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Abstract.  In this paper we investigate the existence of SH-waves in fiber-reinforced layer placed over a 

heterogeneous elastic half-space. The heterogeneity of the elastic half-space is caused by the exponential 

variations of density and rigidity. As a special case when both the layers are homogeneous, our derived 

equation is in agreement with the general equation of Love wave. Numerically, it is observed that the 

velocity of SH-waves decreases with the increase of heterogeneity and reinforced parameters. The 

dimensionless phase velocity of SH-waves increases with the decreases of dimensionless wave number and 

shown through figures. 
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1. Introduction 
 

A continuum model is used to explain fiber-reinforced composites as they are widely used in 

different engineering applications including aviation, automotive and engineering structures due to 

their high stiffness, lightweight, strength and damping properties. Reinforced materials are 

superior to the structural materials in applications because reinforced composite has characteristic 

property where its components act together as a single anisotropic unit till they remain in the 

elastic condition. Also, fiber-reinforced composite concrete structures are significant due to their 

low weight and high strength. Earth can be chosen as a composite material with horizontally 

preferred direction perpendicular to the propagation of wave with different properties. During an 

earthquake, the artificial structures on the surface of the earth are excited which gives rise to 

violent vibrations in some cases. They act like a single unit in the elastic condition such that 

relative displacement can be absent between them. Thus propagation of SH-waves in fiber-

reinforced medium can help us to understand earthquake engineering and seismology. These 

waves are also useful to understand the anisotropic crustal region near the Earth’s surface. 

Surface waves are very important in the study of earthquake, geophysics and geodynamics. SH-

waves cause more destruction to the structure than that of the body waves due to its slower 

attenuation of the energy. The supplement of surface wave analysis and other wave propagation 

problems to anisotropic elastic materials has been the subject of many studies; see, for example, 

Delfim (2012), Kristel et al. (2012), Ogden and Singh (2011), Ogden and Singh (2014), Pakravan 

et al. (2014), Selvamani and Ponnusamy (2013). Many authors have studied the propagation of  
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SH-wave by considering dissimilar forms of asymmetry at the interface. Singh (2007) obtained the 

reflection coefficients from free surface of an incompressible transversely isotropic fiber-

reinforced elastic half-space for the case when outer slowness section is re-entrant. Singh and 

Yadav (2013) studied fiber-reinforced elastic solid half-space with magnetic field by taking the 

concept of reflection of plane waves. Chattopadhyay et al. (2010, 2012) used Green’s function 

technique to study propagation of SH-waves and heterogeneity on the SH-waves in viscoelastic 

half-spaces. Also Chattopadhyay et al. (2014) discussed the influence of heterogeneity and 

reinforcement on propagation of a crack due to SH-waves. Gupta and Gupta (2013) studied the 

effect of initial stress on wave motion in an anisotropic fiber reinforced thermoelastic medium. 

Sahu et al. (2014) showed the effect of gravity on shear waves in a heterogeneous fiber-reinforced 

layer placed over a half-space. Kundu et al. (2014) analyzed SH-wave in initially stressed 

orthotropic homogeneous and an inhomogeneous half space. 

In this paper, we study SH-wave propagation in fiber-reinforced layer placed over a 

heterogeneous elastic half-space. The heterogeneity is caused by consideration of exponential 

variation in rigidity and density in the lower elastic layer. The dispersion relation for propagation 

of said waves is derived with Whittaker function and the method of separation of variables. 

Standard frequency equation of SH-waves is obtained in the special cases in closed form. The 

influence of heterogeneity and reinforcement is discussed and is represented by a graph. It is 

observed that inhomogeneity and reinforcement have a remarkable effect on the phase velocity of 

SH-waves. 

 

 

2. Formulation of the problem 
 
Let H be the thickness of the steel fiber reinforced silica fume concrete layer placed over 

inhomogeneous half-space. We consider x-axis along the direction of wave propagation and z-axis 

vertically downwards (Fig. 1).  

