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Abstract. It has been known that one-dimensional rod theory is very effective as a simplified analytical
approach to large scale or complicated structures such as high-rise buildings, in preliminary design stages. It
replaces an original structure by a one-dimensional rod which has an equivalent stiffness in terms of global
properties. If the structure is composed of distinct constituents of different stiffness such as coupled walls
with opening, structural behavior is significantly governed by the local variation of stiffness. This paper
proposes an extended version of the rod theory which accounts for the two-dimensional local variation of
structural stiffness; viz, variation in the transverse direction as well as longitudinal stiffness distribution. The
governing equation for the two-dimensional rod theory is formulated from Hamilton’s principle by making
use of a displacement function which satisfies continuity conditions across the boundary between the distinct
structural components in the transverse direction. Validity of the proposed theory is confirmed by comparison
with numerical results of computational tools in the cases of static, free vibration and forced vibration
problems for various structures.

keywords: simplified analytical method; extended rod theory; two-dimensional stiffness of structures;
preliminary design for buildings; dynamic analysis; shear wall with opening.

1. Introduction

In order to carry out approximate analysis for a large scale complicated structure such as a high-

rise building in the preliminary design stages, the use of equivalent rod theory is very effective.

Rutenberg (1975), Smith and Coull(1991), Tarjan and Kollar(2004) presented approximate

calculations based on the continuum method, in which the building structure stiffened by an arbitrary

combination of lateral load-resisting subsystems, such as shear walls, frames, coupled shear walls,

and cores, are replaced by a continuum beam. Georgoussis(2006) proposed to asses frequencies of

common structural bents including the effect of axial deformation in the column members for

symmetrical buildings by means of a simple shear-flexure model based on the continuum approach.

Tarian and Kollar(2004) presented the stiffnesses of the replacement sandwitch beam of the stiffening

system of building structures.

Takabatake et al.(1993a,b, 1995, 1996, 2001, 2005, 2006) developed a simple but accurate rod

theory which takes account of longitudinal, bending, and transverse shear deformation, as well as
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shear-lag. The effectiveness of this theory was demonstrated by comparison with the numerical

results obtained from a frame analysis on the basis of FEM code NASTRAN for various high-rise

buildings, tube structures and mega structures. Also, Takabatake and Matsuoka(1983,1987)

considered the local deformation and the distortion of the cross section in order to extend the

coverage of the rod theory.

The equivalent rod theory replaces the original structure by a model of one-dimensional rod with

an equivalent stiffness distribution, appropriate with regard to the global behavior. Difficulty arises

in this modeling due to the restricted number of freedom of the equivalent rod; local properties of

each structural member cannot always be properly represented, which leads to significant discrepancy

in some cases. The one-dimensional idealization is able to deal only with the distribution of stiffness and

mass in the longitudinal direction, possibly with an account of the averaged effects of transverse

stiffness variation. In common practice, however, structures are composed of a variety of members or

structural parts, often including distinct constituents such as a frame-wall or coupled wall with

opening. Overall behavior of such a structure is significantly affected by the local distribution of

stiffness. In addition, the individual behavior of each structural member plays an important role from

the standpoint of structural design. It is the main objective of this paper to propose two-dimensional

rod approximation as an extension of the one-dimensional rod theory to take into account of the

effect of transverse variations in individual member stiffness.

Fig. 1 illustrates the difference between the one- and two-dimensional rod theories in evaluating

the local stiffness distribution of structural components. In the two dimensional approximation,

structural components with different stiffness and mass distribution are continuously connected. On

the basis of linear elasticity, governing equations are derived from Hamilton’s principle. Use is

made of a displacement function which satisfies continuity conditions across the boundary surfaces

between the structural components. Examples are considered for elastic building structures with

numerical results obtained through finite difference scheme. Validity of the proposed approximation

is confirmed with regard to static, free vibration and forced vibration problems by comparison with

the results of shell-element based FEM code NASTRAN. Comparison is also made for the static

solution by Smith and Coull (1991), in particular, for a uniform coupled wall with opening, leading

to close agreement.

