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Abstract.  In this study, graph product rules are applied to the dynamic analysis of regular skeletal 

structures. Graph product rules have recently been utilized in structural mechanics as a powerful tool for 

eigensolution of symmetric and regular skeletal structures. A structure is called regular if its model is a graph 

product. In the first part of this paper, the formulation of time history dynamic analysis of regular structures 

under seismic excitation is derived using graph product rules. This formulation can generally be utilized for 

efficient linear elastic dynamic analysis using vibration modes. The second part comprises of random 

vibration analysis of regular skeletal structures via canonical forms and closed-form eigensolution of 

matrices containing special patterns for symmetric structures. In this part, the formulations are developed for 

dynamic analysis of structures subjected to random seismic excitation in frequency domain. In all the 

proposed methods, eigensolution of the problems is achieved with less computational effort due to 

incorporating graph product rules and canonical forms for symmetric and cyclically symmetric structures. 
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1. Introduction 
 

In spite of advances in computational technology for executing large-scale engineering 

problems, efficient and swift analysis of structures is still necessary in order to reduce the required 

memory and computational time. An analysis is known as optimal analysis when it uses sparse, 

well-structured and well-conditioned structural matrices. This type of analysis is particularly 

effective for analysis of large-scale structures. Recent advances and developments of graph 

theoretical matrix methods for optimal structural analysis in computational structural mechanics 

are thoroughly discussed in Kaveh (2013). 

Form-finding in symmetric structures is very popular among researchers, Kangwai et al. 

(1999). Here, we mention only a few of such studies which are more relevant to this work. 

Williams (1986) presented efficient eigenvalue analysis of rotationally symmetric structures. 

Dynamic analysis of cyclic symmetric structures was performed by McDaniel and Chang (1980), 

Olson et al. (2014), and Shi et al. (2014, 2015). Thomas (1979) utilized Fourier transform and  
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modal information for this kind of analysis. He et al. (2013) developed a scaled boundary finite 

element method for elastic analysis of cyclically symmetric two dimensional problems. On the 

other hand, Kaveh (2013) used graph product rules as an efficient tool for configuration processing 

and eigensolution of cyclic symmetric structures. Kaveh and Rahami (2010) developed graph 

product rules for static analysis of repetitive structures. Force method based efficient analysis of 

cyclic symmetric structures was fulfilled by Koohestani (2011). Kaveh and Nemati (2010) 

employed canonical forms for eigensolution and stability analysis of rotationally repetitive 

structures considering geometric stiffness matrix. Closed-form eigensolutions of matrices having 

special patterns is due to Yueh (2005). This is expended to canonical forms and eigensolution of 

symmetric structures by Kaveh (2013). Further applications of product graphs and regular 

structures are due to El-Raheb (2011) who worked on modal analysis of cyclic symmetric hexagon 

lattice, Koohestani and Kaveh (2010) expanded the concept of canonical forms to efficient 

buckling and free vibration analysis of cyclically repeated space truss structures, Rahami et al. 

(2015) performed swift structural analysis followed by optimal design using efficient matrix 

methods, and Zingoni used group theoretical approaches for efficient dynamic analysis of 

symmetric structures (2012, 2014). 

This study uses graph product rules and canonical forms for dynamic analysis of symmetric 

structures subjected to earthquake loading. Symmetry is a general concept and dynamic analysis of 

cyclic symmetric structures, are investigated in the first part of this paper. In the second part, 

random dynamic analysis in frequency domain is performed for repetitive structures under seismic 

excitation, incorporating canonical forms and closed-form eigensolution. Graph products 

constitute an important field of graph theory that focuses on regular and repetitive patterns and 

their properties. A structure is called regular if the underlying model is a product graph. The 

subgraphs producing a product graph are known as its generators. Initially, formulation of time 

history dynamic analysis of these structures under seismic excitation employing graph product 

rules is proposed. These formulations can generally be employed for linear elastic dynamic 

analysis using modal data. Random vibration analysis of regular repetitive structures is then 

presented utilizing canonical forms and closed-form eigensolution of matrices containing prevalent 

pattern for symmetric structures. In this section, the structures are subjected to random seismic 

excitation. In the proposed methods, the main improvement is due to the eigensolution of problems 

with much less computational effort. 

