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Abstract.  Trapezoidal Cemented Sand and Gravel Dam, namely Trapezoid CSG, is a new type of dam. 

Due to lack of dynamic studies in the field of CSG dam, this research was performed to analyze Trapezoidal 

CSG dam using dynamic Finite element method with ABAQUS Software. To investigate possible 

earthquake-induced damages, fragility curves are plotted based on damage index, the length of the cracks 

created at the dam base and the area of cracked elements in the dam. The seismic analysis indicated that 

minimum and maximum tensions are generated in the heel and toe of the dam, respectively. According to the 

fragility curves, with increase in PGA, the possibility of the exceeding the defined limit state is increased. 

However, the rate of increment is significantly reduced after PGA=0.4 g. Also, the same result is achieved 

for the second limit state. The “area of cracked elements” is more conservative criterion than the “crack 

length at the dam base”, especially at PGA<0.4 g. As conclusion, CSG dams, despite of being made of poor 

materials in comparison with concrete dams, show good resistance, and even in some situations, better 

performance than the weighted concrete dams. 
 

Keywords:  CSG dam; numerical analysis; fragility curves; concrete damage plasticity; damage index; 

limit state 

 

 

1. Introduction 
 

The main aim of the current study is to analyze nonlinearly the trapezoid CSG and to 

investigate seismic response under the influence of earthquake loads. In other words, this research 

investigates the applicability of fragility curves on the Tobetsu CSG dam as a case study. Further, 

the safety of the Tobetsu dam was assessed by preparing fragility curves for damage indices. To 

draw these curves, a number of failures (damage index) and limit state must be produced in order 

to examine the performance of the dam. Taking advantages of concrete faced rock fill dam  
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(CFRD) and concrete gravity dam (CGD), cemented sand and gravel (CSG) dams have been the 
centre of attention as a new type of dam since the late 20th century (Cai et al. 2011). The 
trapezoidal shape of these dams minimizes the tensile stress in the dam body in the severe 
earthquake loading conditions. Comparing to conventional gravity dams, greater weight of 
trapezoid-shaped dams provides the safety against landslide, without the requirement for the high 
shear strength of bedrock (Hirose et al. 2001). 

As a super lean mix material, the CSG is made of cement, water, and riverbed gravel, or 
excavation muck devoid of large stones. The use of CSG leads to lower costs of gathering and 
production of materials. The material production system in trapezoid-shaped dams is much more 
simplified rather than the aggregate production plant generally required at construction site of 
concrete dams (Kondo et al. 2004). Few studies have been carried out on the applicability of this 
dam type (Cai et al. 2012). In the 1970 s, Yang and Yishan proposed the rudiments of CSG dam 
constituted by the relatively impervious wall and the fat structure built by low cementing stone in 
order to keep the dam stable (Yang and Yishan 1981). Londe and Lino in 1992 further described 
the specifications of the CSG dam type. Compared to RCC dam, Londe found it to be less costly 
with a higher degree of safety (Londe and Lino 1992). Fujisawa in (2004) discussed the 
relationship between the strength, stability of trapezoid-Shaped CSG dam and character of CSG 
material (Fujisawa 2004). Kondo et al. (2004) tested the safety of trapezoid-shaped CSG dams 
during earthquake. Based on the stress distribution inside the dam body, they discussed the 
influence of the variables dam size and deformability of the ground on the dynamic response 
during earthquake (Kondo et al. 2004). Fujisaki et al. (2014) developed a new system to monitor 
fluctuation trend of the grain size distribution by analyzing the characteristics of fill materials 
using digital image analysis. They verified the developed system by Tobetsu Dam for 
rationalization of the quality control during construction (Fujisaki et al. 2014). Dam owners are 
always concerned to maintain favourable conditions even after a disaster like earthquake (Kondo 
et al. 2014). As a useful decision support tool, dam safety risk analysis, could be extremely 
worthwhile in large applications in dam safety engineering (Altarejos et al. 2012). The damage 
measure depends on the ground motion, the response and the capacity of the building, and the 
damage index (Colangelo 2008). According to the federal guidelines, risk analysis techniques 
should be applicable in determining priorities for examination and rehabilitation of dams in terms 
of safety (FEMA 1979). A set of evaluation scales have been developed to analyze the condition of 
earth and concrete dams at different modes of internal failure (McCann et al. 1983). 

