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Abstract.  In this paper, the underground box structure is discretized as a system with limited freedoms, and 

the explosion seismic wave is regarded as series of dynamic force acting on the lumped masses. Based on 

the local deformation theory, the elastic resistances of the soil are simplified as the effects of numbers of 

elastic chain-poles. Matrix force method is adopted to analyze the deformation of the structure in elastic half 

space. The structural dynamic equations are established and by solving these equations, the axial force, the 

moment and the displacement of the structure are all obtained. The influences of size ratio, the incident angle 

and the rock type on the dynamic response of the underground box structure are all investigated through a 

case study by using the proposed method. 
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1. Introduction 
 

The dynamic response of the underground structure under the action of the explosion seismic 

wave is directly related to the safety of the underground defense project. Thus, the study of the 

dynamic response of the underground structure is of great importance and to develop an 

appropriate algorithm to study the soil-structure interaction seems necessary and meaningful. The 

study of the soil-structure interaction developed fast since the 1970s, R.Nateghi et al. (2009) 

studied the effect of the blast vibration on the tunnel lining through the field monitoring. 

T.Akiyoloi and K.Fuschida (1984) obtained the solution of the wave equations by using the Bessel 

function and used them to study the longitudinal wave's effect on the tunnel lining. J.Penzen et al. 

(1988) simulated the dynamic response of the underground structure under the action of the 

internal explosion, and obtained the dynamic response equation by using the simplified elastic 

support lining. Ma (2008) studied the dynamic response of the concrete lining by using the small 

normal weight of explosion. Shen et al. (2007) developed a soil anti-explosion device and studied 

the damage effects of the explosion seismic wave on the underground structure by using the indoor 

experiments. Xin et al. (2009) studied the dynamic response of different underground structures  
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Dynamic response of underground box structure subjected to explosion seismic wave 

Fig. 1(a), the structure is simplified as the composition of numbers lumped masses with limited 
freedoms, which is shown in Fig. 1(b). According to the compatibility of deformation, the 
equations for the matrix force method of the whole structure is 

   0]][[  pFXF xpxx  (1)

the internal force matrix[S], which represents the internal force caused by the external force and 
the unknown force on the studied points, can be expressed as 

]][[]][[][ XrprS sxsp 
 (2)

][ xxF  and ][ xpF  are the flexibility matrixes of unit force and unit external force 

]][[][][ 0 sx
T

sxxx rFrF  , ]][[][][ 0 sp
T

sxxp rFrF   (3)

where ][ 0F is the flexibility matrix of the whole structure, ][ spr is the variant matrix of unit 
internal force that is caused by the unit external force, ][ sxr is the variant matrix of unit internal 
force that is caused by the unit unknown force. 
 
 
3. Dynamic equations of the structure 
 

The forced vibration of the structure that can take the systems’ flexibility into consideration can 
be expressed as the following non-homogeneous differential equation system 

FpyFCyFMy    (4)

where 34}{ ipp is the column vectors of the dynamic force,
 

34][ ijmM  is the diagonal matrix 
of the lumped mass, 3434][  ijfF is the unit displacement matrix of the lumped mass, 34][ ijCC is 
the damping matrix, 34}{ iyy , 34}{ iy y , 34}{ iy y  are respectively the vectors of the 
displacement, velocity and acceleration of the lumped mass. 
 

3.1 The load, mass and damping matrixes  
 
The column vector p of the dynamic force can be expressed as the sum of the column vector of 

every wave k, i.e. 





n

k 1

kpp  (5)

where n represents the number of the waves that is simultaneously taken into consideration, and 

the element of 34}{ k
ipkp can be expressed as 

 34,,2,1  iFSp k
i

k
i

k
i  (6)

34][ k
iSkS is the maximum value of the concentrated dynamic force under the situation that the 

k-th wave acting on the lumped masses; the elements in 34}{ k
i

k FF represent the variant of the 
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dynamic force, which is caused by the k-th wave, with time, and it is can be expressed as the 
following form 

       ttτtttδtτtδ
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ttτ
ttτδ
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(7) 

where 
k
it0 ,

k
iτ1 and

k
iτ2 are respectively the arrival time, the increase time and the duration of the k-th 

wave on the i-th point, and δ(t) has the following form 

   
 



 01

00
t
ttδ

                               
(8) 

1σ , 2σ , 3σ , 4σ in Fig. 1(b), represent the maximum pressures of the waves on the studied points, 
and the distribution of the pressure acting on the structure can be expressed as 

   



 


 i

k
i

kk
m

k
i φα

v

v
φαkσσ 22

0 sin
1

cos
                   

(9) 

where k
mσ and kα are respectively the maximum pressure and angle corresponding to the arrival 

of the k-th wave at the structure, v is the Poisson’s ratio, k0 is the reflection coefficient and has the 
following form 

 kkss ρCρC
k




1

2
0

                          
(10) 

where Cs and Ck are respectively the velocity of the wave in the soil and structure, s and k are 
respectively the density of the soil and the structure. 

The included angles between the normal axis of the structure and the normals of each section 
are 















423
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(11) 

the lumped mass matrix of the system is 

343434,34

22

11

0

0























m

m

m


M

                   

(12) 

where mii(i=1,2,,34) are the masses of the studied points and can be expressed by the piecewise 
function 
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Where Ek and Gk are respectively the elastic modulus and shear modulus of the structure, J is the 
inertia of the studied cross section, A is the section area, k is the coefficient of the elastic 
foundation, γ is the correction factor, li is the length of the calculated part and can be expressed as 
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(17) 

taking the effect of the elastic foundation into consideration and its deformation is 

 
   







jiblEvh
ji

y
i

ij
2

2
22

,3 21
0

                        
(18) 

where h2, v2 and E2 are respectively the thickness, the Poisson’s ratio and the elastic modulus of 
the elastic foundation, thus, the expressions of matrixes B and D can be expressed as 

1FLBLLBLLBLB  QQ
T
QNN

T
NMM

T
M

, 
PQPQ

T
QNPN

T
NMPM

T
M FLBLLBLLBLD 

   
(19) 

where ML , NL and QL are the matrixes of the moment, the axial force and the shear force, which 
are generated under the action of unit unknown force, 

T
ML ,

T
NL and

T
QL  are the corresponding 

transposed matrixes; MPL , NPL and QPL  are the matrixes of the moment, the axial force and the 
shear force under the action of unit dynamic force, 

T
MPL ,

T
NPL and

T
QPL are the corresponding 

transposed matrixes; MB , NB and QB are the flexibility matrixes; 1F represents the resistance of 
the elastic foundation to the base of the structure; PF represents the build-in effect between the 
elastic foundation and the middle of the baseplate. Considering that the expressions of the matrixes 
in Eq. (19) are complex, therefore, we won’t give their detailed expressions here. 

By solving Eq. (15), the unknown force matrixes are obtained 

NPQNPNMPM LXLQLXLNLXLM  ,,
                

(20) 

the displacement matrix in Eq. (4) can be expressed as 

AQBLNBLMBLA Q
T
QPN

T
NPM

T
MP 

                     
(21) 

matrix A is added to consider the possible displacement of the middle of the baseplate, as shown 

in Fig. 2(b), the elements in A can be expressed as 

adA T                                   (22) 

where d represents the elements in the last three rows of matrixD, a represents the elements in the 
last three rows of matrix X. 
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