 

 

2. Graph product rules for static analysis  
 

Graph product rules for static analysis of repetitive structures have been proposed by Kaveh 

and Rahami (2010), and briefly reviewed herein. The necessary and sufficient condition for 

simultaneous diagonalization of the Hermitian matrices Ai and Aj using orthogonal matrix is their 

commutative property, that is 

)( jiijji  AAAA  (1) 

Suppose a matrix Λ  can be written as the sum of n Kronecker products as 
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which can be transformed into a block diagonal matrix considering the commutativity property. 

One can represent stiffness matrix of a cyclic symmetric structure in cylindrical coordinate system 

in a special block circulant matrix form. The transformed matrix can be formed by Eq. (2) as the 

sum of Kronecker products. For instance, stiffness matrix of a cyclic symmetric structure can be 

formed by (Kaveh 2013) 
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Here, I is an identity matrix and H is a special sparse matrix as defined by Kaveh and Nemati 

(2010). The pattern of the matrix K can be interpreted in terms of the graph product of a path and a 

cycle (generators of the model), and the Laplacian matrix of this graph model is pattern equivalent 

to the stiffness matrix of the structure (Kaveh and Rahami 2010). Laplacian matrix of a graph is 

the degree matrix of the graph minus its adjacency matrix.  

Therefore, eigenvalues and eigenvectors of Λ  (e.g., K matrix) can be obtained in the following 

from 
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where, m is the dimension of iA  matrices 
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
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)( BAΛ  , and iu is a vector diagonalizing the 

matrices iA simultaneously. In the case of K matrix, eigenvalues are simply attained by 
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Here 
j  is the jth eigenvalue of H matrix which is solved analytically, and j  is its complex 

conjugate. In linear static analysis the force-displacement relationship is PKΔ  , and Δ can be 

obtained as (Kaveh 2013)  

27



 

 

 

 

 

 

A. Kaveh and P. Zakian 

 

.

1







nm

i i

ii P
φφ

Δ


 
(7) 

 .  and < . > denote column and row matrices (vectors), respectively. Since K  is expressed in 

cylindrical coordinate system, the load vector P should also be considered in this coordinate 

system. Significant advantage of this method is its rapid eigenvalue analysis, and there is no need 

to inverse the matrix K. However, it is worth mentioning that the eigenvectors should be 

normalized here. This normalization is automatically performed by normalizing each component 

of the Kronecker products in Eq. (5). The calculated Δ  must be converted to Cartesian coordinate 

system as discussed later. 

 

 

3. Graph product rules for dynamic analysis  
 

In this part, graph product based methods are developed for dynamic analysis of cyclically 

symmetric structures. Here, formulations are presented for time history analysis. Nevertheless, 

these can readily be simplified to spectral dynamic analysis. Here, time history analysis is 

performed using modal analysis. In order to conduct time integration, Newmark-Beta method with 

average acceleration is implemented for its unconditional stability property and accuracy. 

 

3.1 Element matrices for dynamic analysis of truss structures 
 

For 3D truss analysis, stiffness and lumped mass matrices of an element are defined as 
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where cosines of the members can be expressed in terms of the global coordinates of their ends 

(Koohestani and Kaveh 2010), and hence transformation matrix will be 
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Equation of motion is stated as  

)(tttt P)Ku()(uC)(uM    (10) 
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M, C, K and P indicate mass, damping and stiffness matrices, and loading vector, respectively. 

Furthermore, u , u  and u  express acceleration, velocity and displacement vectors, respectively. 

These vectors are functions of time t and hereafter are shown without t for briefness. Eigenvalue 

problem for structural dynamics can be expressed as 

nnn MφKφ   (11) 

n  and nφ  are eigenvalue and the corresponding eigenvector, respectively. 

 

3.2 Dynamic analysis of cyclic symmetric structures  
 

Two types of approaches can be used for solving the linearly elastic dynamic equilibrium 

equation, Eq. (10). The first type consists of direct integration methods like central difference, 

Wilson-Teta, Newmark-Beta, and so on. These temporal discretization methods solve the coupled 

system of differential equations such as Eq. (10). The second type solves decoupled form of Eq. 

(10) using modal analysis, which is also called mode superposition or normal mode method. The 

decoupled equations can be solved by either Duhamel integration or the aforementioned numerical 

integration methods (Clough and Penzien 2003) and (Clough 2012). In this paper, modal analysis 

associated with Newmark-Beta integration technique is utilized. 

