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Abstract. High-strength concrete (HSC) is becoming more popular in the construction of beams and
columns of tall buildings because of its higher stiffness and strength-to-weight ratio. However, as HSC is
more brittle than normal-strength concrete (NSC), it may adversely affect the flexural ductility and
deformability of concrete members. Extended from a series of theoretical study conducted on flexural
ductility of concrete beams, the authors would in this paper investigate the effects of some critical factors
including the degree of reinforcement, confining pressure, concrete and steel yield strength on the flexural
deformability of NSC and HSC beams. The deformability, expressed herein in terms of normalised
rotation capacity defined as the product of ultimate curvature and effective depth, is investigated by a
parametric study using nonlinear moment-curvature analysis. From the results, it is evident that the
deformability of concrete beams increases as the degree of reinforcement decreases and/or confining
pressure increases. However, the effects of concrete and steel yield strength are more complicated and
dependent on other factors. Quantitative analysis of all these effects on deformability of beams has been
carried out and formulas for direct deformability evaluation are developed. Lastly, the proposed formulas
are compared with available test results to verify its applicability. 
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1. Introduction

In recent years, there has been rapid development of high-performance materials such as high-

strength concrete (HSC) and high-strength steel (HSS). With the advent of superplasticiser and

superfine materials such as microsilica, pulverised fuel ash and slag, the compressive strength of

HSC was significantly improved. Compared with the classical normal-strength concrete (NSC),

HSC is characterised not only by its higher strengths (compressive, tensile and shear) and stiffness

(Carrasquillo et al. 1981), but also by its reduced permeability due to better packing density that

improves the durability of the concrete structures. Because of its improved strengths, HSC is

increasingly adopted in various structural members in tall buildings so as to reduce the member size

and save space. Furthermore, because of the enhanced resistance, HSC is often selected as the

construction material for water-retaining and maritime structures.

Apart from HSC, HSS with yield strength higher than 500 MPa is also increasingly adopted as

longitudinal and confining reinforcement in concrete members (Restrepo et al. 2006). One of the
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advantages of adopting HSS is that it provides the same strength with a smaller steel area, which

relieves the steel congestion problem at lap splice locations and within beam-column joints. When

HSS is adopted as confining reinforcement within the critical regions of beams and columns, it

allows a larger spacing of confinement for a given confining pressure. Not only it helps improve the

concrete placing quality within the critical region of beams and columns, but also mitigates spalling

of the concrete covers.

Despite the above advantages, HSC and HSS are more brittle than NSC and normal-strength steel

(NSS) respectively. Also, HSS may fracture when the concrete section is excessively under-

reinforced (Ho et al. 2005, Bai and Au 2009). At high working stress, HSS may also buckle

prematurely. When HSS is used as confinement, the yield strength may not be fully developed and

hence reduce the effectiveness in confining the concrete core. Obviously, structures constructed of

HSC and/or HSS should be designed with careful reinforcement detailing such that plastic hinge can

be fully developed and moment redistribution can occur during extreme events such as earthquake

attack, shock and blasting (Lu 2009, Nam et al. 2009, Weerheijm et al. 2009). This would avoid the

structural members to fail abruptly in a brittle manner when their maximum deformability has been

reached (Wu et al. 2004, Lam et al. 2008, Teran-gilmore et al. 2010). 

To ensure that plastic hinge can be developed in HSC concrete beams with/without HSS, it is

essential to provide the beam with adequate flexural ductility by careful reinforcement design and

detailing (Bindhu et al. 2008, Belarbi et al. 2009, Pam and Ho 2010). In a series of theoretical

study based on nonlinear moment-curvature analysis taking into account the stress-path dependence

of steel reinforcement (Pam et al. 2001, Ho et al. 2003, Lam et al. 2009, Ho et al. 2010a), the

authors have investigated various factors that would affect the flexural ductility of concrete beams

and columns. The nonlinear moment-curvature analysis is stress-path dependence because it takes

into account the reduction in tensile stress of tension steel after yielding when the beam section

softens. At this stage, the moment capacity of the beam sections starts to drop and the neutral axis

depth increases rapidly. This reduces the strain in tension steel and thereby causing strain reversal in

tension steel that decreases its tensile stress. In those studies, the investigated parameters include the

degree of reinforcement, concrete strength, steel yield strength and amount of confining

reinforcement. The degree of reinforcement measures the degree of beam section being under- or

over-reinforced. A more complete definition will be given in Eq. (4). 

In general, the flexural ductility increases as the degree of reinforcement and/or tension steel yield

strength decreases. However, the effects of concrete strength on ductility are fairly complicated and

are dependent on other factors. At a fixed tension and/or compression steel ratio, which is defined

as the tension and/or compression steel area divided by the effective area of beam section (i.e.

breadth × effective depth), using HSC will increase ductility of concrete beams. Nonetheless, at a

fixed degree of reinforcement, using HSC will decrease the ductility. On the other hand, increasing

the confining pressure provided by various types of confinement in forms of closely-spaced

transverse reinforcement (Ho and Pam 2003, Bechtoula et al. 2009, Pam and Ho 2009), external

steel plates (Altin et al. 2008, Su et al. 2009, Zhu and Su 2010) or high-strength fibre plates

(Ramadoss and Nagamani 2009, Sadjadi and Kianoush 2010), concrete-filled steel tube (Cho et al.

2008, Feng and Young 2009), steel-concrete composite section (Park and Kim 2008), FRP wraps

(Lee et al. 2008, Hashemi et al. 2008, Mahini and Ronagh 2009) and other methods (Wu 2008)

would always increase the ductility of concrete beams.

Whilst it is important to design structures with a nominal level of flexural ductility, it is also

necessary to provide the structures with adequate flexural deformability in terms of ultimate rotation
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capacity from the performance-based design point of view (Englekirk 2008, Park et al. 2008, Goel

2010). This is because the flexural ductility is an indication of deformability at ultimate state of

beams relative to the deformability at first yield (Watson and Park 1994). In concrete structures

constructed of HSC and/or HSS where the yield deformation is relatively small due to larger initial

elastic stiffness, the ductility may not be a good indicator of its ultimate deformability in absolute

magnitude. With the provision of adequate deformability at ultimate state, the structures are able to

cater for large inelastic deformability demand imposed by earthquake without causing collapse. 

