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Abstract.  Offshore wind turbines are considered as a fundamental part to develop substantial, alternative 

energy sources. In this highly flexible structures, monopiles are usually used as support foundations. Since 

the monopiles are large diameter (3.5 to 7 m) deep foundations, they result in extremely stiff short monopiles 

where the slenderness (length to diameter) may range between 5 and 10. Consequently, their elastic 

deformation patterns under lateral loading differ from those of small diameter monopiles usually employed 

for supporting structures in offshore oil and gas industry. For this reason, design recommendations (API and 

DNV) are not appropriate for designing foundations for offshore wind turbine structures as they have been 

established on the basis of full-scale load tests on long, slender and flexible piles. Furthermore, as these 

facilities are very sensitive to rotations and dynamic changes in the soil-pile system, the accurate prediction 

of monopile head displacement and rotation constitutes a design criterion of paramount importance. 

In this paper, the Fourier Series Aided Finite Element Method (FSAFEM) is employed for the 

determination of static impedance functions of monopiles for OWT subjected to horizontal force and/or to 

an overturning moment, where a non-homogeneous soil profile has been considered. On the basis of an 

extensive parametric study, and in order to address the problem of head stiffness of short monopiles, 

approximate analytical formulae are obtained for lateral stiffness KL, rotational stiffness KR and cross 

coupling stiffness KLR for both rough and smooth interfaces. Theses expressions which depend only on the 

values of the monopile slenderness L⁄Dp rather than the relative soil/monopile rigidity Ep ⁄Es usually found in 

the offshore platforms designing codes (DNV code for example) have been incorporated in the expressions 

of the OWT natural frequency of four wind farm sites. Excellent agreement has been found between the 

computed and the measured natural frequencies. 
 

Keywords:  semi-analytical FE analysis; laterally loaded short monopiles; monopile head stiffnesses; 

offshore wind turbines; natural frequency 
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1. Introduction 
 
1.1 Energy for people seeking cost effectivity and clean energy 
 
In order to meet the world’s constantly rising energy demands, the society concern is growing 

about the use of fossil fuels. Due to the tremendous rising of prices of this source of energy, it is 
certainly desirable if not mandatory to search for alternatives that are safe, cost effective and may 
reduce the CO2 gas emission in the aim to preserve the environment. Offshore wind farms (OWF) 
are expected to fulfill these requirements and become significant providers of electricity 
production in modern societies and worldwide. Although wind energy certainly has the potential to 
play an important role in a sustainable future world energy supply, a number of challenges are still 
to be met in wind turbine technology. One of those challenges concerns the correct determination 
of the dynamic characteristics caused by structural vibrations of the individual turbine components 
(such as rotor blades, gearbox and tower) (Bhattacharya 2014) 

 
1.2 Foundation options for offshore wind turbines  
 
One of the major difficulties encountered in relation to offshore wind turbine (OWT) 

foundations is the connection of the structure to the seabed and in particular how the foundations 
should safely transfer the applied loads to the surrounding soil. Furthermore, as the wind turbines 
are installed in a harsh environment, they must be more reliable than onshore turbines due to 
higher service and repair costs at such sites. Several different solutions have been developed for 
different water depths (Luqing et al. 2014), all of which meet these criteria. The main concepts are 
illustrated in Fig. 1. 

In shallow waters (0-30 m) a simple concrete ‘gravity base’ foundations (Fig. 1(b)) are usually 
used to support OWT. These foundations withstand applied loads and overturning moments by 
means of their own self weight. The performance of this kind of foundations may be improved by 
adding ballast after installation. A monopile (Fig. 1(a)) consists of large diameter open-ended steel 
tube driven into the soil. It is installed by either drilling or grouting and it must be able to transfer 
both lateral and axial forces to seabed soil. The monopiles are considered to be the best solution 
for intermediate depths, due to the ease and speed of installation and cost of construction. 
However, this solution becomes impossible when the water becomes deeper (50-200 m) and the 
offshore wind turbine larger. This, is due to the impossibility to handle a monopile with the current 
technology. In this situation, a multiple footing option would be more appropriate, either in the 
form of a tripod (three foundations) (Fig. 1(c)) or tetrapod (four foundations). 

Jacket structures (Fig. 1(d)) consist of three or four legged steel lattice frame supported by 
single piles placed below each leg. This kind of foundations, which proved its success in deep 
waters (depths ranging from 35 to 60 m), is employed to transfer the applied loads through the 
jacket structure to the piles. Finally, founding structures directly to the seabed at depths ranging 
between 50 m and 200 m, is both impractical and highly expensive, which is why several floating 
solutions (Fig. 1(e)) have been suggested that rely on buoyancy of the structure to resist 
overturning. One shortcoming in these is the floating motion which raises additional dynamic 
loads to the structure. Thus, in despite of the larger wind potential at such depths far from shore, 
these solutions are still under development. 
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that the designers are confusing between the behavior of short monopiles and slender ones. 
Although this fact has been clearly addressed by many researchers, decades ago, the current 
API/DNV design standards are still depending on methods proposed by Reese et al. (1974) and 
which have been originally developed on testing slender piles. This empiricism underpins the 
major limitations of API RP2A (API, 2011). 

Standards for designing laterally loaded piles, e.g., the American Petroleum Institute (API 
2011), Det Norske Veritas (DNV 2004) or Germanischer Lloyd (GL 2005) are based on the P-Y 
curves method. The P-Y curves method, which describes the nonlinear relationship between pile 
deflection Y and soil reaction P, is based on the work performed in the early 1970s (Reese et al., 
1974; Matlock, 1970 and Murchisson and O’Neill, 1984). Although, they have been employed for 
designing offshore piled foundations by the offshore oil and gas industry for decades, design 
recommendations (API, and DNV) are not appropriate for designing foundations for offshore wind 
turbine structures, for many reasons: 

a) They have been developed on the basis on full-scale load tests on long, slender and flexible 
piles with a diameter of 0.61 m, whereas monopiles are relatively shorter and stiffer piles with 
diameters up to 6.0 m in the offshore wind turbine industry. 

b) The widely used API model is calibrated against response to a small number of cycles for 
offshore fixed platform applications. However, an offshore wind turbine may undergo 107-108 
cycles of loading over its lifetime of 20-25 years. 

c) Under cyclic loading, the API and DNV models always predict degradation of foundation 
stiffness in sandy soil. However, many researchers (Adhikari and Bhattacharya 2011, Adhikari and 
Bhattacharya 2012, Leblanc 2009, Cuéllar et al. 2012, Achmus et al. 2009) showed that the 
monopile stiffness in sandy soil will increase as a result of densification of soil in the vicinity of 
the monopile. 

The behavior of monopiles foundations for offshore wind turbines deviate from classical 
assumption and accumulated experience mainly due to their large diameter, reduced slenderness 
and high ratio of lateral to vertical loads. The harsh offshore environment poses another challenge 
of large numbers of load cycles from wind and waves. This behavior is still not well understood 
and also not being introduced in current design guidelines. 

 
1.4 Purpose and scope of the paper 
 
As far as the accurate prediction of the monopile head displacement and rotation, is concerned, 

the analysis using the Finite Element Method (FEM) is an excellent tool to narrow the gap 
between predicted and measured results. Indeed, the use of the Fourier Series Aided Finite 
Element Method has proven to be an excellent approach to analyze the behavior of laterally loaded 
monopiles embedded in elastic media.  

In this paper, this approach is employed for the determination of static impedance functions of 
monopiles for OWT subjected to horizontal force and/or to an overturning moment, where a non-
homogeneous soil profile has been considered. On the basis of an extensive parametric study, and 
in order to address the problem of head stiffness of short monopiles, approximate analytical 
formulae are obtained for lateral stiffness KL, rotational stiffness KR and cross coupling stiffness 
KLR for both rough and smooth pile/soil interfaces. Theses expressions which depend only on the 
value of the monopile slenderness L/Dp rather than the relative soil/monopile rigidity Ep/Es usually 
encountered in the offshore platforms designing codes (DNV code for example) have been 
incorporated in the well established expressions of the OWT natural frequency of four wind farm 
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sites chosen from the literature. These include: walney1 wind farm site (UK), North Hoyle (the 
Netherlands), Irene Vorrink (the Netherlands) and Lely A2 (UK). 