For an earthquake excitation, the governing equation can be reformed as 

)(tug
 MrKuuCuM   (12) 

where from the right hand side of Eq. (12), the minus sign is eliminated. This alteration does not 

change the problem and only the response sign will be multiplied by -1. However, it can be 

implemented by minus of earthquake record values, )(tug
 . r is an influence coefficient vector 

which manifests the displacements resulted from a unit support displacement. As an example, 

  T 0011r denotes the earthquake excitation at x direction for a 3D truss structure. 

In the first step, stiffness matrices should be transformed to cylindrical coordinate system. This 

transformation may be found in Kaveh and Nemati (2010). Lumped mass matrix is then written as 

MAIM  , and there is no need to be transformed. After imposing Eq. (3) and Kronecker 

product properties (see Brewer 1978) about Kronecker products), the eigenvalue problem is 

derived as
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Therefore, Eq. (6) is converted to 
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(14) 

Eq. (14) can be used for eigenvalue analysis of block diagonal mass matrix. For purely 
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diagonal mass matrix, we have )( MmIIM  . Thus 
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Though block diagonal mass matrix, Eq. (14), is utilized in this study. The purely diagonal 

form, Eq. (15) is clearly simpler than the former. An important transformation is also necessary for 

load vector. Load vector is the multiple of mass matrix and the influence vector. Since mass matrix 

is expressed in cylindrical coordinate system, the influence vector is transformed by 
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(17) 

It should be noted that T  is a 3n by 3n sparse and block diagonal matrix encountering 

minimal or sub-minimal computational cost, and n indicates the number of substructures. Eqs. (5) 

and (14)-(15) solve eigenvalues and eigenvectors of the problem. The governing equation is 

rewritten as 

)(tug

T  rMTKuuCuM   (18) 

In Eq. (18), the mass, damping and stiffness matrices are expressed in cylindrical coordinate 

system. However, the notations are remained as before, and indices notations are dropped for 

briefness. Decoupling the equation by modal vectors yields 

)(tug

TT

nnn
 rMTΦYKYCYM   (19) 

where 
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Where Y , Y  and Y  denote modal acceleration, velocity and displacement vectors, 

respectively. Eq. (19) represents decoupled modal equation in cylindrical coordinate system which 

will here be solved by Newmark-Beta method. If modal matrix is normalized with respect to mass 

matrix, then nM  matrix will be an identity matrix, otherwise, nM  matrix should be calculated as 

previously mentioned. nm indicates the number of DOFs as all modes are included here. In 

practice, identical damping ratio, , is usually considered for all modes leading to  i . Since 

diagonal mass matrix is selected, it is not necessary to transform this type of damping matrix as it 

is diagonal the same as nM . 

Finally, as the displacement response is determined in cylindrical coordinate system, it should 

be transformed back to the Cartesian coordinate system by 

)ΦY(T)u( tt   (21) 

u(t) is the displacement response vector at the time t. 

 

 

4. Canonical forms for random dynamic analysis  
 
4.1 A concise introduction to random vibration in frequency domain 
 

Random vibration theory is a useful discipline for random dynamic analysis of structures under 

random loading which particularly involves earthquake, wind, and ocean wave loads, Newland 

(2012). Here, frequency domain random analysis of a structure subjected to earthquake loading is 

briefly discussed. Frequency domain counterpart of Eq. (10) is  
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P, U and H are load vector, displacement vector and transfer function matrix, respectively. 

These are all functions of the frequency  , and 1i   is the complex unit. In order to analyze a 

structure subjected to random loading using modal data, the challenging equation is expressed as 
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nH , nM , n , n  are transfer function, mass, damping ratio, natural angular frequency 

associated with the nth mode, respectively. nB  is a coefficient relating the nth  normal coordinate 

to any desired response quantity. )(
nmPPS  is modal load spectral density function. )(. respS  is a 

response spectral density function.   is a parametric value as a variable in frequency domain. N is 

the number of selected modes. The following equation represents variance of response considering 

a broad band spectral density input 
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Suppose that Gaussian random process governs and modal spectral density function matrix is 

defined by constant white noise value S0 affected by the influence vector r. Obviously, S0 is 

spectral density value of seismic excitation considered as a random process. Thus, 
T
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Since damping ratio in commonly used structures is less that 10 per cent (Clough and Penzien 

2003), one can neglect the cross terms of Eq. (25) leading to small values, therefore 
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4.2 Matrices comprising in symmetric structures 
 
Canonical forms for eigensolution of some matrices with well-known patterns exist in literature 

(Yueh 2005, Kouachi 2006). These analytical solutions were utilized for eigenvalue analysis of 

symmetric structures by (Kaveh and Rahami 2007). In this subsection, analytical solutions for 

random vibration analysis of shear frames for two types of 2D and 3D frames are developed. 