The variations of heterogeneous rigidity and density in the lower layer are taken as  

 

 

 
Fig. 1 Geometry of the problem 
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where ε1 and ε2 are inhomogeneous parameters of lower half-space and having dimension that are 

inverses of length, density and rigidity vary exponentially with space variable z, which is 

perpendicular to the direction of wave i.e., x-axis. We have also assumed that the shear velocity in 

the lower half-space is constant and independent of the depth z. 

 

 

3. Boundary conditions 
 

The displacement components and stress components are continuous at z=-H, and at z=0, 

therefore the geometry of the problem leads to the following conditions 

(1) At z=-H, the stress component τ23=0. 

(2) At z=0, the stress component of the layer and half space is continuous, i.e., τ23=σ23. 

(3) At z=0, the velocity component of both the layer is continuous, i.e., u2=v2. 

 

 

4. Solution of the problem 
 
4.1 Solution for the upper layer 
 

The constitutive equations for a fiber reinforced linearly elastic anisotropic medium with 

respect to a preferred direction  a  (Belfield et al. 1983) are 

      2 2ij kk ij T ij k m km ij kk i j L T i k kj j k ki k m km i je e a a e e a a a a e a a e a a e a a                (2) 

where, , ,

1
( )

2
ij i j j ie     are components of strain; ,? ? ?L T     are reinforced anisotropic 

elastic parameters; λ, μT are elastic parameters. Preferred direction of fibers are given by 

  2 2 2

1 2 3 1 2 3, , , 1.a a a a a a a     If a  has components that are (1, 0, 0) so that the preferred 

direction is the z-axis normal to direction of propagation. Relation (2) in the presence of initial 

compression simplifies as given below 
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                    (3) 

The equations of motion in upper half are 
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For SH-wave propagation along the x-axis, we have 

1 3 2 20, 0, ( , , )u u u u x z t                           (5) 

Taking transversely isotropic and setting a2=0 we get from Eq. (3) as 

2 2 2
12 1 1 3

2 2 2
23 3 1 3

22 33 231 11 3

1 1 1

1 1 1

0

L L
T T

T T

L L
T T

T T

u u
a a a

x z

u u
a a a

z x

 
 

 

 
 



    


 

     
                 


      

                 
    




                         (6) 

Substituting Eq. (6) in Eq. (4), we get 
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    (7) 

In order to solve Eq. (7), we take 

( )

2( , , ) ( )eik x ctu x z t z                                                    (8) 

Here, k is wave number; c is the phase velocity of simple harmonic waves of wave length 2π/k. 

From Eq. (7) and Eq. (8), we get 

2
2 2 2 2

3 1 3 12

( ) ( )
1 1 2 1 1 1 ( ) 0L L L

T T T T

z z
a a a ik a k z

z z

    
 

   

                 
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(9) 

where, ω=kc is the angular frequency, k the wave number and c is the phase velocity. 

Let the solution of Eq. (9) is 

( ) ikXz ikYzz e e                                                  (10) 

where, X and Y are arbitrary constants given by 
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         (12) 

and Tc



  is the shear velocity. 

Therefore, the equation of displacement of the upper reinforced medium is the solution of Eq. 

(7) and is given by 

  ( )

2 ( , , ) eikXz ikYz ik x ctu x z t e e                                         (13) 

 
4.2 Solution for the lower half-space 
 
The equations of motion for SH-wave in lower layer (Biot 1965) are 
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Using SH-wave conditions v1=v3=0, v2=v2(x,z,t), the Eq. (14) can be reduced to 
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The stress-strain relations are 
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Using Eq. (1) in Eq. (15), we get 
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From Eq. (14), Eq. (1) and Eq. (16), we get 

1 1 1 2

2 2 2

2 2 2 2
0 1 0 0 02 2 2

z z z zv v v v
e e e e

x z z t

    
    



  
  

  
                         (17) 

In order to solve Eq. (17), we take 

( )
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From Eq. (17) and Eq. (18), we get 
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  is the shear velocity. 
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Introducing the dimensionless quantities 
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where, 
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Eq. (21) is the well known Whittaker’s equation [Whittaker and Watson 

(1990)]. 