 
 

2 .Fourier Series Aided Finite Element (FSAFE) approach used in this study 
 
The problem of an embedded monopile (Fig. 2) under lateral and moment loading is a problem 

of axisymmetric solids subjected to non-axisymmetric loads. It is a three-dimensional problem, in 
the sense that all three displacement components are in general nonzero. Similarly, all six stress 
components are in general nonzero. This type of problems can be analyzed by a semi-analytical 
approach which as proposed by (Wilson 1965, Winnicki and Zienkiewicz 1979). It consists of 
expressing forces and displacements in the direction of revolution in a form of Fourier series, 
calculating the response to each Fourier term and superposing results (Griffiths and Lane 1990, 
Potts and Zdravkovic 1999). An essential requirement of this approach is that the material 
properties in the circumferential direction remain constant. 

As this approach has already been described in many finite element textbooks (Potts and 
Zdravkovic 1999, Cook et al. 2002), we will only give a brief description. 

 
2.1 Expansion of loading and displacements in Fourier series 
 
In the present problem, it is convenient to adopt a cylindrical coordinate system for the semi-

analytical FE formulation. The nodal loads applied to the axisymmetric structure can be expanded 
in Fourier series as 

 ቐ
ܴሺݎ, ,ݖ ሻߠ
ܼሺݎ, ,ݖ ሻߠ
ܶሺݎ, ,ݖ ሻߠ

ቑ ൌ ൞

തܴ଴ ൅ ∑ ൫ തܴ௜ሺݎ, ሻݖ cos ߠ݅ ൅ ധܴ௜ሺݎ, ሻݖ sin ൯ߠ݅
ஶ
௜ୀଵ

ܼ̅଴ ൅ ∑ ൫ܼ̅௜ሺݎ, ሻݖ cos ߠ݅ ൅ ܼ̿௜ሺݎ, ሻݖ sin ൯ߠ݅
ஶ
௜ୀଵ

ധܶ଴ ൅ ∑ ൫ തܶ௜ሺݎ, ሻݖ sin ߠ݅ െ ധܶ௜ሺݎ, ሻݖ cos ൯ߠ݅
ஶ
௜ୀଵ

ൢ                     (1) 

Where symbols, R, Z and T indicate respectively the radial, axial and the circumferential (hoop) 
components. All barred quantities are amplitudes, which are functions of r and z but not of ߠ. 
Single barred amplitudes represent symmetric load components (loads which have θ=0 as plane of 
symmetry), while double-barred amplitudes represent anti-symmetric load terms. 

It is possible to demonstrate (Cook et al. 2002) that in a linear analysis, when loads are 
expanded as in Eq. (1), displacement components are described by Fourier series as well 

 ቐ
,ݎ௥ሺݑ ,ݖ ሻߠ ൌ ∑ ത௥௜ݑ cos ߠ݅ ൅

௅
௜ୀ଴ ∑ ധ௥௜ݑ sin ߠ݅

௅
௜ୀଵ

,ݎ௭ሺݒ ,ݖ ሻߠ ൌ ∑ ௭௜ݒ̅ cos ߠ݅ ൅
௅
௜ୀ଴ ∑ ௭௜ݒ̿ sin ߠ݅

௅
௜ୀଵ

,ݎఏሺݓ ,ݖ ሻߠ ൌ ∑ ഥఏ௜ݓ sin ߠ݅ െ
௅
௜ୀଵ ∑ നఏ௜ݓ cos ߠ݅

௅
௜ୀ଴

ቑ                                (2) 

The index i stands for the harmonic number, and ܮ is the total number of harmonic terms 
considered in the series. The single barred terms ݑത௥௜, ,	௭௜ݒ̅  ഥఏ௜ are amplitudes of displacements thatݓ
are symmetric with respect to the plane for θ=0. The double barred terms ݑതത௥௜	, ,	௭௜ݒ̿ നఏ௜ݓ  are the 
amplitudes of displacements that are anti-symmetric with respect to the plane for θ=0. 

Only the first two terms in the Fourier series are needed in most practical situations. Problems 
for the first term (i.e., i=0) are those related to purely axisymmetric problems and consequently 
well established in the literature. The second term for i=1 is required when the loading pattern  
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Fig. 2 State of stresses within and around a monopile under vertical and lateral loading 

 
 

has a plane of symmetry. 
For a monopile subjected to a lateral and/or an overturning moment, only the second term for 

i=1 survives, because this loading has a plane of symmetry. In this situation the components of 
loading in Eq. (1) reduce to 

   ܴ ൌ തܴܿߠݏ݋, ܼ ൌ ܴߠݏ݋ܼܿ̅ ൌ തܶ(3)                                              ߠ݊݅ݏ 

Where, തܴ , ܼ̅  and തܶ are load amplitudes of the first harmonic. The radial തܴ  amplitude is 
distributed along the circumference of the monopile. The lateral load H acting as a result of this 
distribution follows from the expression 

ܪ    ൌ ܴ	ഥ ׬ ߠ݀	ߠଶݏ݋ܿ ൌ ߨ തܴ
ଶగ
଴                                                       (4) 

According to the St. Venant’s principal the loading of amplitude തܴ on the first harmonic will 
have the same effect as a concentrated force ܪ ൌ ߨ തܴ  acting in the x-direction. Similarly, the 
vertical ܼ̅  amplitude is distributed along the circumference of the monopile. These tractions 
generate an overturning moment according to the equation 

ܯ ൌ ௣ܼ̅ܦ ׬ ߠ݀	ߠଶݏ݋ܿ ൌ
஽೛
ଶ

గ
଴  (5)                                                  ܼ̅ߨ

Where Dp is the monopile diameter. Similarly, the tangential തܶamplitude is distributed over the 
edge of the monopile cross-section. It yields 

ܪ ൌ െതܶ ׬ ߠ݀	ߠଶ݊݅ݏ ൌ െߨ തܶ
ଶగ
଴                                                     (6) 

For the load system as defined by equations 4, 5 and 6, the displacement Eq. (2) reduce to 

௥ݑ ൌ ത௥ݑ cos ߠ ௭ݒ					, ൌ ௭ݒ̅ cos ߠ ఏݓ					, ൌ ഥఏݓ sin  (7)                                     ߠ

ࢠ࣌

࢘࣌
ࣂ࣌

ࣂ

ࢠ࢘࣎

ࣂࢠ࣎

࢘ࣂ࣎

Monopile 

࢘

 ࢠ

 ࡹ

 ࢂ

 ࡴ
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௝࡮ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
డேೕ
డ௥

cos ߠ 			0																							 0					

0														
డே೔
డ௭
cos ߠ 0						

ேೕ
௥
cos ߠ 0																				

ேೕ
௥
cos ߠ

డேೕ
డ௭

cos ߠ
డேೕ
డ௥

cos ߠ 					0

0		
ேೕ
௥
sin ߠ

డேೕ
డ௥

sin ߠ

െ
ேೕ
௥
sin ߠ 0 ቀ

డேೕ
డ௥

െ
ேೕ
௥
ቁ sin ےߠ

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

                                   (10) 

And the elasticity matrix ࡰ௩is given by  

௩ࡰ ൌ
ாೞ

ሺଵାఔೞሻሺଵିଶఔೞሻ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
1 െ ௦ߥ ௦ߥ ௦ߥ 0 0 0
௦ߥ 1 െ ௦ߥ ௦ߥ 0 0 0
௦ߥ ௦ߥ 1 െ ௦ߥ 0 0 0

