsi et al. (2013) use a refined trigonometric shear deformation 
theory for thermoelastic bending of functionally graded sandwich plates. Hien et al. (2014) 
investigate the free vibration of functionally graded material (FGM) beams on an elastic 
foundation and spring supports. Kamran et al. (2014) study the three dimensional static and 
dynamic analyses of two dimensional functionally graded annular sector plates. Talha et al. (2010) 
established free vibration and static analysis of functionally graded material (FGM) plates using 
higher order shear deformation theory with a special modification in the transverse displacement in 
conjunction with finite element models. Ferreira et al. (2005) analyzed the static deformations of a 
simply supported functionally graded plate modeled by a third-order shear deformation theory 
using the collocation multiquadric radial basis functions. Ait Yahia et al. (2015) analyzed the wave 
propagation in functionally graded plates with porosities. Ramirez et al. (2006) gives an 
approximate solution for the static analysis of three-dimensional, anisotropic, elastic plates 
composed of functionally graded materials by using a discrete layer theory in combination with the 
Ritz method in which the plate is divided into an arbitrary number of homogeneous and/or FGM 
layers. Thai et al. (2011) develop a new shear deformation plate theory for FG plates on elastic 
foundation which is simple to use. This theory is based on assumption that the in-plane and 
transverse displacements consist of bending and shear components in which the bending 
components do not contribute toward shear forces. Zidi et al. (2014) study hygro-thermo-
mechanical loading for the Bending of FGM plates. Park et al. (2006) presented thermal 
postbuckling and vibration behaviors of the functionally graded (FG) plate, the nonlinear finite 
element equations are based on the first-order shear deformation plate theory and the von Karman 
nonlinear strain-displacement relationship is used to account for the large deflection of the plate.  

Hadji et al. (2014) studied the static and free vibration of FGM beam using higher order shear 
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deformation theory. Belabed et al. (2014) presented an efficient and simple higher order shear and 
normal deformation theory for functionally graded material (FGM) plates. Hamidi et al. (2015) 
investigated a sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical 
bending of functionally graded sandwich plates. Hebali et al. (2014) studied the static and free 
vibration analysis of functionally graded plates using a new quasi-3D hyperbolic shear 
deformation theory. Ait Amar Meziane et al. (2014) proposed an efficient and simple refined 
theory for buckling and free vibration of exponentially graded sandwich plates under various 
boundary conditions. Mahi et al. (2015) studied the bending and free vibration analysis of 
isotropic, functionally graded, sandwich and laminated composite plates using a new hyperbolic 
shear deformation theory. Bouderba et al. (2013) studied the thermomechanical bending response 
of FGM thick plates resting on Winkler-Pasternak elastic foundations. Bennoun et al. (2014) 
analyzed the vibration of functionally graded sandwich plates using a novel five variable refined 
plate theory. 

The objective of this investigation is to present a new refined shear deformation theory to study 
the free vibration behavior of simply supported functionally graded plate reposed on the elastic 
foundation using analytical solution procedure based on the neutral surface concept. This theory 
does not require shear correction factors and just four unknown displacement functions are used 
against five or more unknown displacement functions used in the corresponding ones. The 
obtained results have been compared with the ones available in literature and are found to be in 
good agreement with them.  

 
 

2. Geometric configuration and material properties 
 
The FGM plate is regarded to be a single layer plate of uniform thickness. Here we as certain 

the FGM plate of length a, width b and total thickness h made from anisotropic material of metal 
and ceramics, in which the composition varies from top to bottom surface. To specify the position 
of neutral surface of FG plates, two different planes are considered for the measurement of z, 
namely zms and zns measured from the middle surface and the neutral surface of the plate, 
respectively as shown in Fig. 1.  

We can write the volume fraction of ceramic (Vc) in terms of zms and zns coordinates as (Praveen 
1998) 
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Where h is the thickness of the plate and k denotes the power of FGM which takes values 
greater than or equal to zero. Also, the parameter C is the distance of neutral surface from the 
middle surface. The volume fraction of metal is expressed as 

)(1)( zVzV cm   (2)

The effective Young’s modulus E is expressed as (Zhang 2008) 

)()()( zVEzVEzE ccmm  (3)

Where Em and Ec are the Young’s modulus of the metal and ceramic respectively. The position
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Fig. 1 Geometry and dimensions of the FGM plate resting on elastic foundation 
 
 

of the neutral surface of the FG plate is determined to satisfy the first moment with respect to 
Young’s modulus being zero as follows (Zhang 2008, Bourada et al. 2015, Bousahla et al. 2014, 
Al-Basyouni et al. 2015, Fekrar et al. 2014) 
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It can be seen that the physical neutral surface and the geometric middle surface are the same in 
a homogeneous isotropic plate. 