The solution of Whittaker’s Eq. (21) is given by 

     1 1
R, R,

2 2
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                                         (22) 
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where A and B are arbitrary constants and    1 1
R, R,

2 2

W , W 
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  are the Whittaker function. 

Now Eq. (22) satisfying the condition lim ( ) 0z z   i.e.,  lim 0z    →0 may be taken as 
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Hence the displacement for the SH-wave in the lower layer is 
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5. Dispersion relation 
 
The dispersion relation for SH-waves can be obtained by using boundary conditions given in 

section 3. Therefore, the displacement for the SH-waves in the in-homogeneous half-space using 

boundary conditions (1), (2) and (3) in Eq. (13) and Eq. (14) becomes (taking Whittaker’s function 
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W   up to linear terms in η) 
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Now eliminating ,     and A from the Eq. (25), Eq.  (26) and Eq. (27), we obtain 
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On simplifying Eq. (28), we get 
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(29) 

Solving Eq. (29), we get 
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             (30) 

Eq. (30) is the dispersion equation of SH-wave propagation in a fiber-reinforced anisotropic 

layer over a heterogeneous isotropic elastic half-space. 

 
Case-1 
For inhomogeneous reinforced medium over an homogeneous half space, we take ε1=0 and 

ε2=0, therefore, Eq. (30) reduces to 

2
2

2 2

1 3 3 12

12

3

0

2
2

2

1 3 3 2

1

tan 1 1 1 1 1

1 1

1
               

1 1 1 1 1

L L L

T T TL

T

T
L L L

T T T

kH c
a a a a

c
a

c
a a a

c

  

  






  

  

 
 

          
                                 

    



     
          

     

2

2

1
2

1

 1
c

c

a


  
    
   

         (31) 

 
Case-2  
For homogeneous reinforced medium over an inhomogeneous half space, we take a1=1, 
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a2=a3=0 then L

T





  and 1L T    , therefore, Eq. (30) reduces to 
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Case-3  
For homogeneous reinforced medium over an homogeneous half space, we take ε1=0, ε2=0, 

a1=1, a2=a3=0 then L

T





  and 1L T    , therefore, Eq. (30) reduces to 
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                                            (33) 

Eq. (33) is the classical dispersion equation of SH-waves given by Love (1911) and Ewing et 

al. (1957).  

 
 

5. Numerical analysis 
 
To show the effect of inhomogeneity parameters and steel reinforced parameters on SH-wave 

propagation in a fiber-reinforced anisotropic layer over a heterogeneous isotropic elastic half-

space, we take following parameters.  

a. Material Parameters for upper reinforced layer, Gupta (2014). 

9 2 9 2 9 2 2

3

10 2 9 2 3 2

1

5.65 10 / ,   2.46 10 / ,    5.65 10 / ,  = 0.85,

-1.28 10 / ,  220.09 10 / ,    7800 / ,   = 0.15.

T LN m N m N m a

N m N m kg m a

  

  

     

    
 

b. Material Parameters for elastic half-space, Gubbins (1990). 

10 2 3

0 06.34 10 / ,  3364 / .N m Kg m     

We have plotted non-dimensional phase velocity 
1

c

c
 against dimensionless wave number kH on 

the propagation of SH-wave in a fiber-reinforced anisotropic layer by using MATLAB software.  

The effects of reinforced parameters and inhomogeneity parameters have been shown in Figs. 

2-5. Fig. 2 gives the effect of inhomogeneity parameters 1l
k


  and 2m

k


  in the presence of 

reinforced parameters on the propagation of SH-waves. The reinforced parameters 
2

1r a , 2

3s a  
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Fig. 2 Dimensionless phase velocity 
1

c

c
 against dimensionless wave number kH for different values of 1l

k


  

and 2m
k


  in the presence of reinforced parameter 

 

 

Fig. 3 Dimensionless phase velocity 
1

c

c
 against dimensionless wave number kH for different values 1l

k




and 2m
k


  in the absence of reinforced parameter 
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are taken 0.15, 0.85 respectively and various curves are plotted for inhomogeneity parameters 0.0, 