In reinforced concrete beams, the deformability could be assessed by their ultimate rotation

capacity. Up to now, the method provided in Eurocode 2 (ECS 2004) for beam design for a

prescribed rotation demand is too simplified and conservative (Hawileh et al. 2009, Ho et al.

2010b), which is independent on steel yield strength and confining reinforcement content. Thus, the

current design method may not provide adequate deformability to beams made of HSS and/or HSC.

A detailed study on the factors affecting the deformability of concrete beams should therefore be

carried out and a new method be established to allow rapid deformability design for concrete

beams.

In this paper, the deformability of concrete beams with various concrete strength, steels (tension

and compression) yield strength and confining pressure are assessed by nonlinear moment-curvature

analysis taking into account the stress-path dependence of the constitutive materials (Pam et al.

2001). The deformability of concrete beams is studied herein by normalised rotation capacity, which

is the product of the ultimate curvature and effective depth. The normalised rotation capacity gives

the ultimate rotation of concrete beams with plastic hinge length equal to its effective depth. For

beams with other plastic hinge length, the ultimate rotation could be obtained by multiplying the

normalised rotation capacity with the ratio of plastic hinge length to effective depth. Based on this

definition, deformability analyses of different beam sections containing concrete strength from 40 to

100 MPa, steel yield strength of 400 to 800 MPa and confining pressure from 0 to 4 MPa were

carried out through a series of parametric studies. From the results, two formulas are proposed for

direct evaluation of the deformability of concrete beams in terms of normalised rotation capacity.

Lastly, the proposed formulas are compared with available test results obtained by other researchers

for verification.

2. Nonlinear moment-curvature analysis

The method of nonlinear moment-curvature analysis developed previously by the authors (Pam et

al. 2001, Ho et al. 2003) has been adopted in this study for the deformability analysis of concrete

beams. It takes into account the constitutive stress-strain curve of concrete and steel as well as the

stress-path dependence of the steel reinforcement. The concrete stress-strain curves proposed by

Attard and Setunge (1996) are adopted. For steel reinforcement, the idealised linearly elastic -

perfectly plastic stress-strain curve is adopted. The stress-strain curves of concrete and steel

reinforcement are shown in Fig. 1.

Five basic assumptions are made in the analysis: (1) Plane sections before bending remain plane

after bending. (2) The tensile strength of the concrete may be neglected. (3) There is no relative slip

between concrete and steel reinforcement. (4) The concrete core is confined while the concrete

cover is unconfined. (5) The confining pressure provided to the concrete core by confinement is

assumed to be constant throughout the concrete compression zone. Assumptions (1) to (4) are
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commonly accepted and have been adopted by various researchers (Pam and Ho 2001, Ho et al.

2004, Bai et al. 2007, Au et al. 2009, Kwak and Kim 2010). Assumption (5) is not exact because

the confining pressure varies in the concrete compression zone with strain gradient. However, it is a

fairly reasonable assumption (Ho et al. 2010a) because: (i) At small concrete strains, the variation

of confining pressure would not have significant effect on the confined concrete stress. (ii) When

strain of the extreme fibre of confined concrete reaches about 0.003-0.004 before concrete cover

spalls off entirely, there would be some variations of confining pressure within the concrete

compression zone due to strain gradient. However, as this happens within a narrow range of

concrete strain, the differences in the confined concrete compressive force and moment capacity of

column are not significant. (iii) After the concrete cover had spalled off completely at large concrete

strain, the Poisson’s ratio of concrete increases abruptly that causes the confining steel to yield. The

confining pressure becomes a constant, which only depends on the volumetric ratio and yield

strength of confining steel. In the analysis, the moment-curvature behaviour of the beam section is

analysed by applying prescribed curvatures incrementally starting from zero. At a prescribed

curvature, the stresses developed in the concrete and the steel are determined from the strain profile

across the section and their respective stress-strain curves. Then, the neutral axis depth and resisting

Fig. 1 Stress-strain curves of concrete and steel reinforcement: (a) Stress-strain curves of concrete, (b) Stress-
strain curve of steel with stress-path dependence considered
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moment are evaluated from the axial force and moment equilibrium conditions, respectively. The

above procedure is repeated until the curvature is large enough for the resisting moment to increase

to the peak and then decrease to 80% of the peak moment.

3. Flexural deformability analyses

3.1 Flexural deformability analysis

The flexural deformability of beam sections are expressed in terms of normalised rotation capacity

θpl defined as follows

θpl = φud (1)

where φu is the ultimate curvature, d is the effective depth of the beam section. The ultimate

curvature φu is taken as the curvature when the resisting moment has dropped to 0.8 Mp after

reaching Mp, where Mp is the peak moment. The value of θpl evaluated from Eq. (1) would give the

rotation capacity of the beam with plastic hinge length equal to its effective depth. However, since

the plastic hinge length depends on the loading condition, concrete strength, steel content and

confining pressure, the actual rotation capacity of concrete beams should be obtained by multiplying

θpl with lp/d, where lp is the actual plastic hinge length (Mendis 2001).

Based on the above definition, a comprehensive parametric study on the effects of various factors

on the normalised rotation capacity has been conducted. The studied factors are: (1) Degree of

reinforcement; (2) Concrete strength; (3) Steel yield strength; and (4) Confining pressure. The beam

sections analysed in the parametric study are shown in Fig. 2. The concrete strength fco was varied

from 40 to 100 MPa, the confining pressure fr was varied from 0 to 4 MPa, the tension steel ratio ρt

Fig. 2 Beam sections analysed
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was varied from 0.4 to 2 times the balanced steel ratio, the compression steel ratio ρc was varied

from 0 to 2%, and the steel (compression and tension) yield strength fy was varied from 400 to 800

MPa.