Fig. 1 The difference between one- and two-dimensional rod theories
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2. Governing equation

For the sake of simplicity, we consider the two-dimensional structure of which the stiffness varies in

the transverse and longitudinal directions. A Cartesian coordinate system x, y, z as shown in Fig. 2 is

employed, in which the axis x denotes the longitudinal axis, and the y and z the transverse axes. The

coordinate axis x can be selected arbitrarily. For simplicity, the x axis is taken position in the left

edge. Let us consider the structure composed of several structural parts with different stiffness. Each

structural part is assumed to be parallel to the longitudinal axis x and to be homogeneous continuum

in the transverse and longitudinal directions, respectively, in the cross section at a prescribed value of

the longitudinal axis x. Also, each structural part connects continuously with the adjacent structural

parts and satisfies the continuous condition for displacement. The number of the structural parts

indicates ① , ② , … in turn from the left hand side in the transverse direction. In order to assist the

transverse axis y, each structural part has each local transverse axis yi (i = 1, 2, 3, …,n) which each

original point is the left side of each structural part, as shown in Fig. 2(b).

The displacement components , ,  in the x-, y- and z-

directions on the i-th structural part are expressed as

(1)

(2)

(3)

in which u(x,t) and v(x,t) are the longitudinal and transverse displacement components in the x- and

y-directions on the axial point, respectively; φi(x,t) is the rotational angle along the z-axis for the i-th

structural part. The positive of these displacements takes for the positive value of the coordinate axis

and the positive of the rotational angle φi(x,t) takes for the clock wise along the positive z-axis, as

shown in Fig. 3. In Eq. (1) the following summation rule to simplify the expression is used for the i-th

structural part

i( )

U
-----

x y z t, , ,( )
i( )

V
-----

x y z t, , ,( )
i( )

W
-----

x y z t, , ,( )

i( )

U
-----

x y z t, , ,( ) u x t,( ) ykφk x t,( )
k 1=

i

∑–=

i( )

V
-----

x y z t, , ,( ) v x t,( )=

i( )

W
-----

x y z t, , ,( ) 0=

Fig. 2 Cartesian coordinate (a) global coordinate system, (b) local coordinate system
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(4)

in which  indicates the width of the k-th structural part.

Using the linear strain-displacement relation, the following expressions for the i-th structural part

are obtained as

(5)

(6)

(7)

in which primes indicate the differentiation with respect to x;  and  are longitudinal and

shear strains on the i-th structural part, respectively.

Employing the well-known engineering stress-strain relationship, the stresses on the i-th structural

part are written as

(8)

(9)

in which  and  are the Young modulus and shear modulus on the i-th structural part; κ is the

shear coefficient.
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Fig. 3 Displacements and rotational angles
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Assuming the linear stress-strain relation, the strain energy, U, is given by

(10)

in which the summation rule for subscript is used as follows: for example for subscript k

(11)

The sectional stiffnesses between structural parts may vary discontinuously with respect to x and y,

respectively. The sectional stiffnesses for each structural part being homogeneous continuum with

equivalent uniform thickness are defined as

(12)

in which ,  and  are the cross sectional area, the first and second inertia moments of the i-

th structural part, respectively. In order to show concisely the sum of these sectional stiffness, we

use the following notations in Eq. (10)

(13)

(14)

(15)

(16)

(17)

in which the subscript i=max(k,j) of  in Eq. (15) indicates that the integral i takes the

maximum of k and j.

 The variation of the potential energy for current problem becomes

(18)

U
1

2
--- EA u'( )2 2u' ES( )kφk

′ EI( )kjφk
′φ j

′ κGA( )kφk

2
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in which Px and Py are components of external loads in the x- and y-directions per unit length,

respectively; and (M)k is the component of moment around the z-axis per unit length; Cu and Cv are

damping coefficients of two-dimensional rod. Also,  and  are external surface forces in the x-

and y-directions at the top(x=l), respectively, and  is surface moment at the same point on the k-

th structural part. The positive of these external forces is taken as shown in Fig. 4.