0 0 0
ଵିଶఔೞ
ଶ

0 0

0 0 0 0
ଵିଶఔೞ
ଶ

0

0 0 0 0 0
ଵିଶఔೞ
ଶ ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

                    (11) 

The integration (in the Eq. (8)) with respect to the circumferential direction can be easily 
handed if we take profit of the orthogonal properties of the trigonometric functions 

׬  ߠ݀ߠଶ݊݅ݏ ൌ ,ߨ
గ
ିగ ׬							 ߠ݀ߠଶݏ݋ܿ ൌ ߨ

గ
ିగ      and    ׬ sin ߠ cos ߠ ߠ݀ ൌ 0		

గ
ିగ               (12) 

Then the Eq. (8) will have a more simple form 

௩௢௟ࡷ ൌ ߨ ׬ ஺ݖ݀ݎ݀ݎ௩࡮௩ࡰ௩்࡮                                               (13) 

In what follows, the volume element employed is a ring element having as across-section, the 
2-D eight-noded isoparametric element (Fig. 4). This element which has been used to model both 
monopile and soil, performs well in analyzing problems involving flexural behavior. Furthermore,  

 
 

Fig. 4 A ring element with Q8 as cross-section 
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this element has a quadratic field of displacements, and consequently it constitutes a well 
compromise between complexity and accuracy (Durocher et al. 1978). This element is illustrated 
in Fig. 4. 

The shape functions associated to this element are: 
• At corner nodes: 1,3,5 and 7 

௝ܰ ൌ
ଵ

ସ
൫1 ൅ ௝൯൫1ߦߦ ൅ ௝ߦߦ௝൯ሺߟߟ ൅ ௝ߟߟ െ 1ሻ                                     (14) 

• At mid-side nodes 

௝ܰ ൌ
ଵ

ଶ
ሺ1 െ ଶሻ൫1ߦ ൅ ݆ ௝൯       forߟߟ ൌ 4, 8                                      (15) 

௝ܰ ൌ
ଵ

ଶ
ሺ1 െ ଶሻ൫1ߟ ൅ ݆ ௝൯        forߦߦ ൌ 2, 6                                      (16) 

 
2.3 Stiffness matrix for soil/monopile interface elements 
 
In most problems of soil-structure interaction, relatively simple models may be adopted for 

interfaces as they usually involve compressive contact stresses. For many problems it may be 
convenient to model interface behavior by merely refining a finite element mesh in the immediate 
vicinity of the interface. However, as the mesh remains continuous and adjacent elements are 
assigned with considerably different properties, occasional numerical singularities may occur 
constituting thus, the main drawback of this simple method. 

A joint element was thus formulated by Amar Bouzid et al. (2004) to model soil/structure 
interfaces of axisymmetric solids of revolution subjected to non-axisymmetric loading using a 
semi-analytical analysis. To this end a six-noded interface element was formulated which can be 
combined with eight or nine-noded quadrilateral volume elements (Fig. 5). A brief outline of the 
interface formulation will be given here. 

 
 

 
Fig. 5 Zero thickness 6-noded interface element in an axisymmetric body showing the normal and shear
stresses acting at the interface location 
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linear distribution with depth models a normally consolidated clay or the degraded shear modulus 
distribution with depth in a cohesionless soil profile after some cyclic loading. The square root 
Young’s modulus distribution represents cohesionless soils at small strains. For these materials the 
small strain elastic modulus is known to be a function of square root of the effective stress. 

 
 
4. Computer Program MPULL_SAA, FE mesh and soil/monopile properties adopted 

in this study 
 
The theoretical developments of the FSAFEM for the problem of laterally loaded single 

monopiles presented in subsections (2.1-2.3) have been encoded in a Fortran computer program 
called MPULL_SAA, which stands for MonoPiles Under Lateral Loading_Semi-Analytical 
Approach. 

The computer program begins by reading the geometrical characteristics of the FE mesh 
(number of elements, lateral and bottom distances of the mesh, etc.), interface stiffness properties, 
boundary conditions, geometrical and mechanical properties of the monopile and soil and certain 
parameters relevant to the Fourier series harmonic analysis.  

Within a loop of all types of soil analyzed, MPULL_SAA reads for the soil under 
consideration, its Young’s modulus at a depth equal to one monopile diameter as well as the 
exponent which controls the variation of soil stiffness with depth. Then, on the basis of the 
available data, it computes the global stiffness matrix which encompasses the soil, the monopile 
and the interface separating them. 

Within another nested loop which accounts for the loading cases, the global stiffness matrix is 
soon reduced using Gaussian elimination and a backsubstitution is performed to give the nodal 
displacements of the whole system.  

The MPULL_SAA output can show the monopile displacements, monopile rotations, shear 
forces and bending moments along the monopile shaft at the end of each load case. Fig. 7 shows 
MPULL_SAA flowchart summarizing the different steps of computations. 

 
4.1 Boundary conditions  
 
As far as the simplicity in meshing is concerned, only half of the domain was meshed for the 

3D semi-analytical FEM study due to the symmetry of the problem. The mesh used for the study is 
shown in Fig. 8.  

The distances from boundaries are chosen large enough to eliminate the boundary effect. 
Applied boundary conditions to the soil are pinned support at the bottom with no displacements in 
the horizontal, vertical and circumferential directions ሺݑ௥ ൌ ௭ݒ ൌ ఏݓ ൌ 0ሻ and roller support at 
sides with no movement in the horizontal direction	ሺݑ௥ ൌ 0ሻ.  

The mesh has been refined in areas with stress concentration in the vicinity of the monopile and 
soil surface. The mesh density decreases at regions close to the boundaries. In finite element 
modeling a finer mesh typically results in a more accurate solution, while the computation time 
will increase. By performing a comprehensive FE mesh studies, a sufficiently dense mesh with an 
accurate solution has been obtained. Four important points can emerge from these studies. Firstly, 
the mesh need not extend laterally to more than 25	ܦ௣. Secondly, the mesh need not extend to 
more than one monopile length under the monopile tip. Thirdly, thirty six (36) eight-noded 
isoparametric elements are sufficient to model the soil/rigid monopile system in both sides. 
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Table 1 Monopile and interface properties 

Monopile properties 
Interface properties 

Smooth interface Rough interface 

࢖ࡱ ൌ ૛ ൈ ૚૙ૠ ࡺ࢑ ⁄૛࢓   ݇௡ ൌ 10ଵଶ ݇ܰ ݉ଷ⁄ . ݇௡ ൌ 10ଵଶ ݇ܰ ݉ଷ⁄  
࢖ࣇ ൌ ૙. ૛૞  ݇௦ ൌ 0.0 ݇௦ ൌ 10ଵଶ ݇ܰ ݉ଷ⁄  

 
 

from the surrounding elastic medium, the interface formulation described in the subsection 2.3 has 
been implemented. Semi-analytical finite element computations have been carried out in an elastic, 
isotropic soil characterized by a stiffness which varies according to the power law as described in 
section 3. (Detailed description de the different values of soil Young’s modulus and Poisson’s 
ratios considered in the parametric study are given in subsection 5.3). 

The rough interface between the rigid monopile and the surrounding medium has been 
simulated by either prescribing large values for the interface stiffness coefficients or fully 
removing the interface formulation from the FE code by using a conventional analysis in which 
soil and monopile are tied together at the shared nodes. For simulating a smooth interface, finite 
element analyses were carried out by imposing a shear stiffness equal to zero and a large value for 
the normal stiffness. 

The deformation characteristics of the rigid monopile and those of soil/monopile interface are 
given in Table 1. 

 
 
5. Finite element establishment of critical length and static impedance functions for 

monopiles 
 
The overall foundation stiffness is dependent on the strength and stiffness of the soil as well as 

on the structural foundation elements. The foundation stiffness needs to be determined as a basis 
for predicting the dynamic structural response to wind, wave and earthquake loading. The 
foundation stiffness is in general frequency dependent. This is particularly important when 
predicting dynamic response to earthquake. 