3.2 Failure modes and balanced steel ratio

It was observed from previous theoretical studies (Pam et al. 2001, Ho et al. 2003) that the

ultimate curvature of concrete beams is determined by the failure mode. In total three failure modes

were observed: (1) Tension failure - tension steel yields during failure; (2) Compression failure -

none of tension steel yields during failure; and (3) Balanced failure - the most highly stressed

tension steel has just yielded during failure. The tension steel ratio of a singly-reinforced beam

section having balanced failure is defined as the balanced steel ratio denoted by ρbo = Asb/bd, where

Asb is the balanced steel area. For beam sections with non-zero compression steel ratio ρc and

unequal tension fyt and compression fyc steel yield strengths, ρb can be expressed as

ρb = ρbo + (fyc / fyt)ρc (2)

The values of ρbo for various concrete strengths and confining pressure have been evaluated using

nonlinear moment-curvature analysis and are listed in Tables 1, 2 and 3 for fyt = 400, 600 and 800 MPa

respectively. For simplicity of design application, the following empirical equation was derived by

Table 1  Balanced steel ratios ρbo for tension steel yield strength fyt = 400 MPa

fco (MPa)
Balanced steel ratios without compression reinforcement ρbo(%)

fr = 0 MPa fr = 1 MPa fr = 2 MPa fr = 3 MPa fr = 4 MPa

40 4.74 5.98 6.90 7.73 8.56

50 5.63 6.91 7.86 8.78 9.60

60 6.46 7.79 8.77 9.70 10.59

70 7.29 8.62 9.61 10.54 11.50

80 8.06 9.38 10.37 11.35 12.29

90 8.77 10.11 11.13 12.11 13.03

100 9.42 10.80 11.82 12.78 13.76

Table 2  Balanced steel ratios ρbo for tension steel yield strength fyt = 600 MPa

fco (MPa)
Balanced steel ratios without compression reinforcement ρbo(%)

fr = 0 MPa fr = 1 MPa fr = 2 MPa fr = 3 MPa fr = 4 MPa

40 2.74 3.60 4.23 4.83 5.37

50 3.23 4.12 4.78 5.40 6.00

60 3.69 4.61 5.29 5.93 6.55

70 4.13 5.06 5.76 6.41 7.04

80 4.56 5.50 6.19 6.85 7.49

90 4.94 5.90 6.59 7.28 7.91

100 5.29 6.27 6.97 7.67 8.29
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regression analysis based on the data obtained in the above tables

ρbo = 0.005(fco)
0.58(1 + 1.2fr)

0.3(fyt / 460)-1.35 (3)

It should be noted that all strengths are in MPa and 400 MPa ≤ fyt ≤ 800 MPa.

4. Flexural deformability of high-strength concrete beams

4.1 Effect of degree of reinforcement

From a series of previous theoretical studies carried out by the authors on the flexural ductility of

HSC beams (Pam et al. 2001, Ho et al. 2003), it was found that the most critical factor that

determines the ductility of HSC beams is the degree of reinforcement λ defined as follows

(4)

The beam section is classified as under-reinforced, balanced and over-reinforced sections when λ is

less than, equal to and larger than 1.0 respectively. 

To study the effects of the degree of reinforcement λ on the flexural deformability of HSC beams,

the normalised rotation capacity θpl obtained from the parametric study is plotted against λ for

different concrete strengths of fco = 40, 70 and 100 MPa in Fig. 3(a). From the figure, it is obvious

that the deformability of concrete beams decreases as λ increases for all concrete strengths until λ

reaches 1.0. After that, the deformability remains relatively constant. It is also observed that at a

fixed λ, the deformability decreases as the concrete strength increases. Therefore, the use of HSC at

a fixed degree of reinforcement would reduce the deformability of concrete beams.

4.2 Effects of concrete strength

To study the effects of concrete strength fco on the deformability of concrete beams, the

normalised rotation capacity θpl is plotted against the tension steel ratio ρt in Fig. 3(b) for fco = 40,

λ
fytρt fycρc–

fytρbo

-------------------------=

Table 3  Balanced steel ratios ρbo for tension steel yield strength fyt = 800 MPa

fco (MPa)
Balanced steel ratios without compression reinforcement ρbo(%)

fr = 0 MPa fr = 1 MPa fr = 2 MPa fr = 3 MPa fr = 4 MPa

40 1.82 2.48 2.96 3.42 3.84

50 2.13 2.82 3.33 3.80 4.25

60 2.43 3.14 3.66 4.14 4.61

70 2.70 3.43 3.96 4.45 4.93

80 2.97 3.69 4.22 4.75 5.21

90 3.22 3.95 4.50 5.00 5.49

100 3.44 4.19 4.74 5.22 5.74
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70 and 100 MPa. From Fig. 3(b), it is seen that the deformability decreases as the tension steel ratio

increases at all concrete strengths until ρt = ρbo. However, unlike the variation with λ as shown in

Fig. 3(a), the deformability increases as the concrete strength increases at a given ρt, albeit that

HSC is more brittle per se. This is because as concrete strength increases, the balanced steel ratio

ρbo also increases (see Eq. 3). Thus, at a given tension steel ratio, the degree of reinforcement

decreases that leads to a larger deformability. Therefore, the use of HSC could improve the

deformability at a given tension steel ratio. Meanwhile, higher strength concrete would offer a larger

flexural strength at a given tension steel ratio. Therefore, the advantage of using HSC in lieu of

NSC in concrete beams is that it can improve the flexural behaviour of beams in terms of both

flexural strength and deformability simultaneously.

4.3 Effects of steel area and yield strength

To study the effects of yield strength of tension steel fyt on the deformability of concrete beams,

the normalised rotation capacity θpl obtained in the parametric study is plotted against λ in Fig. 4(a)

and ρt in Fig. 4(b) for different values of fyt = 400, 600 and 800 MPa for beam sections with fco =

70 MPa. From Fig. 4(a), it is evident that the deformability of beam increases as the tension steel

yield strength increases at the same degree of reinforcement until it reaches 1.0, after which the

normalised rotation capacities converges. On the other hand, it is observed from Fig. 4(b) that the

deformability decreases significantly at a fixed ρt as the tension steel yield strength increases until ρt

reaches about 6%. This is because the balanced steel ratio ρbo decreases rapidly as fyt increases (see

Eq. 3). Therefore, at the same tension steel ratio, the degree of reinforcement λ is increased leading

to a lower deformability. Nevertheless, for the same flexural strength requirement, the use of HSS

as tension steel will allow a smaller steel area. Hence, the deformability of concrete beam may or

may not be significantly affected.