0.3 and 0.5 respectively. It is clear from this figure, the phase velocity decreases with increase of 

inhomogeneity parameters 1

k


 and 2

k


. Fig. 3 represents the variation of dimensionless phase 

velocity 
1

c

c
 with dimensionless wave number kH on the propagation of SH-waves for different 

values 1

k


 and 2

k


 in the absence of reinforced parameter. The values of inhomogeneity parameters 

for curves have been taken as 0.0, 0.1, 0.3 and 0.5, respectively. It is observed from these curves 

that as the nonhomogeneity parameters 1

k


 and 2

k


 in the half-space increases, the velocity of SH-

wave decreases. Also, red curve represents the Case-3 i.e., the dispersion of SH-wave in reinforced 

layer overlying a homogeneous elastic half-space. From Figs. 2 and 3, it is cleared that the SH-

wave propagation is more influenced by inhomogeneity parameters 1

k


 and 2

k


 in comparison of 

reinforcement in upper layer. It is also seen that for large value of inhomogeneity parameters, the 

curves of phase velocities make significant distances from each other. Fig. 4 shows the effect of 

reinforced parameters 2

1a  and 2

3a on the propagation of SH-waves. The reinforced parameters ( 2

1a ,
2

3a ) for red curve, green curve, blue curve and black curve have been taken as (0.15, 0.85), (0.25, 

0.75), (0.35, 0.65) and (0.45, 0.55), respectively. All the four curves in Fig. 4 are drawn at fixed  

 

 

 

Fig. 4 Dimensionless phase velocity 
1

c

c
 against dimensionless wave number kH for different values 2

1r a

and 
2

3s a  at constant values of 1l
k




 
and 2m

k


  
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Fig. 5 Dimensionless phase velocity 

1

c

c
 against dimensionless wave number kH for different values 2

1r a

and 
2

3s a  at zero values of 1l
k




 

and 2m
k


  

 

 

values of the nonhomogeneity parameters 1 0.3
k


  and 2 0.3

k


 , respectively. It is seen from the 

diagram that as 2

1a  increases as well as 2

3a  decreases, the velocity of SH-wave decreases. In Fig. 5, 

the curves show the effect of reinforced parameters on the propagation of SH-wave in a fiber-

reinforced anisotropic layer in absence of inhomogeneity parameter in lower half-space. All the 

four curves in are drawn at zero values of the nonhomogeneity parameters 1

k


 and 2

k


, 

respectively. It is seen from the diagram that as 2

1a  decreases as well as 2

3a  increases, the velocity 

of SH-wave decreases. Thus from Figs. 4 and 5, we observed that as the reinforcement of the 

upper layer increases, the phase velocity of SH-wave decreases. Hence the phase velocity of SH-

wave is more dependent on reinforced parameters ( 2

1a , 2

3a ). 

 
 

6. Conclusions 
 
In this problem we have taken two layers; fiber-reinforced anisotropic layer upper layer and 

hetrogeneous lower with exponential variation in rigidity and density. We have employed 

Whittaker function and separation of variable method to find the dispersion of SH-waves in fiber-

reinforced layer placed over a heterogeneous elastic half-space. Displacement in the upper fiber-

reinforced layer is derived in closed form and the dispersion curves are drawn for various values of 
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inhomogeneity and reinforced parameters. In a particular case, the dispersion equation coincides 

with the well-known classical equation of Love wave when the upper and lower layer is 

homogeneous. The above results may be used to study surface wave propagation in fiber 

reinforced medium. This validates the solution. 

From above numerical analysis, it may be conclude that: 

(1) In entire figures, dimensionless phase velocity of SH-waves decreases with increase of 

dimensionless wave number. 

(2) The dimensionless phase velocity of SH-wave shows remarkable change with heterogeneity 

and reinforced parameters.   

(3) It is observed as the depth increases the velocity of SH-wave decreases. 

(4) The velocity of SH-wave decreases with the increase of as the reinforced parameter of upper 

layer and inhomogeneous parameter of the lower half-space, which is the property of seismic wave 

propagation in caster layer.  
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