Though more DOFs may be defined for a 3D shear frame, only practical cases are evaluated here. 

Case 1: For a 2D shear frame, each story has one lateral DOF as indicated in Fig. 1, 

emphasizing that for a shear frame with identical mass (m) and stiffness (k0) at every story, mass 

and stiffness matrices are in the following forms, respectively 
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Fig. 1 A ns story 2D shear frame 

 

 

nsns

nsns

k

m









NK

IM

0

 (28) 

in which, for a free-fixed supported structure, the matrix N is expressed as 
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Case 2: For the 3D shear frame depicted in Fig. 2, each story contains two transitional and one 

torsional DOF, in which lateral resisting systems with eccentricities are assumed to be as shown in 

Fig. 3. Stiffness matrix of a single story 3D shear frame is obtained as follows 
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Stiffness matrix of a story as an element may be derived as 
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Fig. 2 A ns story 3D shear frame 

 

 
Fig. 3 A typical story template of the 3D shear frame 
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After imposing the support conditions, the assembled stiffness matrix will be obtained as 

 

 
Table 1 Comparison of natural frequencies solved by the two methods for the truss structure 

 Natural frequencies (Rad/sec) 

Standard method [720.1572, 720.1572, 927.1593, … , 2426.51, 2797.37, 2797.37] 

Graph product method [720.1572, 720.1572, 927.1593, … , 2426.51, 2797.37, 2797.37] 
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The mass matrix of this structure at each floor is usually taken as lumped mass model given by 
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After assembling, it will be 
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In which m and )(
12

22 ba
m

Io  are the transitional and rotational lumped masses of a floor, 

respectively. When an ns-story 3D shear frame is undertaken, stiffness and mass matrices can be 

represented by Kronecker products as follows 
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5. Numerical examples 
 

In this section, four illustrative examples are presented. Examples 1 and 2 are provided for time 

history dynamic analysis of cyclically symmetric structures incorporating graph product rules. In 

Examples 3 and 4, canonical forms are developed for random vibration analysis of symmetric 

structures. Comparison of the results with those of the standard methods is also performed. For all 

the examples, a standard method that uses modal information is also utilized for verification of the 

results of the proposed method. 

35



 

 

 

 

 

 

A. Kaveh and P. Zakian 

5.1 Example 1: Time history analysis of a 3D truss  
 

Static analysis of the truss shown in Fig. 4 had been performed by employing graph product 

rules in Kaveh and Rahami (2010), by employing graph product rules. Here, the graph product 

based method developed in Section 3 is employed for dynamic analysis. Time history analysis of 

this structure under El Centro earthquake excitation, Fig. 5, is accomplished using a time interval 

of 0.02 sec. Damping ratio for all the modes is taken as 5 per cent. Material elasticity and density 

are 2×108 kN/m2 and 7.58 kNs2/m, respectively. All the cross sectional areas are considered as 5 

cm2. The structure is formed by strong Cartesian product of the path P2 and the cycle C5. Indeed, 

the structure is constructed by two equilateral polygons with five edges. The circumscribed circles 

of the polygons have radiuses as 1.5 and 3 m. Forming the structural matrices in cylindrical 

coordinates system as described in Section 3 results in 
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Table 2 Displacement maxima of the truss’s top nodes acquired by the two methods 