Figs. 5(a) and 5(b) show the effects of compression steel yield strength fyc = 400, 600 and 800

MPa on the deformability of concrete beams at various degrees of reinforcement λ and tension steel

ratio ρt respectively for fco = 70 MPa and ρc = 1%. From both figures, it can be seen that the use of

Fig. 3 Effects of concrete strength on flexural deformability of beams: (a) θpl against λ, (b) θpl against ρt
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HSS as compression steel would improve the deformability of beam slightly at a given λ, but it

improves the deformability of beams significantly at a given ρt. This is because at constant tension

and compression steel ratios, the increase in compression steel yield strength would reduce the value

of λ (see Eq. 4) and hence increase the deformability.

4.4 Effects of confining pressure

To study the effect of the confining pressure fr, the normalised rotation capacity θpl obtained in the

parametric study is plotted against confining pressures fr for different concrete strength fco = 40, 70

and 100 MPa in Fig. 6(a), degree of reinforcement λ = 0.5, 1.0 and 1.5 in Fig. 6(b) and tension

steel ratios ρt = 2, 4 and 6% in Fig. 6(c). It is evident from Fig. 6(a) that at a given λ, the

normalised rotation capacity θpl increases as the confining pressure fr increases for all concrete

strength. It is also evident from Fig. 6(b) that at a fixed fco, θpl increases as fr increases for all λ.

These are because of the gradual increase in material ductility and deformability of the confined

Fig. 5 Effects of compression steel yield strength on flexural deformability of beams: (a) θpl against λ, (b) θpl

against ρt

Fig. 4 Effects of tension steel yield strength on flexural deformability of beams: (a) θpl against λ, (b) θpl

against ρt
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concrete as the confining pressure fr increases at a given λ. In Fig. 6(c), it is seen that at a fixed fco,

θpl increases as the confining pressure fr increases for all ρt. This is because apart from the

enhanced material ductility and deformability of the confined concrete, the balanced steel ratio ρbo

also increases with the confining pressure fr (Kwan et al. 2004), which decreases the degree of

reinforcement λ and further increases the normalised rotation capacity θpl.

Nevertheless, it is also evident from the above figures that the effectiveness of adding

confinement to improve the deformability of concrete beams decreases as the degree of

reinforcement λ and/or concrete strength fco increases. For example, it is seen in Fig. 6(a) that the

provision of fr = 1 MPa could improve the deformability from 0.021 to 0.036 rad (an increase of

75%) for beam section with fco = 40 MPa. However, the same provision of fr could only improve

the deformability from 0.017 to 0.026 rad (an increase of 54%) for beam section with fco = 70 MPa

and from 0.015 to 0.021 rad (an increase of 40%) for beam section with fco = 100 MPa. Similar

phenomenon of reduction in deformability improvement with the degree of reinforcement is also

observed in Fig. 6(b). Therefore, the deformability improvement due to provision of confinement is

dependent on the concrete strength and degree of reinforcement. The effectiveness of providing

confining pressure to improve the deformability of beams may be studied in terms of the differential

Fig. 6 Effects of confining pressure on flexural deformability of beams: (a) θpl against fr for different fco, (b) θpl

against fr for different λ, (c) θpl against fr for different ρt
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coefficient of θpl with respect to fr, denoted herein by . To study how the concrete strength

and degree of reinforcement affect the effectiveness of confinement on deformability improvement,

the differential coefficient  is plotted against λ and fco in Figs. 7(a) and 7(b) respectively.

From Fig. 7(a), it can be seen that the differential coefficient  decreases as the degree of

reinforcement λ increases until it reaches a steady value at λ ≥ 0.8. This indicates that the increase

in deformability of concrete beam per unit increase in confining pressure is always smaller at a

higher degree of reinforcement. Therefore, the addition of confinement to improve deformability is

generally less effective in heavily-reinforced and over-reinforced beam sections. From Fig. 7(b), it

can be seen that the differential coefficient  decreases dramatically as the concrete strength

fco increases until it reaches a steady value at fco ≥ 90 MPa. This indicates that the increase in

deformability of concrete beam per unit increase in confining pressure is always smaller at a higher

concrete strength and therefore the addition of confinement to improve deformability is generally

more difficult in HSC beam sections. In short, it is clear that maintaining the deformability of HSC

beams is somewhat difficult and may require a substantial amount of confinement, if no upper limit

is set on the degree of reinforcement or concrete strength. 

4.5 Effects of beam dimensions

Since only a particular size of beam section is selected in the present parametric study for

deformability analysis, it is essential to verify that the normalised rotation capacity of concrete beam

is relatively insensitive to its cross-section dimensions. The effects were studied by comparing the

normalised rotation capacity of beams obtained from three different cross-section dimensions

(breadth×height): 200 × 400 mm2, 300 × 600 mm2 and 500 × 1000 mm2. The obtained normalised

rotation capacities for these sections are shown in Fig. 8(a) for various concrete strengths and Fig.

8(b) for various degrees of reinforcement. It can be seen from these figures that the variation of

normalised rotation capacity at various concrete strength and degrees of reinforcement is very small.

Therefore, it can be said that the deformability of concrete beams is relatively insensitive to the

cross-section dimensions compared with other factors such as concrete strength, degree of

reinforcement and confining pressure.

∂θpl ∂fr⁄

∂θpl ∂fr⁄
∂θpl ∂fr⁄

∂θpl ∂fr⁄

Fig. 7 Effects of λ and fco on effectiveness of confinement: (a)  against λ, (b)  against fco∂θpl ∂fr⁄ ∂θpl ∂fr⁄
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5. Formula for direct evaluation of flexural deformability

5.1 Factors affecting the deformability

The above parametric study revealed that the major factors affecting the flexural deformability of

concrete beams are the concrete strength, degree of reinforcement and confining pressure. Hence,

when evaluating the flexural deformability of concrete beams, all these factors need to be

considered. From Fig. 3(a), it is apparent that the flexural deformability of over-reinforced concrete

beams (λ > 1.0) remains relatively constant and is insensitive to the degree of reinforcement.

Therefore the deformability evaluation of under- and over-reinforced beams should be dealt with

separately. 