 
 

3. Displacement field and strains 
 
In the present study, system of governing equations for FGM plate is derived by using 

variational approach. The origin of the material coordinates is at the neutral surface of the plate as 
shown in Fig 1. The in-plane displacements and the transverse displacement for the plate is 
assumed as 
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Where )( nszf  represents shape functions determining the distribution of the transverse shear 
strains and stresses along the thickness and is given as 
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It should be noted that unlike the first-order shear deformation theory, this theory does not 
require shear correction factors. The kinematic relations can be obtained as follows 
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The constitutive relation describes how the stresses and strains are related within the plate and 
is expressed as 
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Where  yzxzxyyx  ,,,,  are the stress components;  yzxzxyyx  ,,,,  are the strain 

components; ijQ  are the plane stress-reduced stiffnesses which can be calculated by 
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3.1 Governing equations and boundary conditions 
 
Hamilton’s principle is used herein to derive the equations of motion appropriate to the 

displacement field and the constitutive equations. The principle can be stated in analytical form as 

 
2

1t

 )( 0

t

F dtWKUU  (12)

Where U is the strain energy and K is the kinetic energy of the FG plate, UF is the strain energy 
of foundation and W is the work of external forces. Employing the minimum of the total energy 
principle leads to a general equation of motion and boundary conditions. Taking the variation of 
the above equation and integrating by parts 
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Where (··) represents the second derivative with respect to time and fe is the density of reaction 
force of foundation. For the Pasternak foundation model 
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And stiffness components and inertias are given as 
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For FG plates, the equilibrium equations take the forms 
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where ijd , ijld , and ijlmd  are the following differential operators 
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The following representation for the displacement quantities of the shear deformation theories 
is appropriate in the case of the free vibration problem 
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Where am /   , bn /   and Umn, Vmn, Wbmn,Wsmn being arbitrary parameters and 
 denotes the eigenfrequency associated with (m,n)th eigenmode. 

We can get the below eigenvalue equations for any fixed value of m and n, for free vibration 
problem 

   0][]([ 2  MK   (22)

Where [K] and [M], stiffness and mass matrices, respectively, and represented as 
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The natural frequencies of FG plate can be found from the nontrivial solution of Eq. (22). 
 
 

4. Numerical results and discussion 
 
In this section, various numerical examples are presented and discussed to verify the accuracy 

of present theory in predicting the frequency of simply supported FG plates based on the neutral 
surface concept is taken up for investigation. For numerical results, an Al/Al2O3 or Al/ ZrO2 plate 
composed of aluminum (as metal) and alumina or Zirconia (as ceramic) is considered. The 
material properties assumed in the present analysis are as follows: 
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Ceramic 
- ( CP : Alumina, Al2O3): 380cE GPa; 3/3800 mkgc   
- ( CP : Zirconia (ZrO2): 200cE  GPa; 3/5700 mkgc   

Metal ( MP : Aluminium, Al): 70mE  GPa; 
3/2702 mkgm   

Poisson’s ratio is 0.3 for both alumina and aluminum. And their properties change through the 
thickness of the plate according to power-law. The bottom surfaces of the FG plate are aluminum 
rich, whereas the top surfaces of the FG plate are alumina or Zirconia rich. 

For verification purpose, the obtained results are compared with Hosseini-Hashemi et al. 
(2010) based on a exact closed form Levy-type solution, Zhou et al. (2002) were based on a three 
dimensional Ritz method, Matsunaga (2008) based on the higher order shear deformation theories, 
three dimensional exact solution of Leissa (1973), Liu et al. (1999) were based on a differential 
quadrature element method and others available in literature. 

In all examples, no transversal shear correction factors are used because a correct 
representation of the transversal shearing strain is given. For convenience, the following results are 
presented in graphical and tabular form. 