The soil that supports a foundation structure usually has finite stiffness. It can therefore usually 
not be justified to model the soil as a rigid mass. In other words, the foundation structure cannot be 
assumed to have a fixed support. In any analysis of a foundation structure and of the wind turbine 
structure that it supports, it is therefore important to model the actual boundary conditions formed 
by the supporting soils properly.   

Static stiffnesses are stiffnesses for frequencies approaching zero. The dynamic stiffnesses may 
deviate from the static stiffnesses in particular in case of high-frequent vibrations. However, for 
wind and wave loading of wind turbine foundations, onshore as well as offshore, the induced 
vibrations will be of such a nature that the static stiffnesses will be representative for the dynamic 
stiffnesses that are required in structural analyses. 

 
5.1 Critical slenderness ratio 
 
The behavior of single piles (monopiles) under lateral loading has been extensively studies over 

the four last decades. The researchers found out that the key element of the behavior of these 
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foundations is what we call the critical length or the critical slenderness (Banerjee and Davies 
1978, Poulos and Davis 1980, Randolph 1981, Gazetas 1991). This parameter really separates the 
behavior of long slender monopiles than that of short piles. In slender monopiles the head 
movements cease to be dependent on the pile length when this length is greater than its critical 
length. However, short monopiles behave differently and depend on contrary on monopile length.  

As there is a dearth of research studies for problems where the interface between the soil and 
the monopile is smooth or the soil considered has a stiffness which varies as a square root of 
depth, this section is dedicated to find finite element expressions of critical slenderness. Indeed, 
the procedure followed is to set up the soil stiffness ܧ௦ሺݖሻ ൌ ݖௌ஽ሺܧ ⁄௣ሻܦ ఈ at a fixed value and to 
increment the slenderness ratio. The procedure terminates when a convergence criterion reaches a 
pre-set limit. In other words the procedure stops when the increase in the monopile length cease to 
have an effect on the head movements. Table 2 gives the different expressions for monopile 
slenderness. 

These expressions as well as existing solutions found in the literature are illustrated in the Fig. 
9. It is clear from a close examination of these Figures that the effect of interface state is not 
important for a soil with a parabolic variation of stiffness with depth. 

 
 
Table 2 Expressions of slenderness ratios for a monopile embedded in different soil profiles 

Soil profile Rough interface Smooth interface 

Gibson’s soil ܮ௖ ⁄ܦ ൌ 1.380൫ܧ௣ ⁄௦஽ܧ ൯
଴.ଶଶଶ

௖ܮ  ⁄ܦ ൌ 2.000	൫ܧ௣ ⁄௦஽ܧ ൯
଴.ଶ଴଼

 
Parabolic variation of 

stiffness ܮ௖ ⁄ܦ ൌ 1.656 ൫ܧ௣ ⁄௦஽ܧ ൯
଴.ଶସଷ

௖ܮ  ⁄ܦ ൌ 1.931	൫ܧ௣ ⁄௦஽ܧ ൯
଴.ଶଷଶ

 

 

1 10 100 1000 10000 100000
0

5

10

15

20

 Davies and Budhu (1986)

 Randolph (1981)

 Poulos and Hull (1989)

Relative pile/soil stiffness E
p
 /E

SD

C
ri
ti
ca
l s
le
n
d
e
rn
es
s 
L c
 /
D

               Present study
 Rough Interface:

          L
c
/D=1.380 (E

p
/E

SD
)
0.222

 Smooth Interface

           L
c
/D=2.000 (E

p
/E

SD
)
0.208

Gibson's soil
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Fig. 9 Evolution of critical slenderness ܮ௖ ⁄ܦ  with ܧ௣ ⁄௦஽ܧ  for monopile embedded in different soil profiles: 
(a) Gibson’s, and (b) parabolic non-homogeneity 
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Fig. 9 Continued 
 
 

Expressions of Table 2 are used to show the limit between the stiff and the flexible monopiles 
in the Figs. 10-17.  

 
5.2 Existing solutions for slender monopiles 
 
The monopile under lateral loading is marked by its head movements. Indeed, monopile head 

lateral displacement and monopile head rotation are of paramount importance in predicting 
monopile behavior. Head movements and applied efforts are usually expressed through the 
flexibility factors according to the following relationships 

ቄ
௅ݑ
ோߠ
ቅ ൌ ൤

௅ܫ ௅ோܫ
ோ௅ܫ ோܫ

൨ ቄܪ
ܯ
ቅ                                                    (20) 

Expressions in which, ܫ௅ோ ൌ  ோ௅ according to Maxwelli-Betti principle. In engineering practiceܫ
the inverse of the matrix (20) is practically more important. It has the following form 

ቄܪ
ܯ
ቅ ൌ ൤

௅ܭ ௅ோܭ
ோ௅ܭ ோܭ

൨ ቄ
௅ݑ
ோߠ
ቅ                                                  (21) 

The stiffness coefficients appearing in matrix Eq. (21) are related to the flexibility coefficients 
of Eq. (20) by the following expressions 

ுܭ ൌ
ூಾ

ூಹூಾିூಾಹ
మ ெܭ   , ൌ

ூಹ
ூಹூಾିூಾಹ

మ ெுܭ     , ൌ
ூಾಹ

ூಹூಾିூಾಹ
మ                         (22) 

In the finite element analyses controlled by forces, the determination of the head stiffness 
coefficients is not straightforward. The flexibility coefficients are determined first, and then  
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Table 3 Stiffness coefficients for slender piles proposed by different authors in Gibson’s soil 

No. Authors 
Horizontal stiffness 

coefficient 
ࡸࡷ ⁄ࡰࡰ࢙ࡱ

Coupling stiffness 
coefficient 

ࡾࡸࡷ ૛ࡰࡰ࢙ࡱ ൌ⁄ ࡸࡾࡷ ⁄૛ࡰࡰ࢙ࡱ

Rocking stiffness 
coefficient 
ࡾࡷ ⁄૜ࡰࡰ࢙ࡱ  

01 Randolph 1981 1.751൫ܧ௣ ⁄௦஽ܧ ൯
଴.ଷଷଷ

 െ0.506൫ܧ௣ ⁄௦஽ܧ ൯
଴.ହହହ

 0.248൫ܧ௣ ⁄௦஽ܧ ൯
଴.଻଻଻

 

02 
Davies and Budhu 

1986 0.734൫ܧ௣ ⁄௦஽ܧ ൯
଴.ଷଷଷ

 െ0.270൫ܧ௣ ⁄௦஽ܧ ൯
଴.ହହହ

 0.173൫ܧ௣ ⁄௦஽ܧ ൯
଴.଻଻଻

 

03 Amar Bouzid 1997 1.138൫ܧ௣ ⁄௦஽ܧ ൯
଴.ଷଶ଻ െ0.591൫ܧ௣ ⁄௦஽ܧ ൯

଴.ହଶଷ 0.450൫ܧ௣ ⁄௦஽ܧ ൯
଴.଻ଶ଺

 

04 DNV/RISØ 2004 0.600൫ܧ௣ ⁄௦஽ܧ ൯
଴.ଷହ଴

 െ0.170൫ܧ௣ ⁄௦஽ܧ ൯
଴.଺଴଴

 0.140൫ܧ௣ ⁄௦஽ܧ ൯
଴.଼଴଴

 

 
 

inversed to obtain the stiffness coefficients of Eq. (22). 
Most researchers found out that the monopile head movements depend on monopile/soil 

stiffness (ܧ௣ ⁄௦ܧ  or ܧ௣ ⁄௦ܩ ) and presented closed form solutions for flexibility coefficients. Table 3 
presents expressions proposed by different authors for slender monopiles embedded in Gibson’s 
soil. These values have been obtained by inverting the flexibility matrix and presented properly 
according to the expressions of soil modulus adopted in this paper.  