5.2 Formulas for deformability evaluation

To enable a rapid evaluation of deformability of concrete beams without conducting lengthy

nonlinear moment-curvature analysis, the evaluated normalised rotation capacity θpl obtained from

the parametric study have been correlated to the studied parameters using regression analysis. For

under-reinforced and balanced beam sections (λ ≤ 1.0), the following formula is developed based on

Kwan et al. (2004)

(5a)

m= 1 + 4fco
0.4(fr / fco) (5b)

n = 1 + 3fco
0.2(fr / fco) (5c)

where fco, fyc, fyt and fr are in MPa, λ ≤ 1.0 and 400 ≤ fyc and fyt ≤ 800 MPa. For over-reinforced

beam sections (λ > 1.0), the following formula is obtained by replacing λ = 1.0 in Eq. (5a) since

the effect of λ on deformability is now insignificant:

θpl 0.03m fco( ) 0.3–
λ( ) 1.0n–

1 110 fco( ) 1.1– fycρc

fytρt

----------⎝ ⎠
⎛ ⎞

3

+⎝ ⎠
⎛ ⎞ fyt

460
---------⎝ ⎠

⎛ ⎞
0.3

=

Fig. 8 Effects of beam dimensions on flexural deformability of beams: (a) θpl against fco, (b) θpl against λ
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(6a)

Furthermore, since over-reinforced beams usually contain tension steel much more than the

compression steel, Eq. (6a) can be further simplified to Eq. (6b) by considering ρc/ρt ≈ 0 in Eq. (6a)

(6b)

The predicted normalised rotation capacity θpl obtained from Eqs. (5) and (6) are compared with the

corresponding rigorously evaluated θpl by nonlinear moment-curvature analysis in Fig. 9. Statistical

analysis shows that 80% of the evaluated θpl are within ±10% error and 90% of the evaluated θpl

are within ±15% error. A fairly high coefficient of correlation R2 = 0.95 is obtained. Hence, within

the range of parameters covered in the present study, Eqs. (5) and (6) should be sufficiently accurate

for predicting the deformability of concrete beams without performing the cumbersome nonlinear

moment-curvature analysis. The practical application of the proposed formulas on concrete beam

design is presented elsewhere (Ho and Zhou 2010).

5.3 Comparison with experimental results of static beam tests

To verify the validity of the above formulas, the flexural deformability predicted by Eq. (5) or Eq.

(6) has been compared with the rotation capacities of concrete beams obtained experimentally for

NSC beams (Nawy et al. 1968, Pecce and Fabbrocino 1999, Debernardi and Taliano 2002, Haskett

et al. 2009) and HSC beams (Pecce and Fabbrocino 1999, Ko et al. 2001, Lopes and Bernardo

2003) by other researchers during static beam tests as well as those proposed by Eurocode 2 (ECS

2004). The comparisons of NSC and HSC beams are summarised in Tables 4 and 5 respectively.

For comparison purpose, the value of fco is taken as the value of 0.85ηfc', where η is the ratio of the

θpl 0.03m fco( ) 0.3–
1 110 fco( ) 1.1– fycρc

fytρt

----------⎝ ⎠
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Fig. 9 Predicted flexural deformability plotted against vigorously evaluated values
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Table 4 Comparison with experimental results on rotation capacities of NSC beams

Code fc′
(MPa)

fr

(Mpa)
fyt

(Mpa)
ρt

(%)
ρc

(%)
θpl by
Eq. (5)
(rad) 
[1]

θpl by 
others
(rad)
[2]

θpl by 
EC2
(rad)
[3]

[1]
[2]

[3]
[2]

  Nawy et al. (1968)

P9G1 33.6 0.00 328 1.73 0.71 0.0870 0.0650 0.0330 1.34 0.51

P11G3 35.1 0.50 328 1.73 0.71 0.1536 0.1110 0.0320 1.38 0.29

P3G4 37.5 1.30 452 1.73 0.71 0.1232 0.1340 0.0260 0.92 0.19

P4G5 39.1 1.30 452 1.73 0.71 0.1217 0.1360 0.0265 0.89 0.19

  Pecce and Fabbocino (1999)

A 41.3 0.98 471 2.60 0.05 0.0255 0.0220 0.0100 1.16 0.45

B 41.3 0.94 454 1.10 0.05 0.0736 0.1220 0.0265 0.60 0.22

  Debernardi and Taliano (2002)

T1A1 27.7 0.46 587 0.67 0.30 0.1433 0.1035 0.0310 1.38 0.30

T3A1 27.7 0.46 587 2.00 0.59 0.0270 0.0290 0.0080 0.93 0.28

T5A1 27.7 0.35 587 0.63 0.22 0.0978 0.1130 0.0300 0.87 0.27

T6A1 27.7 0.35 587 1.28 0.22 0.0311 0.0245 0.0160 1.27 0.65

  Haskett et al. (2009)

A1 38.2 0.67 315 1.47 0.0 0.0313 0.0360 0.0269 0.87 0.75

A2 42.3 0.32 318 1.47 0.0 0.0226 0.0205 0.0280 1.10 1.37

A3 41.0 0.31 336 1.47 0.0 0.0209 0.0168 0.0270 1.24 1.61

A4 42.9 1.29 315 2.95 0.0 0.0222 0.0305 0.0172 0.73 0.56

A5 39.6 0.59 314 2.95 0.0 0.0136 0.0207 0.0154 0.66 0.74

A6 41.1 0.31 328 2.95 0.0 0.0103 0.0118 0.0153 0.87 1.30

B1 43.0 0.65 329 1.47 0.0 0.0293 0.0277 0.0278 1.06 1.00

B2 41.8 0.31 322 1.47 0.0 0.0222 0.0152 0.0277 1.46 1.82

B3 42.9 1.29 321 2.95 0.0 0.0217 0.0218 0.0168 1.00 0.77

B4 42.9 0.64 323 2.95 0.0 0.0138 0.0120 0.0166 1.15 1.38

C2 26.0 0.39 329 1.47 0.0 0.0219 0.0258 0.0203 0.85 0.79

C3 25.6 0.32 330 1.47 0.0 0.0201 0.0187 0.0200 1.07 1.07

C4 25.9 1.23 325 2.95 0.0 0.0205 0.0297 0.0080 0.69 0.27

C5 23.4 0.64 328 2.95 0.0 0.0126 0.0130 0.0080 0.97 0.62

C6 27.4 0.34 319 2.95 0.0 0.0102 0.0125 0.0080 0.82 0.64

Average 1.01 0.72

Standard deviation 0.24 0.47
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average concrete stress of the equivalent rectangular stress block to the cylinder strength fc' as

stipulated in Eurocode 2. The confining pressure provided by the confinement is evaluated using the

confinement effectiveness factor proposed by Mander et al. (1988). The length of plastic hinge from

the point of maximum moment in the beam is taken as the lower bound value of 0.4d obtained by

Mendis (2001), where d is the effective depth.