To illustrate the accuracy of present theory for FG SSSS square plates made 
of Al/Al2O3 and Al/ZrO2 for wide range of power law index k and thickness 
ratio h/a, the variations of Non-dimensional natural frequencies and the 
fundamental frequency are illustrated in the following examples. 

Table 1 shows the comparison of fundamental frequency parameter (
cc Ehw / ) for SSSS 

Al/Al2O3 square plates with three values of thickness to length ratio (h/a=0.05, 0.1 and 0.2). It can 
be seen that the proposed refined theory using analytical solution based on the neutral surface 
concept and the others theories give identical results for all values of power law index k. 

The capability of the present solution is also tested for two types of materials, plates made of 
 
 
Table 1 Comparison study of fundamental frequency parameter cc Ehw /  for SSSS Al/Al2O3 square 
plates (a/b=1) 

Thickness to length ratio 
h/a 

Method 
Gradient index k 

0 1 4 10 

0.05 

Hosseini (2010) 0.01480 0.01150 0.01013 0.00963 

Matsunaga (2008) - - - - 

Zhao (2009) 0.01464 0.01118 0.00970 0.00931 

Present 0.01479 0.00997 0.00883 0.00810 

0.1 

Hosseini (2010) 0.05769 0.04454 0.03825 0.03627 

Matsunaga (2008) 0.05777 0.04427 0.03811 0.03642 

Zhao (2009) 0.05673 0.04346 0.03757 0.03591 

Present 0.05769 0.03913 0.03443 0.03150 

0.2 

Hosseini (2010) 0.2112 0.1650 0.1371 0.1304 

Matsunaga (2008) 0.2121 0.1640 0.1383 0.1306 

Zhao (2009) 0.2055 0.1587 0.1356 0.1284 

Present 0.2112 0.1460 0.1255 0.1142 
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Al/Al2O3 and Al/ZrO2 for wide range of power law index k in table 2. Close correlation is 
achieved. 

Table 3 examines the effect of Thickness to length ratio h/a on the first eight Non-dimensional 
natural frequencies ( Dhaw /2  ) for simply supported isotropic square plate. As can be seen 
from the table that, not only for thin plates but also thick plates, the natural frequencies are 
predicted as accurately by the present method. 

Tables 4 and 5 shows the comparison of fundamental frequency Dhaw /2   of FG 
rectangular plates on elastic foundation with those reported by Akhavan et al. (2009), Hassen Ait 
Atmane et al. (2011), Matsunaga (2008) and Thai et al. (2012) with different values of the  
 
 
Table 2 Comparison study of fundamental frequency parameter hEaw cc //2   for SSSS square plates 
(a/b=1) when h/a=0.1 

FGMs Method 
Gradient index k 

0 1 2 5 8 10 

Al/Al2O3 

Hosseini (2010) 5.7693 4.4545 4.0063 3.7837 3.6830 3.6277 

Zhao (2009) 5.6763 4.3474 3.9474 3.7218 3.6410 3.5923 

Present 5.7696 3.9138 3.7034 3.3635 3.2093 3.1500 

Al/ZrO2 

Hosseini (2010) 5.7693 5.2532 5.3084 5.2940 5.2312 5.1893 
Zhao (2009) 5.6763 4.8713 4.6977 4.5549 4.4741 4.4323 

Present 5.7696 5.0800 5.1148 5.1381 5.1156 5.1000 

 
Table 3 Comparison study of Non-dimensional natural frequencies Dhaw /2   for simply supported 
isotropic square plate 

Thickness to 
length ratio h/a 

Method 
Mode 

1,1 1,2 2,1 2,2 3,1 1,3 3,2 2,3 

0.001 

Leissa (1973) 19.7392 49.348 49.348 78.9568 98.696 98.696 128.3021 128.3021

Zhou (2002) 19.7115 49.347 49.347 78.9528 98.6911 98.6911 128.3048 128.3048

Akavci (2014) 19.7391 49.3476 49.3476 78.9557 98.6943 98.6943 128.3020 128.3020

Present 19.7391 49.3475 49.3475 78.9556 98.6942 98.6942 128.3018 128.3018

0.01 

Liu (1999) 19.7319 49.3027 49.3027 78.8410 98.5150 98.5150 127.9993 127.9993

Nagino (2008) 19.732 49.305 49.305 78.846 98.525 98.525 128.01 128.01

Akavci (2014) 19.7322 49.3045 49.3045 78.8456 98.5223 98.5223 128.012 128.012

Present 19.7320 49.3032 49.3032 78.8422 98.5171 98.5171 128.0027 128.0027

0.1 

Liu (1999) 19.0584 45.4478 45.4478 69.7167 84.9264 84.9264 106.5154 106.5154

Hosseini (2011) 19.0653 45.4869 45.4869 69.8093 85.0646 85.0646 106.7350 106.7350