The current kinematic energy, T, defined as

(19)

is written as

P̃x P̃y

m̃k

T
1

2
--- ρ

  •

U
------⎝ ⎠

⎛ ⎞
2   •

V
------⎝ ⎠

⎛ ⎞
2

+ dxdydz∫∫∫=

Fig. 4 External forces and external surface forces
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(20)

in which the dot indicates differentiation with respect to time and ρ is mass density and m is mass

per unit length as defined as

(21)

Also, (ρS)k and (ρI)kj are defined as

(22)

(23)

The governing equation of the two-dimensional rod theory is proposed by means of the following

Hamilton’s principle

(24)

in which δ is the variational operator taken during the indicated time interval. Substituting Eqs.

(10), (18) and (20) into Eq. (24), the equations of motion can be obtained

(25)

(26)

(27)

together with the associated boundary conditions

(28)

(29)

(30)

in which  is Kronecker delta. The theory proposed here is also applicable to a complicated

problem included the setback and is considerable to the variation of both the longitudinal and

transverse stiffnesses, as shown in Fig. 5. When the structure is composed of three structural parts in

the transverse stiffness, the three rotational angles, φ1, φ2, φ3, corresponding to three structural parts,

are prepared at least. The boundary conditions are applied to Eq. (30)1 for φ1 at the setback point I

T
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at x=x1, Eq. (30)1 for φ3 at the setback point III at x=x3, and Eq. (28)1 , (29)1 and (30)1 for u, v, and

φ2 at the top at x=x2, respectively.

If the structure has uniform stiffness in the transverse direction but variable stiffness in the

longitudinal direction and has not discontinuous variation such as setback, the behavior of the

structure can be treated with one structural part only. This implies that the distribution of the stress

and strain in the cross section is linear in the transverse direction, as used in the well-known beam

theory. The current governing equation with one structural part reduces to the Timoshenko beam

theory. However, if the uniform beam has a discontinuous variation such as setback, the distribution

of stress around the discontinuous stiffness is not linear and very complex. For such a case we can

treat by preparing many structural parts to take account of the higher order deformation.

3. Free vibration

We consider to apply the free vibration problem to the two-dimensional rod theory. The method of

separation of variables is employed assuming that

(31)

(32)

(33)

in which , ,  are functions of x. Appending Eqs. (31)-(33) to the equation for free

vibrations obtained from Eqs. (25)-(27), we have

(34)

(35)

u x t,( ) u x( )e
iω t

=

v x t,( ) v x( )e
iω t

=

φk x t,( ) φk x( )e
iω t

=

u x( ) v x( ) φk x( )

EA( )′– u′  E– Au″ ES( )′j φ ′j ES( ) jφ″j ω2
mu ρS( ) jφ j–[ ]–+ 0=

κGA( )′v′ κGA( )v″ κGA( )′j φ j– κGA( )jφ j′–+[ ] ω2
mv–– 0=

Fig. 5 Illustration of boundary point
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(36)

The natural frequencies are obtained from eigen value problem of Eqs. (34) to (36) together with

the associated boundary conditions.

4. Forced vibration

If the natural frequencies and eigen values corresponding to a few natural modes for the

longitudinal and transverse free vibrations are obtained, the forced vibration under elastic behaviors

can be solved simply by means of the modal analysis. As for another method we can use the well-

known step by the step integration method based on constant acceleration method (for example

Buchholdt(1997)). This method is also applicable to inelastic problems. The increments of

displacements and external loads during the time increment ∆t from the time t are indicated by

∆u(x,t), ∆v(x,t), ∆φj(x,t), ∆Px, ∆Py, ∆Mk, , ,  respectively. Thus, the incremental

equations of motion using the constant acceleration method becofme

(37)

(38)

(39)

Solving the above equations for ∆u(x,t), ∆v(x,t), and ∆φj(x,t) under the subjected boundary

conditions, the incremental accelerations and velocities during the incremental time ∆t are given by

(40)

(41)
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⎪ ⎪
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⎪ ⎪
⎧ ⎫
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⎪ ⎪
⎧ ⎫
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Thus, we can calculate the time histories using the two-dimensional rod theory proposed by means

of the step by step integrations.