From Tables 4 and 5, it is evident that:

(1) The rotation capacities of concrete beams evaluated using Eq. (5) or Eq. (6) agree reasonably

closely with the measured rotation capacities for both NSC and HSC beams. The differences

between the rotation capacities obtained from Eq. (5) or Eq. (6) and the measured rotation

capacities are mostly within 30%. The average ratio (and standard deviation) of the proposed

to the measured rotation capacities is 1.01 (0.24) for NSC and 1.01 (0.18) for HSC beams. 

(2) The rotation capacities of concrete beams calculated in accordance with Eurocode 2 are

actually too conservative. The maximum difference between the rotation capacities obtained

Table 5 Comparison with experimental results on rotation capacities of HSC beams

Code fc′
(MPa)

fr
(Mpa)

fyt

(Mpa)
ρt

(%)
ρc

(%)
θpl by
Eq. (5)
(rad) 
[1]

θpl by 
others
(rad)
[2]

θpl by 
EC2
(rad)
[3]

[1]
[2]

[3]
[2]

  Pecce and Fabbocino (1999)

AH 93.8 0.98 471 2.60 0.05 0.0271 0.0220 0.0170 1.23 0.77

CH 95.4 1.11 534 2.20 0.04 0.0300 0.0380 0.0170 0.79 0.45

  Ko et al. (2001)

6-65-1 66.6 2.26 415 3.59 0.79 0.0547 0.0472 0.0150 1.16 0.32

6-75-1 66.6 2.33 427 4.27 0.77 0.0399 0.0412 0.0100 0.97 0.24

8-50-1 82.1 2.42 443 3.35 0.80 0.0580 0.0482 0.0160 1.20 0.33

8-65-1 82.1 2.33 427 4.27 0.77 0.0398 0.0450 0.0100 0.88 0.22

8-75-1 82.1 2.15 394 4.97 0.79 0.0338 0.0484 0.0080 0.70 0.17

7-6200-1 70.8 1.91 408 3.16 0.00 0.0403 0.0530 0.0135 0.76 0.25

7-6215-1 70.8 1.91 408 3.16 0.79 0.0587 0.0510 0.0160 1.15 0.31

  Lopes and Bernardo (2003)

A(64.9-2.04) 64.9 0.59 555 2.04 0.20 0.0248 0.0200 0.0210 1.24 1.05

A(63.2-2.86) 63.2 0.62 575 2.86 0.20 0.0161 0.0180 0.0110 0.89 0.61

A(65.1-2.86) 65.1 0.62 575 2.86 0.20 0.0161 0.0150 0.0110 1.07 0.73

B(82.9-2.11) 82.9 0.59 555 2.11 0.20 0.0243 0.0210 0.0180 1.16 0.86

B(83.9-2.16) 83.9 0.59 555 2.16 0.20 0.0237 0.0200 0.0180 1.19 0.90

B(83.6-2.69) 83.6 0.62 575 2.69 0.20 0.0178 0.0210 0.0150 0.85 0.71

B(83.4-2.70) 83.4 0.62 575 2.70 0.20 0.0177 0.0200 0.0150 0.89 0.75

Average 1.01 0.54

Standard deviation 0.18 0.28
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from Eurocode 2 and the measured rotation capacities can be up to 80% for both NSC and

HSC beams. The average ratio (and standard deviation) of the theoretical to measured rotation

capacities is 0.72 (0.47) for NSC beams but reduces to 0.54 (0.28) for HSC beams. This

indicates that the prediction of rotation capacities by Eurocode 2 is more conservative for

HSC beams than NSC beams.

(3) Therefore, Eqs. (5) and (6) are more accurate in predicting the rotation capacities of both NSC

and HSC beams than Eurocode 2 within the range of concrete strength, steel yield strength

and confining pressure covered in this study. 

6. Conclusions

The flexural deformability of NSC and HSC beams expressed in terms of normalised rotation

capacity with NSS and/or HSS has been investigated by a comprehensive parametric study based on

nonlinear moment-curvature analysis taking into account the stress-path dependence of

reinforcement. From the study, it was evident that the most critical factors that affect the

deformability of concrete beams are the degree of reinforcement λ, concrete strength and confining

pressure. In general, for under-reinforced and balanced beam sections (λ ≤ 1.0), the deformability

decreases as λ increases, while for over-reinforced beam sections (λ > 1.0), the deformability

remains relatively constant with λ. On the other hand, the effects of concrete strength on

deformability of concrete beams are dependent on λ and tension steel ratio ρt. At a fixed λ, the

deformability decreases as the concrete strength increases; whereas at a fixed tension steel ratio, the

deformability increases as the concrete strength increases albeit that HSC is more brittle per se.

Lastly, the deformability of concrete beams always increases as the confining pressure increases.

Nonetheless, the effectiveness of adding confinement in deformability improvement, which was

studied in this paper by the differential coefficient , decreases as the degree of

reinforcement or concrete strength increases.

The effects of using HSS on deformability of concrete beams was studied by the factor λ. With

the adoption of HSS as tension steel, the deformability of beam decreases at a fixed tension steel

ratio. Nevertheless, for the same flexural strength requirement, the use of HSS as tension steel will

allow a smaller steel area. Hence, the deformability of concrete beam may or may not be

significantly affected. On the contrary, the adoption of HSS as compression steel would always

increase the deformability of concrete beams.

Two empirical formulas were developed for rapid evaluation of deformability of NSC and HSC

beams without performing the nonlinear moment-curvature analysis. These formulas have been

compared with the measured rotation capacities of NSC and HSC beams obtained experimentally by

other researchers, in which reasonably good agreement was obtained. It has also been shown that

the formulas can predict rotation capacities of NSC and HSC beams more accurately than Eurocode

2, which prediction is too conservative.

Acknowledgements

Support from Seed Funding Programme for Basic Research (Project Code: 200802159007)

provided by The University of Hong Kong is gratefully acknowledged. 

∂θpl ∂fr⁄



Normalised rotation capacity for deformability evaluation of high-performance concrete beams 285

References

Altin, S., Kuran, F., Anil, Ö. and Emin Kara M. (2008), “Rehabilitation of heavily earthquake damaged masonry
building using steel straps”, Struct. Eng. Mech., 30(6), 651-664.