Akavci (2014) 19.0850 45.5957 45.5957 70.0595 85.4315 85.4315 107.3040 107.3040

Present 19.0660 45.4917 45.4917 69.8212 85.0829 85.0829 106.7652 106.7652

0.2 

Shufrin (2005) 17.4524 38.1884 38.1884 55.2539 65.3130 65.3130 78.9864 78.9864

Hosseini (2011) 17.4523 38.1883 38.1883 55.2543 65.3135 65.3135 78.9865 78.9865

Akavci (2014) 17.5149 38.4722 38.4722 55.8358 66.1207 66.1207 80.1637 80.1637

Present 17.4553 38.2052 38.2052 55.2943 65.3731 65.3731 79.0812 79.0812
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thickness to length ratios and foundation stiffness parameters. It can be seen that the results are in 
excellent agreement with each other. 

Fundamental frequencies 22 //  ASHbw   of the FG square plate (a/b=1) with simply-
supported boundary conditions for h/a=0.01,0.1 and 0.2 are listed in Table 6 for different values of 
foundation stiffness parameters are computed and compared with other published solutions. It can 
be seen from the table that a good agreement is achieved between the results of present theory and 
those of other theory. 

Figs. 2 and 3 contains the plots of non-dimensional fundamental frequency mm Ehaw //2   
of Al/Al2O3 functionally graded square plates with respect to power law index k (k=0 to 10) 
 
 
Table 4 Comparison study of the fundamental frequency parameter Dhaw /2  of isotropic square 
plate 

Thickness to 
length ratio 

h/a 
K0 K1 

Method 

Akhavan (2009) Hassen (2010) Present 

0.001 

0 0 19.7391 19.7392 19.7320 

102 10 26.2112 26.2112 26.2048 

103 102 57.9961 57.9962 57.9894 

0.1 

0 0 19.0840 19.0658 19.0660 

102 10 25.6368 25.6236 25.5989 

103 102 57.3969 57.3923 57.2775 

0.2 

0 0 17.5055 17.4531 17.4553 

102 10 24.3074 24.2728 24.1068 

103 102 56.0359 56.0311 56.0260 

 
Table 5 Comparison study of Non-dimensional natural frequencies Dhaw /2   for simply supported 
isotropic square plate resting on elastic foundation (h/b=0.2) 

K0 K1 
11  12 13  

Matsunaga 
(2000) 

Akavci 
(2014) 

Present 
Matsunaga 

(2000)
Akavci 
(2014)

Present
Matsunaga 

(2000) 
Akavci 
(2014) 

Present 

0 

0 

17.5260 17.514917.45533 38.4827 38.4722 38.2052 65.9961 66.1207 65.3731 

10 17.7847 17.7859 17.7196 38.5929 38.5929 38.3203 66.0569 66.1899 65.4378 

102 19.9528 20.0603 19.9413 39.5669 39.6620 39.3417 66.5995 66.8087 66.0178 

103 34.3395 35.5261 35.1278 47.8667 47.0757 48.3829 71.5577 72.6997 71.5586 

104 45.5260 45.5260 45.5260 71.9829 71.982971.98299 97.4964 101.7990 101.79922

105 45.5260 45.5260 45.5260 71.9829 71.9830 71.9829 101.7992 101.7990 101.7992

0 

10 

22.0429 22.2607 22.0950 43.4816 44.0294 43.5262 71.4914 72.6178 71.4814 

10 22.2453 22.4745 22.3043 43.5747 44.1347 43.6274 71.5423 72.6806 71.5406 

102 23.9830 24.3133 24.1068 44.3994 45.0711 44.5271 71.9964 73.2430 72.0713 

103 36.6276 38.0839 37.6468 51.6029 53.5296 52.6856 76.1848 78.6389 77.1762 

104 45.5260 45.5260 45.5260 71.9829 71.9829 71.9829 99.0187 101.7990 101.7992

105 45.5260 45.5260 45.5260 71.9829 71.9829 71.9829 101.7992 101.7990 101.7992
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Table 6 Comparison study of fundamental frequency parameter *// 22  AShbw   for homogeneous 
SSSS square plates (a/b=1) 