 
5.3 Development of static impedance functions for short monopiles 
 
Studies dealing with short monopiles are scarce in the literature. Higgins et al. (2013) presented 

closed form solutions for flexibility factors ܫ௅ ோܫ ,  and ܫ௅ோ  for monopiles embedded in both 
homogeneous and Gibson’s soils. As the sum of the powers included in the expressions of ܫ௅ and 
 ௅ோ, straightforwardܫ ோ does not correspond to two times the power included in the expression ofܫ
closed form solutions for the stiffness coefficients ܭ௅, ܭோ and ܭ௅ோ are difficult to obtain. However 
the inversion of the flexibility factors at discrete values of ሺܮ௣ ⁄௣ሻܦ  is easy to carry out. Then, 
analytical expressions were found as best fits of the obtained results. Table 4 shows the stiffness 
coefficients for short monopiles obtained from flexibility factors proposed by Higgins et al. 
(2013). 

These expressions are used for comparison with the results issued from the numerical 
procedure in this study. 

In order to develop static impedance functions for monopiles embedded in two soil profiles, 
namely, Gibson’s and a soil in which the soil modulus varies as a square root of depth, an 
extensive parametric study has been carried out. In order to cover a wide range of short monopiles,  

 
 

Table 4 Stiffness coefficients for short monopiles proposed by Higgins et al. (2013) for Gibson’s soils 

Authors 
 

Soil 
nature 

 
Poisson’s 
ratio ࢙ࣇ	

 

Horizontal 
stiffness 

coefficient 
ࡸࡷ ⁄ࡰࡰ࢙ࡱ

Coupling stiffness 
coefficient 

ࡾࡸࡷ ૛ࡰࡰ࢙ࡱ ൌ⁄ ࡸࡾࡷ ⁄ࡰࡰ࢙ࡱ

Rocking stiffness 
coefficient 
ࡾࡷ ⁄૜ࡰࡰ࢙ࡱ  

Higgins et 
al. (2013) 

Gibson’s
0.40 0.929 ൫ܮ௣ ⁄௣ܦ ൯

ଶ.଴ସଵ
െ0.633 ൫ܮ௣ ⁄௣ܦ ൯

ଷ.଴଺ଵ
0.672	൫ܮ௣ ⁄௣ܦ ൯

ଷ.ଽସଵ

0.499 0.916 ൫ܮ௣ ⁄௣ܦ ൯
ଶ.଴ସଵ

െ0.624 ൫ܮ௣ ⁄௣ܦ ൯
ଷ.଴଺ଵ

0.662	൫ܮ௣ ⁄௣ܦ ൯
ଷ.ଽସଵ
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six (06) slenderness ratios were chosen namely: ܮ௣ ⁄௣ܦ ൌ 1, 2, 	4, 	6, 	10 and 15  with six (06) 
soil/pile relative stiffnesses which are:ܧ௣ ⁄௦஽ܧ ൌ 10, 10ଶ ,10ଷ ,10ସ ,10ହ  and 10଺ . Finite element 
results are presented for two (02) Poisson’s ratios ߥ௦ ൌ 0.40 and ߥ௦ ൌ 0.499. 

It has been found that the monopile head movements (lateral displacement and head rotations) 
are independent of the modulus ratio (ܧ௣ ⁄௦஽ܧ ሻ, and depend only on the slenderness ratio (ܮ௣ ⁄௣ܦ ) 
and Poisson’s ratio of the soil mass (ߥ௦). 

Lateral stiffness coefficient ܭ௅ , rocking stiffness ܭோ  and cross coupling stiffness coefficient 
 ௅ோ for monopiles embedded in a Gibson’s soil with a rough interface and soil Poisson’s ratioܭ
௦ߥ ൌ 0.40 and Poisson’s ratio ߥ௦ ൌ 0.499	 are respectively presented in Figs. 10 and 11. Also 
shown, is a comparison between finite element results and those provided by Higgins et al. (2013) 
for Gibson’s soil. 

A close examination of these Figures shows two interesting features. Firstly, the analytical 
expressions of the static impedance functions which appear in the Figs. 10 and 11, are sufficiently 
accurate as they match the results envelope. These approximate equations are 

௅ܭ ൌ 1.708 ௣ܮ௣൫ܦ௦஽ܧ ⁄௣ܦ ൯
ଵ.଺଺ଵ

 

ோܭ ൌ ௣ܮ௣ଷ൫ܦ௦஽ܧ	1.153 ⁄௣ܦ ൯
ଷ.଺଴ହ

            For    ߥ௦ ൌ 0.40 

௅ோܭ ൌ െ1.233 ௣ܮ௣ଶ൫ܦ௦஽ܧ ⁄௣ܦ ൯
ଶ.଺ହହ

 

(23)

௅ܭ ൌ 1.647 ௣ܮ௣൫ܦ௦஽ܧ ⁄௣ܦ ൯
ଵ.଺ଽସ

 

ோܭ ൌ ௣ܮ௣ଷ൫ܦ௦஽ܧ	1.115 ⁄௣ܦ ൯
ଷ.଺ଷଷ

            For   ߥ௦ ൌ 0.499 

௅ோܭ ൌ െ1.189 ௣ܮ௣ଶ൫ܦ௦஽ܧ ⁄௣ܦ ൯
ଶ.଺଼଻

 

(24)

Secondly, an excellent agreement is observed between FSAFEM results and those obtained by 
Higgins et al. (2013) for the range of slenderness ratios up to 6, and a discrepancy occurred in the 
remaining interval of slendernesses considered in this study and for both figures. 

 ௅ோ for monopiles embedded in a Gibson’s soil with a smooth interface and soilܭ ோ andܭ ,௅ܭ
Poisson’s ratio ߥ௦ ൌ 0.40 and Poisson’s ratio ߥ௦ ൌ 0.499	 are respectively reported in Figs. 12 and 
13.  

For simulating smooth interface, FE analyses were carried out by imposing a shear stiffness of 
݇௦ ൌ 0.0 and a large value for the normal stiffness for ݇௡, for instance ݇௡ ൌ 10ଵଶ ݇ܰ ݉ଷ⁄ . The 
obtained formulae for this case are 

௅ܭ ൌ 1.259 ௣ܮ௣൫ܦ௦஽ܧ ⁄௣ܦ ൯
ଵ.଻ଶ଴

 

ோܭ ൌ ௣ܮ௣ଷ൫ܦ௦஽ܧ	0.813 ⁄௣ܦ ൯
ଷ.଺଻ଶ

               For   ߥ௦ ൌ 0.40 

௅ோܭ ൌ െ0.914 ௣ܮ௣ଶ൫ܦ௦஽ܧ ⁄௣ܦ ൯
ଶ.଻଴ଽ

 

(25)

௅ܭ ൌ 1.214 ௣ܮ௣൫ܦ௦஽ܧ ⁄௣ܦ ൯
ଵ.଻ସ଼

 

ோܭ ൌ ௣ܮ௣ଷ൫ܦ௦஽ܧ	0.815 ⁄௣ܦ ൯
ଷ.଺଼଺

              For   ߥ௦ ൌ 0.499 

௅ோܭ ൌ െ0.897 ௣ܮ௣ଶ൫ܦ௦஽ܧ ⁄௣ܦ ൯
ଶ.଻ଷଶ

 

(26)
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Fig. 10 Stiffness coefficients, (a) ܭ௅, (b) ܭோ and (c) ܭ௅ோ for piles embedded in a Gibson’s soil with a rough 
interface and soil Poisson’s ratio ߥ௦ ൌ 0.40 
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Fig. 11 Stiffness coefficients, (a) ܭ௅, (b) ܭோ and (c) ܭ௅ோ for piles embedded in a Gibson’s soil with a rough 
interface and soil Poisson’s ratio ߥ௦ ൌ 0.499 
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Fig. 12 Stiffness coefficients, (a) ܭ௅, (b) ܭோ and (c) ܭ௅ோ for piles embedded in a Gibson’s soil with a smooth 
interface and soil Poisson’s ratio ߥ௦ ൌ 0.40 
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Fig. 13 Stiffness coefficients, (a) ܭ௅, (b) ܭோ and (c) ܭ௅ோ for piles embedded in a Gibson’s soil with a smooth 
interface and soil Poisson’s ratio ߥ௦ ൌ 0.499 
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Three points emerge from the consideration of Figs. 12 and 13. Firstly, ܭ௅ ோܭ ,  and ܭ௅ோ  are 
much lower than their corresponding values in the case of rough interface. Secondly, expressions 
obtained in this case can be used as lower bound of stiffness coefficient for the calculation of 
monopile head movements. Thirdly, for most practical applications values of ܭ௅ ோܭ ,  and ܭ௅ோ 
range between the expressions obtained when the rough interface is considered and the smooth 
one.  