Node number 
Standard method Graph product method 

x y z x y z 

2 2.4368E-06 6.0238E-09 8.6265E-09 2.4369E-06 1.0921E-21 1.1062E-21 

4 3.0020E-06 1.8346E-07 1.4800E-06 3.0020E-06 1.8362E-07 1.4799E-06 

6 2.6527E-06 2.3148E-07 9.1436E-07 2.6527E-06 2.3126E-07 9.1461E-07 

8 2.6527E-06 2.9697E-07 7.3756E-07 2.6527E-06 2.9711E-07 7.3791E-07 

10 3.0020E-06 1.4316E-07 1.1941E-06 3.0020E-06 1.4292E-07 1.1940E-06 

 
Table 3 Displacement minima of the truss’s top nodes acquired by the two methods 

Node number 
Standard method Graph product method 

x y z x y z 

2 -1.8307E-06 -6.0882E-09 -8.6886E-09 -1.8307E-06 -1.1210E-21 -1.6402E-21 

4 -2.2706E-06 -1.4269E-07 -1.1938E-06 -2.2705E-06 -1.4292E-07 -1.1940E-06 

6 -1.9987E-06 -2.9725E-07 -7.3826E-07 -1.9987E-06 -2.9711E-07 -7.3791E-07 

8 -1.9987E-06 -2.3103E-07 -9.1488E-07 -1.9987E-06 -2.3126E-07 -9.1461E-07 

10 -2.2706E-06 -1.8379E-07 -1.4798E-06 -2.2705E-06 -1.8362E-07 -1.4799E-06 
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An efficient seismic analysis of regular skeletal structures… 

Natural angular frequencies of the structure for three lowest and highest modes obtained by 

standard method and the method based on Eqs. (14) or (15) are compared in Table 1. Also, Tables 

2 and 3 compare the maximum and minimum displacements of top nodes for both methods. Since 

earthquake excitation is assumed to be at x direction, it is visible that the response error is minimal  

 

 

 
(a) 

 
(b) 

Fig. 4 A truss structure generated by graph product: (a) plan view with nodal numbering, (b) isometric view 
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)(tug
  

 
 t (sec.) 

Fig. 5 El Centro (N-S component, 1940) earthquake accelerogram ( )(tug
  in g unit) 

 

 
(a) 

Fig. 6 Displacement error history of the node 2 of the truss structure: (a) at x direction, and (b) at y direction 

and (c) at z direction 
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An efficient seismic analysis of regular skeletal structures… 

 
(b) 

 
(c) 

Fig. 6 Continued 
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A. Kaveh and P. Zakian 

with respect to other directions. Though displacement responses of the presented method at the 

excitation direction (e.g., here is x) have desirable accuracy, sometimes responses at other 

directions (i.e., y and z) have large errors compared to their standard counterpart methods. 

Nonetheless, the target is usually the displacement at the direction which is excited. As a sample, 

error displacement response history for node 2 is represented in Fig. 6. This error history is 

obtained by response differences of two methods as SGP RR  ; GPR  and SR  denote the graph 

product based method response and standard method response, respectively. It is apparent that 

accuracy order of error history is acceptable with respect to accuracy order of the extremum 

(minima/maxima) values as provided by Tables 2 and 3, particularly for x direction which the 

structure is excited. For instance, node 2 has maximum 2.4368×10-6 m displacement at x direction, 

whereas Fig. 6(a) illustrates the response error maxima with an order of 5×10-10. 

 

5.2 Example 2: Time history analysis of a space dome 
 

In this example, the presented graph product based method is utilized for time history analysis 

of a dome structure, shown in Fig. 7, under the El Centro accelerogram. This structure is formed 

by strong Cartesian product of two graph generators P8 by C24. The radius of the dome at the 

lowest part and the highest part are 14 and 7.5 m, respectively. Table 4 discloses the cylindrical 

coordinates of a path graph generator. The cross sectional areas are taken as 20 cm2. All the 

ground level nodes are simply supported. The accelerogram are equally imposed to the structure at 

all three directions. Other structural and loading properties are the same as those of Example 1.  

The structural matrices casted in cylindrical coordinates as explained in Section 3, provide an 

efficient analysis utilizing MA , KA  and KB . Nevertheless, these are obviously different 

regarding to the previous structure. For example, MA  has not identical diagonal terms as already 

calculated in the Example 1 and it relies on topological properties of the structure (i.e., structural 

connectivity). Natural angular frequencies of the dome attained by standard method and presented 

method are compared in Table 5 involving six lowest and highest modes’ frequ encies. 

Furthermore, Tables 6 and 7 compare the maximum and minimum displacements of the top nodes 

for both methods, and error displacement response history for the node 24 is displayed in Fig. 8. 