Several studies have been carried out on the seismic evaluation of building. Shahriar et al. 
(2012) carried out seismic evaluation of building using multi-criteria decision making method 
(Shahriar et al. 2012). In the 2013 s, Eleftheriadou and Karabinis estimated two different 
parameters for the description of the seismic demand. After the classification of damaged buildings 
into structural types they had further categorized according to the level of damage and macro 
seismic intensity (Eleftheriadou and Karabinis 2013). In the 2015 s, Ebrahimi Nezhad and Poursha 
described effects of different types of irregularity along the height on the seismic responses of 
moment resisting frames using nonlinear dynamic analysis (Ebrahimi Nezhad and Poursha, 2015). 
Roy et al. (2015) studies on the effects of accidental eccentricity on the seismic response of four-
storey steel buildings laterally stabilized by buckling restrained braced frames conducted (Roy et 
al. 2015). Braga et al. (2015) investigated an evaluation of the reliability of the procedure of shake 
map generation with specific regard to the seismic events that struck the Emilia region on May 20 
and 29, 2012 (Braga et al. 2015). So far the study, have not been carried out on the seismic 
evaluation of CSG dam.  
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The failure probability of an engineered structure against a particular hazard could be depicted 
by fragility curves (Ellingwood and Tekie 2001). The fragility curves are useful in predicting the 
extent of probable damages (Karim and Yamazaki 2003). It represents the damage possibility of 
structures as a result of various ground shakings (Nateghi and Shahsavar 2004).  

The Peak Ground Acceleration (PGA) or Peak Ground Velocity (PGV) is usually used to 
present the earthquake intensity on the ground (Al Abadi et al. 2006). Kennedy et al. (1980) 
plotted fragility curves for nuclear power plants. In 1994, Anagnos et al followed the ATC-13 
criteria to draw fragility curves in order to test the structures in California (Anagnos and Rojahn 
1980). The fragility curves are widely used in retrofitting of dams. Damage index (DI) is a 
physical value that estimates damages imposed to a structure and correlates with a critical state in 
a structure (Mita and Takahira 2004). The idea of quantitative describing of the damage state of a 
structure on a defined scale is attractive due to its simplicity (Ghobarah et al. 1999). The DI values 
could be normalized as zero value when the structure is in no damage state and a unit value when 
failure or total collapse of the structure happens (Alembagheri and Ghaemian 2012). 

Despite of the use of fragility curves for structures such as frames, tanks, nuclear power plants, 
and bridges have been initiated from many years and even decades ago, however, applicability of 
these curves for dams is a new concept. The first study on seismic fragility curves was carried out 
by Tekie and Ellingwood in 2003 for a concrete dam (Bluestone Dam). This dam was analyzed by 
a linear spectral model and the fragility curves were prepared based on tensile stress in the heel 
and the neck of the dam, the possibility of landslide, and displacement of dam crest on the basis of 
ascending PGAs (Tekie and Ellingwood 2003). In 2007, Lin and Adams prepared seismic fragility 
curves for the dams in eastern- and western Canada (Lin and Adams 2007). Ghaemian and 
Kashani conducted studies on the plotting of fragility curve in 2008. Using two parameters of the 
area of cracked elements and the length of cracked elements on the Pine flat dam, they specified 
earthquake induced failure. In their study it was shown that considering linear behaviour for the 
foundation and mass less assuming of foundation would be better, upon which the design is more 
conservative (Kashani and Ghaemian 2009). 