Figs. 14 and 15 illustrate the evolution of ܭ௅, ܭோ and ܭ௅ோ with the slenderness ratio (ܮ௣ ⁄௣ܦ ) 
for monopiles embedded in a soil where the stiffness varies as a square root of depth, with a rough 
interface and soil Poisson’s ratio ߥ௦ ൌ 0.40  and Poisson’s ratio ߥ௦ ൌ 0.499	  respectively. The 
approximate expressions obtained are 
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Fig. 14 Stiffness coefficients, (a)ܭ௅ , (b) ܭோ  and (c) ܭ௅ோ  for piles embedded in a soil characterized by 
parabolic inhomogeneity with a rough interface and soil Poisson’s ratio ߥ௦ ൌ 0.40 
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Fig. 14 Continued 
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The variation of the head monopile stiffness coefficients with the slendress ratio when a smooth 
interface is considered is presented in Figs. 16 and 17. The analytical expressions for ܭ௅, ܭோ and 
 ௅ோ are given by Eqs. (29) and (30)ܭ
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Fig. 15 Stiffness coefficients, (a) ܭ௅ , (b) ܭோ  and (c) ܭ௅ோ  for piles embedded in a soil characterized by 
parabolic inhomogeneity with a rough interface and soil Poisson’s ratio ߥ௦ ൌ 0.499 
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Fig. 16 Stiffness coefficients, (a) ܭ௅ , (b) ܭோ  and (c) ܭ௅ோ  for piles embedded in a soil characterized by 
parabolic inhomogeneity with a smooth interface and soil Poisson’s ratio ߥ௦ ൌ 0.40 
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Fig. 17 Stiffness coefficients, (a) ܭ௅ , (b) ܭோ  and (c) ܭ௅ோ  for piles embedded in a soil characterized by 
parabolic inhomogeneity with a smooth interface and soil Poisson’s ratio ߥ௦ ൌ 0.499 
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6. Dynamics of wind turbines considering soil-structure interaction 
 

Offshore wind turbines can be considered as high slenderness low stiffness dynamical system 
involving complex interaction between the wind, wave and the soil. Consequently, the behavior of 
an offshore wind turbine as well as it substructure are significantly affected by the determination 
of the first natural frequency.  

Offshore wind turbines are dynamically sensitive structures that are placed in harsh 
environmental conditions, with strong wind and wave loading of a cyclic nature. This makes the 
design of foundations extremely challenging (Lombardi et al. 2013, Damgaard et al. 2014, 
Damgaard et al. 2015, Meyers et al. 2015). 

The design of the structure and the substructure of an offshore wind turbine should be carried 
out in such a way that it sustains the permanent dynamic forces induced by vibrations during it 
operational life. These forces with the combination of the operating frequency could potentially 
trigger the resonance phenomenon. This can have catastrophic consequences and needs to be 
avoided at all costs. The main sources of excitation are wind and waves as an offshore wind 
turbine is in a permanent interaction with two media: air and water. On one hand, the waves 
generating the excitation, are relatively short waves with a significant wave height ܪ௦ around 1-1.5 
m and a zero-crossing period ௭ܶ around 4-5 s. This excitation is shown in Fig. 18. On the other 
hand, the excitations generated by wind are the frequencies that are close to the rotational 
frequencies of the rotor 1ܲand the blade passing frequency (The blade/tower interaction), which 
relies on the number of blades. As most turbines existing in the market have 3 blades therefore it is 
3ܲ. The natural frequency needs to be chosen to avoid these frequencies. The targeted region is 
the one illustrated in the Fig. 18. Moreover the wind turbulence also causes excitations also plotted 
along with the other frequencies. 

To avoid resonance which may lead to the failure, the OWT should be designed such that the 
first natural frequency should lie between turbine and blade passing frequencies, i.e., in the 
interval corresponding to the “Soft-Stiff ” interval in Fig. 18. 

The region before the 1ܲ is called the “Soft-Soft” region while the region after the 3ܲ is known 
as “Stiff-Stiff” region. If the natural frequency of the design lies in the Soft-Soft interval it will be 
too flexible while in the Stiff-Stiff region it will be too rigid (Heavy/Expensive), making it 
inappropriate for the design. As evident from Fig. 18 the “Soft-Soft” usually contains the wave 

 
 

Fig. 18 Excitation intervals of a three bladed offshore wind turbine 
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and wind turbulence excitation frequencies this is another reason why this region is usually 
avoided. 

 
6.1 Natural frequency as a function the monopile head stiffnesses 
 
Estimating the first natural frequency of an OWT, is not an easy work, as it depends on an 

accurate modeling of the structure as well as the monopile foundation which is involved in an 
extremely complex subsoil/monopile interaction problem (Jin-Hak et al. 2015, Prendergast et al. 
2015, Andersen et al. 2012, Al Hamaydeh and Hussain 2011). Many authors had focused their 
work on this issue. Indeed, Vught (2000) modeled the wind turbine as a flagpole of length ܮ, mass 
per length ݉, top mass ܯ and having an average bending stiffness ܫܧ. His expression for the first 
natural frequency is 

ଵ݂ ≅ ට
ଷ.଴ସாூ

ሺெା଴.ଶଶ଻	௠௅ሻସగమ௅య
                                                     (31) 

Although simple, it seems from the very first look to this equation that the OWT is embedded 
in a medium having an infinite stiffness. This is unrealistic, as the system monopile/subsoil is 
characterized by a certain flexibility which has an effect on the value of the first natural frequency. 

The first natural frequency is closely related to the behavior of both tower and substructure of 
the wind turbine. Hence, the accurate modeling of this problem, should consider the monopile 
head stiffnesses determined by Eqs. (23)-(30) as spring stiffnesses through which the tower is 
connected to the subsoil. Fig. 19 shows a mechanical model, in which the foundation is 
represented by four springs, a lateral, a rocking, a cross-coupling and a vertical spring. As the wind 
turbines are very stiff vertically the axial vibrations can be neglected.  

Adhikari and Bhattacharya (2011) proposed an exact approach based on a numerical solution of 
transcendental frequency equation. The latter depends only on lateral and rotational stiffnesses. 