5. Numerical calculation method

The two-dimensional rod theory replaces an original structure composed of various structural

stiffnesses in the transverse direction with many continuous structural parts with uniform transverse

stiffness. In this paper the numerical computation is considered to the shape of the structures

without setback, but the stiffness is arbitrarily variable to the longitudinal and transverse directions.

We use the finite difference method in the numerical computation. Since in the proposed theory the

x-axis at an arbitrary point on the transverse cross section of the rod can be taken, the reduced

equations of motion given by Eqs. (25)-(27) are in a coupled form.

Now, the boundary conditions are assumed to be clamped at the base and free at the top. Hence,

from Eqs. (28)-(30)

u = 0 (42)

v = 0 (43)

φk = 0 (44)

at the base (x=0) and

(45)

(46)

(47)

at the top (x = l). 

6. Numerical results and discussions

The exactness of the two-dimensional rod theory proposed here is proven through a comparison

of numerical results obtained from the proposed theory and FEM code NASTRAN for many

numerical models. The calculation in FEM is obtained from applying usual shell elements to the

original structures being the numerical models used herein. The mesh size of the shell elements is

determined after confirming the convergence of numerical results. First, numerical results for a rod

composed of structural parts which are variable in the longitudinal direction only agree with the ones

obtained from the FEM code NASTRAN for static, free vibration, and forced vibration problems.

Next, we consider two dimensional rod composed of structural parts with different stiffness in

both longitudinal and transverse directions, as shown in Fig. 6. This model is named as MODEL-0.

Figs. 7(a) and 7(b) show the distribution of the lateral displacement and the bending moment

subjected to static uniform lateral load 10 N/m, respectively. Figs. 8(a) and 8(b) present the natural

modes and participation functions for transverse free vibrations, respectively. For forced vibration

EAu′ ES( )jφ ′j P̃x=–

κGA( )v′ κGA( ) jφ j P̃y=–

ES( )– ku′ EI( )jkφ ′j m̃( )k for k 1 … n, ,=( )=+
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Fig. 6 MODEL-0 (a) size, (b) stiffness

Fig. 7 Static numerical results of MODEL-0 (a) lateral displacement, (b) bending moment

Fig. 8 Natural mode of MODEL-0 (a) lateral vibration, (b) participation function
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subjected to earthquake waves at the base, the good agreement between analytical calculations and

FEM code NASTRAN in the shell element is confirmed for the displacements, bending moments,

and shear forces.

Next we consider the coupled shear wall structures with variable thickness to demonstrate the

Fig. 9 MODEL-1 and MODEL-2

Fig. 10 MODEL-3A to 3C
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effectiveness and distinction of the proposed two-dimensional rod theory. Smith and Coull(1991)

presented the theory and design curves for practical method in the static problem of the coupled

shear walls with uniform properties over the height. The analytical method can, by the judicial use

of average properties, serve as a useful guide to the forces in nonuniform structures. Also

(1988) has presented the analytical static method by simulating a wall with openings as systems

of wall columns coupled by lintels having the function of members which substitute the cross-bars. The

above-mentioned past methods are restricted in the static problem of uniform wall with openings. Five

types of numerical models MODEL-1, MODEL-2, and MODEL-3A to -3C of reinforced shear walls

are prepared, as shown in Figs. 9 and 10. Table 1 indicates numerical data for these models. MODEL-

1 is an example of coupled shear wall structure used by Smith and Coull(1991). Model-2 is

determined with the references of (1988) and Scarlet (1996). It has uniform thickness 0.3 m

and a 20-story structure subjected to a uniformly distributed static load of intensity 16.5 kN/m. In the