Note that nodal numbering is assigned as in Example 1. In contrast to the Example 1, an important 

point is that in the case when the structure is simultaneously excited at all directions, the errors in 

all directions are minimal, and leads to a suitable accuracy as demonstrated by Fig. 8. As an  

 

 
Table 4 Cylindrical coordinates of a generator of the dome and its nodal numbering 

Node number r (m)  (Deg) z (m) 

1 14 0 0 

2 13 0 1.5 

3 11 0 3.5 

4 9 0 5 

5 7 0 6 

6 5 0 6.75 

7 3 0 7.25 

8 1 0 7.5 
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An efficient seismic analysis of regular skeletal structures… 

example, Table 6 reveals that the maximum displacements of node 24 are 1.92×10-4, 1.87×10-4 and 

3.11×10-4 m at x, y and z directions, respectively. While Fig. 8 indicates that the maxima or minima 

error (i.e., response difference histories) have an order of 1.5×10-6, 1.5×10-6, 5×10-7 at x, y and z 

directions, respectively. 

 

 
Table 5 Comparison of natural frequencies solved by the two methods for the dome structure 

 Natural frequencies (Rad/sec) 

Standard Method 
[0.000241, 0.000275, 0.000292, 0.000325, 0.00036, 0.00042, … , 9980.702, 

10419.81, 10419.81, 10686.66, 10686.66, 10776.17] 

Graph product 

method 

[0.000221, 0.000243, 0.000243, 0.000318, 0.000318, 0.000501, … , 9980.702, 

10419.81, 10419.81, 10686.66, 10686.66,10776.17] 

 

 
(a) 

 
(b) 

Fig. 7 A dome structure generated by graph product: (a) plan view, and (b) isometric view 
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A. Kaveh and P. Zakian 

Table 6 Displacement maxima of the dome’s top nodes acquired by the two methods 

Node number 
Standard method Graph product method 

x y z x y z 

8 0.000193 0.000181 0.000298 0.000193 0.000181 0.000298 

16 0.000193 0.000184 0.000306 0.000193 0.000184 0.000306 

24 0.000192 0.000187 0.000311 0.000192 0.000187 0.000311 

32 0.00019 0.00019 0.000312 0.00019 0.00019 0.000312 

40 0.000187 0.000192 0.000311 0.000187 0.000192 0.000311 

48 0.000184 0.000193 0.000306 0.000184 0.000193 0.000306 

56 0.000181 0.000193 0.000298 0.000181 0.000193 0.000298 

64 0.000177 0.000192 0.000288 0.000178 0.000192 0.000288 

72 0.000175 0.000191 0.000277 0.000175 0.000191 0.000277 

80 0.000173 0.000188 0.000264 0.000173 0.000188 0.000264 

88 0.000172 0.000186 0.000252 0.000172 0.000186 0.000252 

96 0.000171 0.000183 0.00024 0.000171 0.000183 0.00024 

104 0.000171 0.000181 0.00023 0.000171 0.000181 0.00023 

112 0.000172 0.000178 0.000224 0.000172 0.000178 0.000224 

120 0.000173 0.000176 0.000226 0.000173 0.000176 0.000225 

128 0.000174 0.000174 0.000226 0.000175 0.000175 0.000226 

136 0.000176 0.000173 0.000226 0.000176 0.000173 0.000225 

144 0.000178 0.000172 0.000224 0.000178 0.000172 0.000224 

152 0.000181 0.000171 0.00023 0.000181 0.000171 0.00023 

160 0.000183 0.000171 0.00024 0.000183 0.000171 0.00024 

168 0.000186 0.000172 0.000252 0.000186 0.000172 0.000252 

176 0.000188 0.000173 0.000264 0.000188 0.000173 0.000264 

184 0.000191 0.000175 0.000277 0.000191 0.000175 0.000277 

192 0.000192 0.000177 0.000288 0.000192 0.000178 0.000288 

 
Table 7 Displacement minima of the dome’s top nodes acquired by the two methods 

Node 

number 

Standard method Graph product method 

x y z x y z 

8 -0.00024 -0.00022 -0.00033 -0.00024 -0.00022 -0.00033 

16 -0.00024 -0.00023 -0.00034 -0.00024 -0.00023 -0.00034 

24 -0.00023 -0.00023 -0.00035 -0.00023 -0.00023 -0.00035 

32 -0.00023 -0.00023 -0.00035 -0.00023 -0.00023 -0.00035 

40 -0.00023 -0.00023 -0.00035 -0.00023 -0.00023 -0.00035 

48 -0.00023 -0.00024 -0.00034 -0.00023 -0.00024 -0.00034 

56 -0.00022 -0.00024 -0.00033 -0.00022 -0.00024 -0.00033 

64 -0.00022 -0.00023 -0.00031 -0.00022 -0.00023 -0.00032 

72 -0.00022 -0.00023 -0.0003 -0.00022 -0.00023 -0.0003 

80 -0.00021 -0.00023 -0.00029 -0.00021 -0.00023 -0.00029 
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Table 7 Continued 