In order to further enhance the first natural frequency equation, Laszlo et al. (2014) proposed 
an analytical expression encompassing the cross coupling stiffness of the monopile. The natural 
frequency of the wind turbine proposed is 

ఎ݂ ൌ 	௅ܥ	ோܥ ி݂஻                                                            (32) 

Where ி݂஻ is the fixed base frequency given by 

    ி݂஻ ൌ
ଵ

ଶగ ඨ
ଷாூആ

ቀெ೟೚೛ା
యయ
భరబ

ெ௅೟೚ೢ೐ೝቁ௅೟೚ೢ೐ೝ
య                                             (33) 

Eq. (33) which has been proposed by Tempel and Molenaar (2002) is used in this paper. It 
differs slightly from the Eq. (31), which corresponds also to a fixed base. Expressions for 
,௅ߟோሺܥ ,ோߟ ,௅ߟ௅ሺܥ ௅ோሻ andߟ ,ோߟ  ௅ோሻ are given byߟ

,௅ߟோሺܥ ,ோߟ ௅ோሻߟ ൌ 1 െ
ଵ

ଵା௔ቆఎೃି
ആಽೃ
మ

ആಽ
ቇ
                                             (34) 

,௅ߟ௅ሺܥ ,ோߟ ௅ோሻߟ ൌ 1 െ
ଵ

ଵା௕ቆఎಽି
ആಽೃ
మ

ആೃ
ቇ
                                              (35) 

The parameters involved in the expressions (34) and (35) are grouped in Table 5. 
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Table 6 Turbine data for the four wind farms chosen for this study 

WIND FARM SITE NAME LELY A2 NORTH HOYLE
IRENE 

VORRINK 
WALNEY 1 

TURBINE DATA 

Turbine type NM41 Vestas V80 NTK 600 Siemens SWT

Turbine power (Kw) 500 2×103 600 (3.6-107.63)×103

Turbine rotor diameter (m) 40.77 80 43 107 

Turbine rotational speed (rpm) 32 10.8-19.1 27 5-13 
Operational wind speed range 

(m/s) 
4.0 4.0 4.0 4.25 

TOWER DATA 

Tower height (m) 41.5 70 51 83.5 

Tower top diameter (m) 1.9 2.3 1.7 3 

Tower bottom diameter (m) 3.2 4.0 3.5 5 

Tower wall thickness (mm) 12 35 8-14 40 (average) 
Tower material young’s (GPa) 

modulus 
210.0 210.0 210.0 210.0 

Tower mass (Kg) 31346.0 130000.0 35700.0 260000.0 

Top mass(Kg) 32000.0 100000.0 34000.0 236000.0 

PILE DATA 

Pile diameter (m) 3.7 4 3.5 6 

Pile wall thickness (mm) 35 50 28 80 
Pile material young’s modulus 

(Gpa) 
210 210 210 210 

Pile depth (m) 20.9 33 19 23.5 

SOIL DATA 

Soil type 
Soft to stiffer 
sandy layer 

Sand and clay 
layers 

Stiffer sandy soil 
Clay on top, sand 

below 
Shear modulus of the soil 

(Mpa) 
53 230 55 70 

Poisson’s ratio of the soil 0.4  0.4  0.4  0.4 

FREQUENCY 

Measured frequency (Hz) 0.634 0.35 0.546-0.56 0.35 

 
Table 7 Fixed base natural frequency for each site 

Wind farm site WALNEY 1 LELY A2 NORTH HOYLE IRENE VORRINK

 ሻ 0.347 0.768 0.448 0.552ࢠࡴሺ	࡮ࡲࢌ

 
 
The following Tables summarize the different steps of computations when a linear or a 

parabolic variation of soil stiffness with depth, are considered. Using expressions tabulated in 
Table 8, the computed values for ܭ௅, ܭோ and ܭ௅ோ for the different wind farm sites are grouped in 
Tables 9 and 10. 
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Table 8 Monopile head stiffness expressions 

Soil 
profiles 

Interface ࡾࡸࡷ ࡾࡷ ࡸࡷ 

Gibson’s 
Rough 1.708	ܧ௦஽ܦ௣	൫ܮ௣ ⁄௣ܦ ൯

ଵ.଺଺ଵ
1.153 ௣ଷܦ௦஽ܧ ൫ܮ௣ ⁄௣ܦ ൯

ଷ.଺଴ହ
െ1.233	ܧ௦஽ܦ௣ଶ	൫ܮ௣ ⁄௣ܦ ൯

ଶ.଺ହହ

Smooth 1.259	ܧ௦஽ܦ௣	൫ܮ௣ ⁄௣ܦ ൯
ଵ.଻ଶ଴

0.813 ௣ଷܦ௦஽ܧ ൫ܮ௣ ⁄௣ܦ ൯
ଷ.଺଻ଶ

െ0.914	ܧ௦஽ܦ௣ଶ	൫ܮ௣ ⁄௣ܦ ൯
ଶ.଻଴ଽ

Parabolic 
variation 

Rough 	2.841	ܧ௦஽ܦ௣	൫ܮ௣ ⁄௣ܦ ൯
଴.ଽ଻଻

3.894 ௣ଷܦ௦஽ܧ ൫ܮ௣ ⁄௣ܦ ൯
ଶ.ହ଺ଶ

െ2.933	ܧ௦஽ܦ௣ଶ	൫ܮ௣ ⁄௣ܦ ൯
ଵ.଻଺଻

Smooth 2.081	ܧ௦஽ܦ௣	൫ܮ௣ ⁄௣ܦ ൯
ଵ.଴ହ଴

2.451 ௣ଷܦ௦஽ܧ ൫ܮ௣ ⁄௣ܦ ൯
ଶ.଺ଽ଴

െ2.067	ܧ௦஽ܦ௣ଶ	൫ܮ௣ ⁄௣ܦ ൯
ଵ.଼ହ଻

 
Table 9 Monopile head stiffness values for Walney 1 and Lely A2 wind farm sites 

Soil 
profiles 

Interface 
WALNEY 1 LELY A2 

ܰܩ௅ሺܭ ݉ሻ⁄ ݉.ܰܩோሺܭ  ⁄ሻ݀ܽݎ ሻܰܩ௅ோሺܭ ܰܩ௅ሺܭ ݉ሻ⁄ ݉.ܰܩோሺܭ ⁄ሻ݀ܽݎ ሻܰܩ௅ோሺܭ 

Gibson’s 
Rough 19.397 6699.061 -326.578 16.639 4452.369 -248.627

Smooth 15.489 5171.286 -260.295 13.574 3522.335 -202.085

Parabolic 
variation 

Rough 12.674 5445.198 -231.064 8.461 2470.158 -127.075

Smooth 10.266 4082.849 -184.206 7.041 1941.233 -104.707

 
Table 10 Monopile head stiffness values for North Hoyle and Irene Vorrink wind farm sites 

Soil 
profiles 

Interface 
NORTH HOYLE IRENE VORRINK 

ܰܩ௅ሺܭ ݉ሻ⁄ ݉.ܰܩோሺܭ  ⁄ሻ݀ܽݎ ሻܰܩ௅ோሺܭ ܰܩ௅ሺܭ ݉ሻ⁄ ݉.ܰܩோሺܭ ⁄ሻ݀ܽݎ ሻܰܩ௅ோሺܭ 

Gibson’s 
Rough 146.455 95636.789 -3447.910 15.290 3388.936 -207.749 

Smooth 122.163 77604.449 -2859.855 12.445 2673.909 -168.501 

Parabolic 
variation 

Rough 57.472 35741.709 -1258.829 7.990 1959.739 -109.996 

Smooth 49.172 29487.288 -1073.303 6.629 1532.275 90.310 

 
Table 11 Equivalent flexural rigidity for the different wind towers considered in this paper. 

Wind farm ࡼࢌ ࢓ሺ࢓ሻ ሺࡵࡱሻ࢖࢕࢚ ሺࡺࡳ ൈ࢓૛ሻ ࣁࡵࡱ	ሺࡺࡳ ൈ࢓૛ሻ 

Walney 1 1.667 3.204 85.564 274.149 

Lely A2 1.684 3.282 6.660 21.862 

North Hoyle 1.739 3.535 33.547 118.600 

Irene Vorrink 2.059 5.234 4.371 22.876 

 
 
As all the towers are tapered, ܫܧఎ  is an equivalent tower stiffness which, according to 

Bhattacharya (2011) may be evaluated as 

ఎܫܧ ൌ ሺܫܧሻ௧௢௣ ൈ ௣݂ሺ݉ሻ                                                   (36) 

Where, ௉݂ሺ݉ሻ ൌ
ଵ

ଷ
ൈ

ଶ௠మሺ௠ିଵሻయ

ଶ௠మ ୪୬ሺ௠ሻିଷ௠మାସ௠ିଵ
 and ݉ ൌ ௕௢௧௧௢௠ܦ ⁄௧௢௣ܦ  is the ratio of the tower 

bottom diameter to its top diameter. 
The Table 11 gives the different parameters required to compute the equivalent tower bending 

stiffness. 
The different values of the non-dimensional parameters ߟ௅ ோߟ ,  and ߟ௅ோ  are given in the 
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following Tables 12 and 13. 
The coefficients appearing in the expressions (34) and (35) rely on values of ߟ௅, ߟோ and ߟ௅ோ. 