Attard, M.M. and Setunge, S. (1996), “The stress strain relationship of confined and unconfined concrete”, ACI
Mater. J., 93(5), 432-442.

Au, F.T.K., Chan, K.H.E., Kwan, A.K.H. and Du, J.S. (2009), “Flexural ductility of prestressed concrete beams
with unbonded tendons”, Comput. Concrete, 6(6), 451-472.

Bai, Z.Z. and Au, F.T.K. (2009) “Effects of strain hardening of reinforcement on flexural strength and ductility
of reinforced concrete columns”, Struct. Des. Tall Spec., doi:10.1002/tal.554

Bai, Z.Z., Au, F.T.K. and Kwan, A.K.H. (2007), “Complete nonlinear response of reinforced concrete beams
under cyclic loading”, Struct. Des. Tall Spec., 16, 107-130.

Belarbi, A., Prakash, S. and You, Y.M. (2009), “Effect of spiral reinforcement on flexural-shear torsional seismic
behavior of reinforced concrete circular bridge column”, Struct. Eng. Mech., 33(2), 137-158.

Bechtoula, H., Kono, S. and Watanabe, F. (2009), “Seismic performance of high strength reinforced concrete
columns”, Struct. Eng. Mech., 31(6), 697-716.

Bindhu, K.R., Jaya, K.P. and Manicka Selvam, V.K. (2008), “Seismic resistance of exterior beam-column joints
with non-conventional confinement reinforcement detailing”, Struct. Eng. Mech., 30(6), 733-761.

Carrasquillo, R.L., Nilson, A.H. and Slate, F.O. (1981), “Properties of high strength concrete subjected to short-
term loads”, ACI J., Proceedings 78(3), 171-178.

Cho, C.G., Ha, G.J. and Kim, Y.Y. (2008), “Nonlinear model of reinforced concrete frames retrofitted by in-filled
HPFRCC walls”, Struct. Eng. Mech., 30(2), 211-223.

Debernardi, P.G. and Taliano, M. (2002), “On evaluation of rotation capacity of reinforced concrete beams”, ACI
Struct. J., 99(3), 360-368.

Englekirk, R.E. (2008), “A call for change in seismic design procedures”, Struct. Des. Tall Spec.,  17, 1005-
1013.

ECS, European Committee for Standardization (2004), /Eurocode 2:/ Design of concrete structures: Part 1-1:
General rules and rules for buildings, UK, 225pp.

Feng, R. and Young, B. (2009) “Behaviour of Concrete-filled Stainless Steel Tubular X-joints subjected to
Compression”, Thin Wall. Struct., 47(4), 365-374.

Goel, R.K. (2010), “Approximate seismic displacement capacity of piles in marine oil terminals”, Earthq. Struct.,
1(1), 129-146.

Hashemi, S.H., Maghsoudi, A.A. and Rahgozar, R. (2008), “Flexural ductility of reinforced HSC beams
strengthened CFRP sheets”, Struct. Eng. Mech., 30(4), 403-426.

Haskett, M., Oehlers, D.J., Mohamed, Ali, M.S. and Wu, C. (2009), “Rigid body moment-rotation mechanism
for reinforced concrete beam hinges”, Eng. Struct.,  31, 1032-1041.

Hawileh, R.A., Malhas, F.A. and ,Rahman A. (2009), “Comparison between ACI 318-05 and Eurocode 2 (EC2-
94) in flexural concrete design”, Struct. Eng. Mech.,  32(6), 705-724.

Ho, J.C.M., Au, F.T.K. and Kwan, A.K.H. (2005), “Effects of strain hardening of steel reinforcement on flexural
strength and ductility of concrete beams”, Struct. Eng. Mech., 19(2), 185-198.

Ho, J.C.M., Kwan, A.K.H. and Pam, H.J. (2003), “Theoretical analysis of post-peak flexural behaviour of
normal- and high-strength concrete beams”, Struct. Des. Tall Spec., 12, 109-125.

Ho, J.C.M., Kwan, A.K.H. and Pam, H.J. (2004), “Minimum flexural ductility design of high-strength concrete
beams”, Mag. Concrete Res.,  56(1), 13-22.

Ho, J.C.M., Lam, J.Y.K. and Kwan, A.K.H. (2010a), “Effectiveness of adding confinement for ductility
improvement of high-strength concrete columns”, Eng. Struct., 32, 714-725.

Ho, J.C.M., Lam, J.Y.K. and Kwan, A.K.H. (2010b), “Flexural ductility and deformability of concrete beams
incorporating high-performance materials”, Struct. Des. Tall Spec., doi:/10.1002/tal.579

Ho, J.C.M. and Pam, H.J. (2003), “Inelastic design of low-axially loaded high-strength reinforced concrete
columns”, Eng. Struct., 25(8), 1083-1096.

Ho, J.C.M. and Zhou, K.J.H. (2010), “Concurrent flexural strength and deformability design of high-performance
concrete beams”, Struct. Eng. Mech., (submitted).



286  K.J.H. Zhou, J.C.M. Ho and R.K.L. Su

Ko, M.Y., Kim, S.W. and Kim, J.K. (2001), “Experimental study on the plastic rotation capacity of reinforced
high strength concrete beams”, Mater. Struct., 34, 302-311.

Kwak, H.G. and Kim, S.P. (2010), “Simplified monotonic moment-curvature relation considering fixed-end
rotation and axial force”, Eng. Struct., 32, 69-79.

Kwan, A.K.H., Au, F.T.K. and Chau, S.L. (2004), “Effects of confinement on flexural strength and ductility
design of HS concrete beams”, Struct. Eng., 84(23-24), 38-44.

Lam, S.S.E., Wu, B., Liu, Z.Q. and Wong, Y.L. (2008), “Experimental study on seismic performance of coupling
beams not designed for ductility”, Struct. Eng.Mech., 28(3), 317-333.

Lam, J.Y.K., Ho, J.C.M. and Kwan, A.K.H. (2009), “Flexural ductility of high-strength concrete columns with
minimal confinement”, Mater. Struct., 42(7), 909-921.

Lee, H.K., Ha, S.K. and Afzal, M. (2008), “Finite element analysis of shear-deficient RC beams strengthened
with CFRP strips/sheets”, Struct. Eng. Mech., 30(2), 247-261.