Node 

number 

Standard method Graph product method 

x y z x y z 

88 -0.00021 -0.00023 -0.00028 -0.00021 -0.00023 -0.00028 

96 -0.00021 -0.00022 -0.00027 -0.00021 -0.00022 -0.00027 

104 -0.00021 -0.00022 -0.00026 -0.00021 -0.00022 -0.00026 

112 -0.00021 -0.00022 -0.00025 -0.00021 -0.00022 -0.00025 

120 -0.00021 -0.00022 -0.00024 -0.00022 -0.00022 -0.00024 

128 -0.00022 -0.00022 -0.00024 -0.00022 -0.00022 -0.00024 

136 -0.00022 -0.00021 -0.00024 -0.00022 -0.00022 -0.00024 

144 -0.00022 -0.00021 -0.00025 -0.00022 -0.00021 -0.00025 

152 -0.00022 -0.00021 -0.00026 -0.00022 -0.00021 -0.00026 

160 -0.00022 -0.00021 -0.00027 -0.00022 -0.00021 -0.00027 

168 -0.00023 -0.00021 -0.00028 -0.00023 -0.00021 -0.00028 

176 -0.00023 -0.00021 -0.00029 -0.00023 -0.00021 -0.00029 

184 -0.00023 -0.00022 -0.0003 -0.00023 -0.00022 -0.0003 

192 -0.00023 -0.00022 -0.00031 -0.00023 -0.00022 -0.00032 

 

 
(a) 

Fig. 8 Displacement error history of the node 24 of the dome structure: (a) at x direction, and (b) at y 

direction and (c) at z direction 
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(b) 

 
(c) 

Fig. 8 Continued 
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An efficient seismic analysis of regular skeletal structures… 

5.3 Example 3: A 2D shear frame excited by random seismic load 
 

Here, a 2D shear frame is subjected to random seismic loading. Random analysis is performed 

in frequency domain and spectral density function of seismic input is assumed to be constant broad 

band white noise S0 affected by the influence vector. The remaining assumptions are mentioned in 

the previous section. Firstly, eigenvalues and eigenvectors are obtained as follows: 

Using the relation presented in Yueh (2005), Kronecker product properties provided in Brewer 

(1978), and some mathematical elaborations, we obtain 
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Secondly, nB  for target responses are computed as  
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If identical height is taken for every story, then we will have  
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ns and n are the number of stories and mode number, respectively. Spectral density function of 

earthquake loading is derived as follows 
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(.)sum  denotes the sum of the vector entries. Therefore, analytical solution of the base shear and 

moment variances for this shear frame yields 
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Table 8 Results of random vibration analyses for 2D shear frame (Example 3) 

 Standard method Present method 

Natural frequencies m

k
 [0.0156,  0.0469,  0.0781,  0.1094, 

…,    1.9961,  1.9978,  1.9990, 1.9998] 

m

k
 [0.0156,  0.0469,  0.0781,  0.1094, 

…,    1.9961,  1.9978,  1.9990, 1.9998] 

Base shear force variance 54.532091154012080
m

kmS



20
 54.532091153985000

m

kmS



20
 

Base moment variance 

2.132340771817836e+05

m

khmS



22

0
 

2.132340771816758e+05

m

khmS



22

0
 

 
Table 9 All relevant parameters chosen for 3D shear frame (Example 4) 

Variable Assigned value 

Plane dimensions a=2b=6 

Story height h=3.5 

Stiffness at x direction 022
21

kkk xx   

Stiffness at y direction 0632
21

kkk yy   

Eccentricity at x direction bee xx 242
21
  

Eccentricity at y direction bee yy 
21

22  

Lumped masses at each floor m and mIo 75.3  
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Natural frequencies, variances of base shear force and moment for a 100-story shear frame are 

listed in Table 8 and compared to the standard procedure. The outcomes exhibit good agreement 

between the two methods. Evidently, Eqs. (43) and (44) solve the problem with minimal 

computational effort. 