Tables 14 and 15 show the values of these coefficients for the four wind turbines chosen in this 
paper. 

The final values of the natural frequency for each wind turbine are given in Tables 16 and 17. 
Also shown in these tables the measured frequency in each wind farm considered here as well as 
natural frequencies based on the DNV codes for comparison purposes. The natural frequencies 
corresponding to the DNV code are based on the values of stiffnesses reported in this code, and 

 
 

Table 12 ߟ௅, ߟோ and ߟ௅ோ for Walney 1 and Lely A2 

Soil 
profiles 

Interface 
WALNEY 1 LELY A2 

 ௅ோߟ ோߟ ௅ߟ ௅ோߟ ோߟ ௅ߟ

Gibson’s 
Rough 41212.699 2041.427 -8309.867 54426.395 8456.231 -19596.700

Smooth 32910.910 1575.863 -6623.277 44403.943 6689.849 -15928.313

Parabolic 
variation 

Rough 26928.490 1659.333 -5879.476 27679.088 4691.486 -10016.010

Smooth 21811.981 1244.180 -4687.174 23031.564 3686.917 -8252.995

 
Table 13 ߟ௅, ߟோ and ߟ௅ோ for North Hoyle and Irene Vorrink 

Soil 
profiles 

Interface 
NORTH HOYLE IRENE VORRINK 

 ௅ோߟ ோߟ ௅ߟ ௅ோߟ ோߟ ௅ߟ

Gibson’s 
Rough 423775.110 56475.467 -142524.276 88707.298 7559.107 -23632.864

Smooth 353485.180 45827.003 -118216.180 72204.068 5964.220 -19168.133

Parabolic 
variation 

Rough 166298.157 21106.205 -52035.515 46356.819 4371.246 -12512.839

Smooth 142282.188 17412.842 -44366.528 38460.661 3417.778 -10273.441

 
Table 14 ܥோ and ܥ௅ for Walney 1 and Lely A2 

Soil profiles Interface 
WALNEY 1 LELY A2 

 ௅ܥ ோܥ ௅ܥ ோܥ

Gibson’s 
Rough 0.99546541 0.99972931 0.99881117 0.99977813 

Smooth 0.99318627 0.99960596 0.99829551 0.99969141 

Parabolic 
variation 

Rough 0.99558259 0,99967202 0.99844053 0.99968242 

Smooth 0,99301541 0,99951878 0.99772081 0.99956137 

 
Table 15 ܥோ and ܥ௅ for North Hoyle and Irene Vorrink 

Soil profiles Interface 
NORTH HOYLE IRENE VORRINK 

 ௅ܥ ோܥ ௅ܥ ோܥ

Gibson’s 
Rough 0.99980492 0.9999688 0.99868211 0.99986508 

Smooth 0.99973518 0.99995879 0.99810021 0.99981136 

Parabolic 
variation 

Rough 0.99965463 0.99994738 0.99832562 0.99981025 

Smooth 0.99953446 0.9999316 0.99753177 0.99973621 
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Table 16 Natural frequency ఎ݂ for Walney 1 and Lely A2 

Soil profiles Interface

WALNEY 1 LELY A2 
Predicted frequency 

ఎ݂ ൌ ௅ܥோܥ ி݂஻ Measured 
frequency

Predicted frequency 
ఎ݂ ൌ ௅ܥோܥ ி݂஻ Measured 

frequency
Present study DNV Present study DNV 

Gibson’s 
Rough 0.3453 

0.3342 

0.35 

0.7672 
0.7413 

0.634 
Smooth 0.3445 0.7668 

Parabolic 
variation 

Rough 0.3453 
0.3315 

0.7669 
0.7369 

Smooth 0.3444 0.7662 

 
Table 17 Natural frequency ఎ݂ for North Hoyle and Irene Vorrink 

Soil profiles Interface

NORTH HOYLE IRENE VORRINK 
Predicted frequency 

ఎ݂ ൌ ௅ܥோܥ ி݂஻ Measured 
frequency

Predicted frequency 
ఎ݂ ൌ ௅ܥோܥ ி݂஻ Measured 

frequency Present 
study 

DNV 
Present 
study 

DNV 

Gibson’s 
Rough 0.4479 

0.4170 

0.35 

0.5510 
0.5187 

0.546-0.56
Smooth 0.4478 0.5506 

Parabolic 
variation 

Rough 0.4478 
0.4127 

0.5508 
0.5143 

Smooth 0.4477 0.5503 

 
 

which are inaccurate in our opinion as they have been established on the basis of long slender piles 
whose behavior differs enormously from that of short monopiles. Smoothness or roughness of the 
soil/monopile interface is not taken into account in these expressions.  

Four important points emerge from the close examination of these two Tables 16 and 17. 
Firstly, the measured frequencies corresponding to the turbines belonging to both sites Lely A2 
and North Hoyle are less than those corresponding to fixed base cases. This does not make sense 
and it is an unrealistic situation as the fixed base frequency corresponds to a tower embedded in a 
medium whose stiffness has an infinite value. In other words it is the maximum value that may be 
reached. This is may be due to the errors in the measures reported in the literature. For this reason, 
the comparison could not take place, and hence it useful to reconsider the frequency measurement 
and soil and turbine data for these two wind farm sites. Secondly, a close agreement is obtained 
between the measured frequencies and those obtained from this study for both turbines of Walney 
1 and Irene Vorrink. Our values are better than those obtained using the DNV code. Thirdly, a 
very insignificant effect of the interface properties on the values of the computed natural frequency 
of all turbines considered here. Fourthly, the pattern of soil stiffness variation with depth has 
practically no effect on the computed values of natural frequency. This is noticed in all turbines for 
the four sites.  

 
 

7. Conclusions 
 
Wind turbines supported on monopile foundations are dynamically sensitive and are currently 
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designed to have a life of 25 to 30 years. Any change in soil properties will alter the dynamics of 
the overall system as they fundamentally derive their stiffness from the surrounding soil. Therefore 
the prediction of the long term performance, in depth study on dynamic soil-structure interaction is 
often required. 

As far as the accurate determination of the monopile head stiffnesses is concerned, the finite 
element method is the most powerful numerical method that may be used in dealing with the 
aforementioned problem. Indeed, the semi-analytical finite element method has been used in this 
paper to address the problem. This procedure combines the finite element analysis which is based 
on the 2D discretization in the radial plane with the expansion of displacements and forces in 
Fourier series in the circumferential direction. 

The problem has been analyzed for a non-homogeneous half space being characterized by a soil 
modulus whose evolution with depth is either linear or parabolic. For these kinds of soils, and for 
the two extreme interface states (rough and smooth), a comprehensive parametric study involving 
the variation the monopile head stiffnesses in function of (ܮ௣ ⁄௣ܦ ) has been carried out. Finite 
element results were presented for two (02) Poisson’s ratios ߥ௦ ൌ 0.40 and	ߥ௦ ൌ 0.499. Analytical 
expressions for the impedance functions for monopiles have been established. Comparison with 
the existing solutions for the few available cases reveals the consistency of the proposed method. 

The obtained expressions of lateral stiffness coefficient ܭ௅ , rocking stiffness ܭோ  and cross 
coupling stiffness coefficient ܭ௅ோwere incorporated in the analytical expression for the natural 
frequency which encompasses these three parameters. Four wind turbines have been chosen from 
wind farm sites available in the literature and for which the measured natural frequencies are 
known. The good agreement obtained between the numerical results and those of measured ones 
demonstrate the ability of present formulation to predict correct natural frequencies and show the 
inappropriateness of the design codes (DNV among others) to design short monopiles supporting 
offshore wind turbines. 
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