 
 

2. Methodology 
 
2.1 Numerical modeling 
 
The case study dam in this research is Tobetsu dam located in Hokkaido region, Japan. This 

dam is constructed on Toubetsu River as a tributary of Ishikari River. The numerical approach was 
used for seismic assessment of the Toubetsu dam. So, the tallest non-overflow section of the dam 
was evaluated using finite element method. Table 1 provides the main features of the Toubetsu 
dam. 

Fig. 1 depicts the tallest monolith of the dam used for the seismic analysis. The finite element 
mesh of the dam, truncated reservoir, and foundation are illustrated in Fig. 2. 

Due to the high similarity to concrete gravity dams, there could be found  two major failure 
modes with the Trapezoid CSG dams, including “tensile overstressing and sliding along cracked 
surfaces in the dam body or at the dam bottom”, and “foundation interface or planes of weakness 
within the foundation” (Ghanaat 2004). It is worth mentioning that sliding and overturning failures 
rarely occur in concrete gravity dams (Fishman 2009). Accordingly, this paper was carried out to 
address the overstressing failure mode of the Toubetsu dam using Abaqus Software. No sign of 
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Seismic evaluation of cemented material dams -A case study of Tobetsu Dam in Japan 

Table 2 Physical specifications of Toubetsu dam 

Specifications of CSG materials 

Mass Density 24 kN mଷൗ  

Elasticity 

Young Modulus 26.45e5 kN mൗ 2  
Poisson’s coefficient 0.167  

Plasticity 

Dilation Angle °15  

Eccentricity 0.1 
fb

fc
ൗ  1.16 

K 0.666 

Viscosity Parameter 0 

 
 
The acoustic water was assumed with a bulk modulus of 2.2 e9 and a density of 10 kN mଷൗ . To 

calculate the damping coefficients of α and β, first and second natural frequencies were calculated 
and placed in Eq. (1) 

ξ୧=	


ଶ୵
 + 

ஒ୵	

ଶ
                                                               (1) 

Where ξ୧=Rayleigh Damping of the whole system, ߙ,  =natural	ݓ damping coefficients and=ߚ
frequencies of the system. These parameters, for dam foundation, are as follows 

ρ=  19 kN mଷൗ 												E=2e kN mଶൗ       ν=0.3 

The Lysmer boundary conditions were considered and the hardness of dashpots was calculated 
using the Eqs. (2)-(5) 

G=ρVୱଶ                                                                  (2) 

V୮ ൌ 2Vୱ                                                                 (3) 

K= ρVA	                                                               (4) 

Kୱ ൌ
ౌ
ଶ

                                                                 (5) 

Where ௦ܸ 	is the shear wave velocity in soil and ܸ is the normal wave velocity in the soil. 
 
2.2 Constitutive model 
 
The CDP (concrete damage plasticity) constitutive model was used to model the behavior of 

dam body materials. The behavior of foundation materials was modeled by Mohr-Coulomb 
constitutive model. The CDP model provides the overall capability to model concrete and other 
pseudo-fragile materials in all types of structures (beams, trusses, skins, and solids). This 
constitutive model is a damaged and model based on plasticity of concrete. It is assumed that two 
main failure mechanisms are strain cracking and crushing compression of concrete materials.  
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purpose, the records of the earthquakes were normalized by PGAs. Accordingly, the outputs were 
based on the PGA values of 0.1 g, 0.2 g, 0.3 g, 0.4 g, 0.5 g, 0.6 g, 0.7 g, and 1 g. For dam safety 
analysis, some limit states should be defined to test the dam performance. For example, this limit 
state for frames should be drift of stories, rotation of nodes, and so on. To plot the seismic fragility 
curves, it should be considered the probability of exceeding to this structural limit state. The 
fragility in Eq. (7) addresses the probability of Engineering Demand Parameter (EDP) exceeding 
structural limit state (LS) at the defined PGA 