Thickness to 
length ratio 

h/a 
Method Fundamental frequency parameter 

Foundation stiffness parameters 
(K0, K1) 

(100,0) (500,0) (100,10) (500,10) 

0.01 

Hosseini (2010) 2.2413 3.0215 2.6551 3.3400 

Xiang (1994) 2.2413 3.0215 2.6551 3.3400 

Zhou (2004) 2.2413 3.0214 2.6551 3.3398 

Present 2.2413 3.0214 2.6551 3.3399 
Foundation stiffness parameters 

(K0, K1) 
(200,0) (1000,0) (200,10) (1000,10) 

0.1 

Hosseini (2010) 2.3989 3.7212 2.7842 3.9805 

Xiang (1994) 2.3989 3.7212 2.7842 3.9805 

Zhou (2004) 2.3951 3.7008 2.7756 3.9566 

Present 2.3971 3.7153 2.7811 3.9738 
Foundation stiffness parameters 

(K0, K1) 
(0,10) (10,10) (100,10) (1000,10) 

0.2 

Hosseini (2010) 2.2505 2.2722 2.4590 3.8567 

Xiang (1994) 2.2505 2.2722 2.4591 3.8567 

Zhou (2004) 2.2334 2.2539 2.4300 3.7111 

Present 2.2386 2.2599 2.4425 3.8144 

+k)+k)/(+k)/()/()E+k+k(+)Ek+k+)(k(-ν/((h/ A

+k)+k)/(+k)/()/()ρ+k+k(+)ρk+k+(k(S

cm

cm

32123381121

;3212338*
2223

22



  

 

Fig. 2 Non-dimensional fundamental frequency mm Ehaw //2  of Al/Al2O3 across power law index k

 
 

without the elastic foundation (K0=K1=0). It is clear that the increase of the power law index k 
causes a decrease of the non-dimensional fundamental frequency. This last increase when the 
aspect and side-to-thickness ratio increase. 

1044



 
 
 
 
 
 

Free vibration analysis of FG plates resting on the elastic foundation and based on... 

Fig. 3 Non-dimensional fundamental frequency  

mm Ehaw //2  of Al/Al2O3 across power law 

index k 

Fig. 4 Non-dimensional fundamental frequency 

mm Ehaw //2  of Al/Al2O3 across power law 

index resting on the Winkler foundation 
 

Fig. 5 Non-dimensional fundamental frequency 

mm Ehaw //2  of Al/Al2O3 across power law 
index resting on the elastic foundation 

Fig. 6 Non-dimensional fundamental frequency 
22 //  ASHbw  of Al/Al2O3 across thickness to 

length ratio ( ah / ) resting on the elastic 
foundation 

 
 
Figs. 4 and 5 displays the variation of the non-dimensional fundamental frequency 

mm Ehaw //2   of Al/Al2O3 functionally graded square plates with respect to power law index k 
(k=0 to 10) resting on the Winkler and Winkler-Pasternak foundation respectively. It can be 
observed that the frequencies increase with the increase of the foundation parameters.  

In Fig. 6, the variations of non-dimensional fundamental frequencies 22 //  ASHbw   of 
simply supported Al/Al2O3 functionally graded square plates with respect to thickness to length 
ratio ( ah / ) are plotted. It is seen from the figure that, increasing value of Winkler coefficient 
of foundation causes to increase in the fundamental frequency. 

 
 

5. Conclusions 
 
In this work, an efficient new refined shear deformation theory based on the neutral surface 
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concept was effectively used to study extensively the free vibration analysis of an FG simply-
supported plate resting on the elastic foundations using analytical procedure. Equilibrium 
equations are obtained using Hamilton’s principle. The Navier method is used for the analytical 
solutions of the functionally graded plate with simply supported boundary conditions. It was 
demonstrated that the present solution is highly efficient for exact analysis of the vibration of FG 
rectangular plates on the elastic foundations. Parametric studies for varying of the power low 
index, the foundation stiffness parameters, the aspect and side-to-thickness ratio are discussed and 
demonstrated through illustrative numerical examples. The present findings will be a useful 
benchmark for evaluating other analytical and numerical methods 
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