Lopes, S.M.R. and Bernardo, L.F.A. (2003), “Plastic rotation capacity of high-strength concrete beams”, Mater.
Struct., 36, 22-31.

Lu, Y. (2009), “Modelling of concrete structures subjected to shock and blast loading: an overview and some
recent studies”, Struct. Eng. Mech., 32(2), 235-249.

Mahini, S.S. and Ronagh, H.R. (2009), “Numerical modeling of FRP strengthened RC beam-column joints”,
Struct. Eng. Mech., 32(5), 649-665.

Mander, J.B., Priestley, M.J.N. and Park, R. (1988), “Theoretical stress-strain model for confined concrete”, J.
Struct. Eng. - ASCE, 114(8), 1804-1825.

Mendis, P. (2001), “Plastic hinge lengths of normal and high-strength concrete in flexure”, Adv. Struct. Eng.,
4(4), 189-195.

Nam, J.W., Kim, H.J., Yi, N.H., Kim, I.S., Kim, J.J.H. and Choi, H.J. (2009), “Blast analysis of concrete arch
structures for FRP retrofitting design”, Comput. Concrete, 6(4), 305-318.

Nawy, E.G., Danesi, R.F. and Grosko, J.J. (1968), “Rectangular spiral binders effect on plastic hinge rotation
capacity in reinforced concrete beams”, ACI J., 65(12), 1001-1010.

Pam, H.J. and Ho, J.C.M. (2001), “Flexural strength enhancement of confined reinforced concrete columns”,
Proc. Inst. Civil Eng. Struct. Build., 146(4), 363-370.

Pam, H.J. and Ho, J.C.M. (2009), “Length of critical region for confinement steel in limited ductility high-
strength reinforced concrete columns”, Eng. Struct., 31, 2896-2908.

Pam, H.J. and Ho, J.C.M. (2010), “Effects of steel lap splice locations on strength and ductility of reinforced
concrete columns”, Adv. Struct. Eng., 13(1), 1-16.

Pam, H.J., Kwan, A.K.H. and Ho, J.C.M. (2001), “Post-peak behavior and flexural ductility of doubly reinforced
normal- and high-strength concrete beams”, Struct. Eng. Mech., 12(5), 459-474.

Park, J.W. and Kim, S.E. (2008), “Nonlinear inelastic analysis of steel-concrete composite beam-columns using
stability functions”, Struct. Eng. Mech., 30(6), 763-785.

Park, H.S., Seo, J.H. and Kwon, Y.H. (2008), “Development of drift design model for high-rise buildings
subjected to lateral and vertical loads”, Struct. Des. Tall Spec., 17, 273-293.

Pecce, M. and Fabbrocino, G. (1999), “Plastic rotation capacity of beams in normal and high-performance
concrete”, ACI Struct. J., 96(2), 290-296.

Ramadoss, P. and Nagamani, K. (2009), “Behavior of high-strength fiber reinforced concrete plates under in-
plane and transverse loads”, Struct. Eng. Mech.,  31(4), 371-382.

Restrepo, J.I., Seible, F., Stephan, B. and Schoettler, M.J. (2006), “Seismic testing of bridge columns
incorporating high-performance materials”, ACI Struct. J., 103(4), 496-504.

Sadjadi, R. and Kianoush, M.R. (2010), “Application of fiber element in the assessment of the cyclic loading
behavior of RC columns”, Struct. Eng. Mech., 34(3), 301-317.

Su, R.K.L., Lam, W.Y. and Pam, H.J. (2009) “Experimental study of plate-reinforced composite deep coupling
beams”, Struct. Des. Tall Spec., 18, 235-257.

Teran-Gilmore, A., Sanzhez-Badillo, A. and Espinosa-Johnson, M. (2010), “Performance-based seismic design of
reinforced concrete ductile buildings subjected to large energy demands”, Earthq. Struct., 1(1), 129-146.

Watson, S. and Park, R. (1994), “Simulated seismic load tests on reinforced concrete columns”, J. Struct. Eng. -
ASCE, 120(6), 1825-1849.



Normalised rotation capacity for deformability evaluation of high-performance concrete beams 287

Weerheijm, J., Mediavilla, J. and van Doormaal, J.C.A.M. (2009), “Explosive loading of multi storey RC
buildings: Dynamic response and progressive collapse”, Struct. Eng. Mech., 32(2), 193-212.

Wu, Y.F. (2008), “Ductility demand of compression yielding fiber-reinforced polymer-reinforced concrete
beams”, ACI Struct. J., 105(1), 104-110.

Wu, Y.F., Oehlers, D.J. and Griffith, M.C. (2004), “Rational definition of the flexural deformation capacity of
RC column sections”, Eng. Struct., 26, 641-650.

Zhu, Y. and Su, R.K.L. (2010), “Seismic behavior of strengthened reinforced concrete coupling beams by bolted
steel plates, Part 2: Evaluation of theoretical strength”, Struct. Eng. Mech., 34(5), 563-580.

IT

Notations

Asb Balanced steel area 
Asc Area of compression reinforcement
Ast Area of tension reinforcement
b Breadth of beam section
d Effective depth of beam section
d' Distance from extreme compressive fibre to centroid of compression steel
dn Depth to neutral axis
Es Elastic modulus of steel reinforcement
fc' Concrete compressive cylinder strength
fco Peak stress on stress-strain curve of unconfined concrete
fy Yield strength of steel reinforcement
fyc Yield strength of compression reinforcement
fyt Yield strength of tension reinforcement
fr Confining pressure 
h Total depth of the beam section
lp Plastic hinge length
Mp Peak moment

Rate of change of normalised rotation capacity with respect to confining pressure
εps Residual plastic strain in steel reinforcement
εs Strain in steel reinforcement
εy Yield strain of steel reinforcement
η Ratio of average concrete stress to cylinder strength
θpl Normalised rotation capacity of beam
λ Degree of reinforcement (Eq. 4)
φu Ultimate curvature 
ρb Balanced steel ratio (= Asb/bd)
ρbo Balanced steel ratio for beam section with no compression reinforcement
ρc Compression reinforcement ratio (= Asc/bd)
ρt Tension reinforcement ratio (= Ast/bd)
σs Stress in steel reinforcement

∂θpl ∂fr⁄
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