Fragility=P[EDP>LS|PGA]                                                 (7) 

The probability could also be expressed by lognormal distribution in Eq. (8) 

Fragility=P[EDP>LS|PGA]=1-P[EDP<LS|PGA]=1-Φ[
୪୬ሺୗሻି	μ	

σ
]                  (8) 

Where Φ=standard normal probability integral, μ=mean of data and σ=logarithmic standard 
deviation 

Two factors of the first limit state (LS1) and the second structural limit state (LS2) should be 
calculated to develop fragility curves for concrete gravity dams. The LS1 is defined as the crack 
length at the base (usually equals to about 0.26 of the base length of dam. 

The LS2 addresses the total areas of cracked elements in the dam body, which approximately 
0.0195 of the tallest monolith section (Mirzahosseinkashani and Ghaemian 2009). 

At the end, for validation of the model, the crack length at the base was analyzed using ANSYS 
Software. Afterwards, the results of two models were compared, statistically.  

 
 

3. Results 
 
3.1 Nonlinear dynamic analysis results by ABAQUS 
 
For dynamic analysis, the dam was tested by five earthquakes, including Duzci, Kocaeli, Loma 

Perita, Northridge, and Sanfernando. The records of the earthquakes are depicted in Figs. 6-11. 
 
 

 
Fig. 6 Accelerograph of the Kocaeli earthquake 

 

 
Fig. 7 Accelerograph of Loma Perita earthquake 
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The crack length at the dam base for the five earthquakes with 8 different PGAs is presented in 
Table 3.  

For statistical analysis of the results from ABAQUS and ANSYS software and ensure of the 
obtained results, the Kolmogorov-Smirnov test (K-S test) in SPSS software was used. 

 
 

Table 3 Crack length at the toe and heel of the dam calculated by ABAQUS Software 

Earthquake intensity 
PGA 

 

0.1g 0.2g 0.3g 0.4g 0.5g 0.6g 0.7g 1g LS1 

DUZ 11.86 13.85 13.87 33.67 53.52 67.4 81.27 91.2 23.712

KOC 11.86 29.5 49.6 41.66 67.4 75.3 91.2 91.2 

LOMA 15.82 11.89 11.89 25.77 45.59 57.5 67.4 91.2 

NOR 11.86 11.89 11.89 35.68 25.78 37.66 47.6 71.3 

SAN 11.89 11.9 12 17.84 24 27.7 33.69 49.56 

Arithmetic mean 12.658 15.806 19.85 30.924 43.258 53.112 64.232 78.892 

Var 3.12462 59.3196 277.2922 85.794 342.484 400.061 559.26 343.12 

Standard Deviation 1.767659 7.70192 16.65209 9.2625 18.5063 20.0015 23.649 18.523 

P(X>XI)=LS 2.01E-10 0.15233 0.408299 0.7819 0.85456 0.9292 0.9567 0.9986 

In order to verify the simulation results of the ABAQUS, the crack length at the dam base was calculated 
once again by ANSYS to compare the obtained results. Table 4 provides the data of crack length at the toe 
and heel of the dam calculated by ANSYS 

 
Table 4 Crack length at the toe and heel of dam calculated by Ansys Software 

Earthquake intensity 
PGA 

0.1 g 0.2 g 0.3 g 0.4 g 0.5 g 0.6 g 0.7 g 1 g 

DUZ 10.97 13.45 13.28 33.28 52.59 66.59 80.51 90.54 

KOC 10.91 29.16 48.78 41.27 66.21 74.15 90.14 90.12 

LOMA 14.89 11.34 11.3 25.38 44.66 56.78 66.64 90.32 

NOR 10.97 11.55 11.21 35.29 24.58 36.85 46.34 70.32 

SAN 11 11.56 11.41 17.45 23.07 26.89 32.12 48.9 
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