Pu° bal

Pu° bal

Table 1  MODEL 1 , MODEL 2 and MODEL 3A-3C

MODEL 1 MODEL 2 MODEL 3A-3C

Young Modulus E 3.6 × 1010 N/m2 2.1 × 1010 N/m2 3.6 × 1010 N/m2

Shear Modulus G 1.565 × 1010 N/m2 9.14 × 109 N/m2 1.565 × 1010 N/m2

Mass Density ρ 2.4 × 103 kg/m3 2.4 × 103 kg/m3 2.4 × 103 kg/m3

Poisson Ration v 0.15 0.15 0.15

Damping Constant 0.05 0.05 0.05

Total Storeys 20 12 7

Total Height 56.0 m 36.0 m 28 m

Left Side Wall
Thickness 0.3 m 0.5 m 0.35 m, 0.3 m, 0.25 m

Width 5.0 m 7.0 m 7.0 m

Right Side Wall
Thickness 0.3 m 0.5 m 0.35 m, 0.3 m, 0.25 m

Width 7.0 m 6.0 m 6.0 m

Lintel

Width 0.3 m 0.5 m 0.35 m, 0.3 m, 0.25 m

Height 0.4 m 0.45 m 1.5 m, 1.0 m, 0.8 m

Length 2.0 m 1.8 m 4.0 m

Uniform Lateral Load 16.5 kN/m 10.0 kN/m 16.5 kN/m

Fig. 11 Equivalent continuum with equivalent stiffness and mass
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present two-dimensional rod theory the structural part composed of lintels is replaced with the

continuous structural part having equivalent stiffness and mass, as illustrated in Fig. 11. The equivalent

stiffness and mass of the structural part corresponding to a lintel are reflected on the equivalent

thickness te and equivalent mass density ρe, respectively, given by

(48)

(49)

in which l is span-length of a lintel, h is a half height between the upper and lower lintels adjacent

to current lintel, namely the story height. The notations v , Ib, t, , and ρ are Poisson’s ratio,

moment of inertia, width, depth, and mass density of a lintel, respectively. Eq. (48) is proposed by

Smith and Coull (1991) for the equivalent thickness. As for separate numerical approach to examine

the numerical results, we prepare the numerical computation applied shell element on FEM code

NASTRAN to the original coupled shear wall structure with opening, in which all shear walls and

lintels are subdivided by a shell element. Fig. 12(a) shows the distribution of static displacements. It

te

24 1 v+( )Ib

hl
2

---------------------------=

ρe ρ
t

te

---
h

h
---=

h

Fig. 12 Numerical result of MODEL-0 (a) static displacement, (b) natural mode of lateral free vibration 

Table 2 Natural frequencies for lateral vibration

MODEL1 MODEL2

PRESENT
THEORY

①

FEM

②

RATIO

① /②

PRESENT
THEORY

①

FEM

②

RATIO

① /②

1st mode 013.43 013.09 1.026 020.75 019.97 1.039

2nd mode 056.48 055.55 1.017 084.27 082.15 1.026

3rd mode 130.55 129.00 1.012 196.13 191.00 1.027

4th mode 227.16 224.90 1.010 320.93 313.64 1.023
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indicates the good agreement between Smith and Coull(1991) and FEM computational results. It

shows that the numerical result obtained from the present theory proposed is slightly stiffen for

deflection. The natural frequency and eigenfunction for free vibration and participation functions are

shown in Table 2 and Figs. 12(b) and 13(a), respectively. The maximum dynamic response of the

same structure subjected to earthquake wave EL Centro 1940-NS at the base shows a good

agreement between the present theory and FEM, as shown in Fig. 13(b).

MODEL-2 is also the uniform thickness 0.5 m and the 12-story with the total height 36 m. The

numerical results indicate the same behavior as MODEL-1 and demonstrates the good agreement

between the present theory and NASTRAN.