 

5.4 Example 4: A 3D shear frame excited by random seismic load 
 

This example presents a formulation for random vibration analysis of a 3D shear building in 

frequency domain using canonical forms. Eigenvalue problem, Eq. (11), for the mentioned 

structure is simplified as follows: 

According to the Kronecker product rules (Brewer 1978), when Eq. (35) is substituted in Eq. 

(11) we obtain 
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Hence, the following problem can readily be handled for random vibration analysis 
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Eigenvalues and eigenvectors are swiftly attained by 
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Analytical eigensolution of N  matrix is available in Yueh (2005)), therefore, one may write 
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Consider a 100-story shear frame under a white noise seismic random excitation at horizontal 

directions defined by 
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Cross terms of ground acceleration spectral density matrix are zero, when the excitations at x 

and y directions are assumed to be statistically independent. Here, 
g

uS matrix is considered as a 

function of 0S  and r . Therefore, the calculated cross terms will stay unaltered as usual. Table 9 

provides the structural properties of this example. 

The matrices e
m and 

e
k  are calculated as follows 
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Eigenvalues and eigenvectors of 
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km
1

 are computed as 
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As an examination, using Eq. (48) leads to the following fundamental angular frequency and 

corresponding eigenvector 

 .0.1232     0.3364-    0.9336-0.0019 0.0053-0.0146- 
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It should be noted that the eigenvectors determined by this method are inherently not 

normalized. Since in dynamic analysis of structures these are often normalized with respect to 

mass matrix; it can conveniently be normalized as 
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Using Eqs. (26) and (49) leads to  
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By recalling 
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i vu  , we will have 
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Response variances consisting of base shears, base torsion and base moments are obtained 

using the following nB  coefficients 

Base shear at x direction 
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Base shear at y direction 
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Base torsion  
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Base moment at y direction 
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(60) 

Base moment at x direction 
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jk
kmhB v010])

12

)12(
sin([

1

2 
 





  (61) 

Employing Eq. (27) and Eqs. (55)-(61), the demand response variances are determined. Natural 

frequencies, variances of base shear forces, torsion, and moments for the 100 story 3D shear frame  

 

 
Table 10 Results of random vibration analyses for 3D shear frame (Example 4) 

 Standard method Present method 

Natural frequencies m

k0  [0.0262,  0.0301,  0.0535, 

0.0785,…, 6.8281,  6.8340, 

6.8381, 6.8406] 

m

k0  [0.0262,  0.0301,  0.0535, 

0.0785,…, 6.8281, 6.8340    

6.8381,    6.8406] 

Base shear at x direction 

89.117471500495000

m

kmS 0

2

0




 

89.118034107036660

m

kmS 0

2

0




 

Base shear at y direction 

14.349778025196208

m

kmS 0

2

0




 

14.350105629549597

m

kmS 0

2

0




 

Base torsion 

69.890507647456200

m

kmS 0

2

0




 

69.895119287606560

m

kmS 0

2

0




 

Base moment according to y 

direction 

4.268803313368735e+06

m

kmS 0

2

0




 

4.268803316933907e+06

m

kmS 0

2

0




 

Base moment according to x 

direction 

6.873780220164512e+05

m

kmS 0

2

0




 

6.873780276189527e+05

m

kmS 0

2

0




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are provided in Table 10 and compared with standard method. This result demonstrates the 

advantageous and accuracy of the presented method for optimal analysis. 

 

 

6. Conclusions 
 

In this article, graph product rules are applied to dynamic analysis of regular skeletal structures. 

Here, the formulation of time history dynamic analysis of these structures under earthquake 

loading incorporating the product graph rules is presented for the first time. This formulation can 

generally be used for linear elastic dynamic analysis by accomplishing modal analysis. In the 

second part of this article, random vibration analysis of regular skeletal structures is performed via 

canonical forms and closed-form eigensolution of matrices containing repetitive patterns for 

symmetric structures. In this section, the formulation random dynamic analysis of the structures 

subjected to random seismic excitation as a random process in frequency domain is also presented. 

In the proposed methods, the main efficiency corresponds to the eigensolution of problems with 

significant computational effort reduction due to the efficient graph product rules and canonical 

form techniques being utilized for symmetric and cyclic symmetric structures. Numerical 

examples demonstrate the suitability and efficiency of the method for optimal structural dynamic 

analysis. Nevertheless, graph product based methods may also be applied to the random vibration 

analysis which is in a progressive state of development by the authors. 
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