The above-mentioned numerical results are based on numerical models for shear walls with the

uniform thickness and relative large openings. Then in order to examine the exactness of the theory

proposed here to common shear walls which the wall thickness and the size of openings vary in the

height, MODEL-3A to MODEL-3C, as shown in Fig. 10, are prepared. These models vary both the

wall thickness and openings with the three stages in the height direction. The size of openings of

these models are smaller than MODEL-1 and MODEL-2. When the openings are large, the stiffness

of lintel is small and the effect of rotation produced at the both ends of the lintel due to the rotation

of the shear walls is negligible in the calculation of equivalent stiffness of structural part

corresponding to lintel as given by Eq. (48). On the other side, when the size of openings such as

the MODEL-3A to 3C is relatively small, the stiffness of a lintel has an influence on constrained

condition at the both ends because both ends of the lintel is affected remarkably on the rotation of

both shear walls which the lintels connect at the both ends. Numerical results used equivalent

thickness obtained from Eq.(48) for structural parts composed of lintels indicate to be harder than

one from FEM code NASTRAN in the deformation. A simplified design equation for the equivalent

thickness included the effect of rotation at the both ends of the lintel due to the rotation of both

shear walls is necessary instead of Eq.(48) to improve the accuracy of the present two-dimensional

rod theory. As for the practical method to estimate equivalent thickness this paper proposes to

replace the real span length l of a lintel with the more longer span length  in Eq.(48) proposed by

Smith and Coull(1991). The relationships between the replaced span length  and real span length l

is related as

l 

l 

Fig. 13 Numerical result for lateral vibration of MODEL-1 (a) participation function, (b) maximum dynamic
displacement
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Fig. 14 Relationships between k and h/h0

Fig. 15 Static lateral displacements (a) MODEL 3A, (b) MODEL 3B and (c) MODEL 3C

Fig. 16 Natural mode (a) MODEL 3A, (b) MODEL 3B and (c) MODEL 3C
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 = kl (57)

in which k is correction coefficient and depends on the height ratio of openings h/h0, in which h0 is

the height of the opening. Fig. 14 shows the relationships between k and h/h0. These relationships

are obtained by comparing the numerical results for all models in this paper with the results by

FEM. Figs. 15, 16 and 17 show static lateral displacements, eigenvectors, participation functions for

Model 3A to 3C, respectively. Fig. 18 indicates the distribution of maximum bending moment

l 

Fig. 17 Participation functions (a) MODEL 3A, (b) MODEL 3B and (c) MODEL 3C

Fig. 18 Maximum bending moment (a) MODEL 3A, (b) MODEL 3B and (c) MODEL 3C

Table 3 Natural frequencies for lateral vibration

MODEL 3A
PRESENT THEORY

①

PRESENT THEORY
K = 1.414

②

FEM
③

RATIO

① /③ ① /③

1st mode 070.841 063.987 064.307 1.102 0.995

2nd mode 224.428 207.437 207.819 1.080 0.998

3rd mode 466.356 423.655 423.993 1.100 0.999

4th mode 703.520 655.756 655.118 1.074 1.001
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subjected to earthquake wave at the base. The use of the correction coefficient k on the computation

of the equivalent thickness te is shown to be effective to improve the accuracy of the numerical

results except for natural frequencies because the effect of the stiffness of structure part composed of

lintels is very small on the transverse and longitudinal free vibrations. Table 3 indicates that the

effect of lintel’s stiffness is very small in the natural frequencies of the transverse free vibration.

7. Conclusions

Two-dimensional rod theory has been presented for simply analyzing a large or complicated

structure such as a high-rise building or shear wall with opening. The principle of this theory is that

the original structure comprising various different structural components is replaced by an assembly

of continuous strata which has stiffness equivalent to the original structure in terms of overall

behavior. The two-dimensional rod theory is an extended version of a previously proposed one-

dimensional rod theory for better approximation of the structural behavior. The effectiveness of this

theory has been demonstrated from numerical results for exemplified building structures of distinct

components. This theory may be applicable to soil-structure interaction problems involving the effect

of multi-layered or non-uniform grounds.
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