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Abstract.  The process of material failure i.e. cracks development and their propagation in an experiment 

related to the bending collapse of cross laminated timber plate with ribs is described. Numerical simulation 

of such an experiment by the nonlinear finite element method is presented. The numerical model is based on 

Hashin failure criteria, initially developed for unidirectional composites, and on material softening concept 

applied by the smeared crack approach. It is shown that such a numerical model can be used for an 

estimation of the limit load and the limit displacement of a cross laminated timber ribbed plate. 
 

Keywords:  cross-laminated timber (CLT); ribbed timber plate; limit load analysis; Hashin failure 
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1. Introduction 
 

The cross laminated timber (CLT) is a building material with a lot of potential in the timber 

construction industry, e.g., (Brandner et al. 2016). From the material point of view, it is highly 

anisotropic, shear compliant composite laminate. In multi-storey timber buildings, the CLT is used 

for both horizontal and vertical structural components. When stiffened with timber ribs, it can be 

applied for floors with larger spans. The design of CLT structural components is based on design 

recommendations, technical approvals and active research, since the timber design codes do not 

consider yet the CLT. Despite of the considerable growth of the CLT in the world market, 

designers are still far from exploiting its maximum potential (Stanić et al. 2016). An important 

issue in this respect is an accumulation of knowledge related to understanding failure mechanisms 

of CLT structural components under different loading conditions. 

The purpose of this article is to present a numerical model for failure analysis of ribbed CLT 

plate. The results obtained by such a model can help to understand failure mechanism of ribbed 

CLT plates in bending. Geometrically and material non-linearity is taken into account. The applied 

timber material model takes into consideration: (a) orthotropic elasticity (Reddy, 2004) (b) Hashin 

criteria for the initiation of material damage in tension, i.e., for the outset of crack in timber due to 

loading (Hashin 1980, 1981) and (c) smeared crack approach for applying material softening due 

to crack opening (Abaqus 2016, Ibrahimbegovic 2009). 
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Fig. 1 Timber coordinate system 

 

 
Fig. 2 Crack propagation systems in timber 

 

 
Fig. 3 Basic fracture modes (I, II and III) 

 

 

For numerical simulations, a commercial finite element code for structural analysis was used 

(Abaqus 2016). The numerical results are compared to experimentally observed failure 

mechanisms of ribbed CLT plates, which are also briefly presented. 

 

 

2. Cracks in timber 
 

Timber is usually treated as an orthotropic material (Fig. 1): L denotes the direction of the 

fibers, T is facing tangentially to the fibers, and R is radial to the fibers. These labels are also used 

in the crack propagation system labelling, e.g., (Qiu et al. 2014). The first letter indicates the 

normal direction to the crack surface, and the second one indicates the direction of the crack 

propagation. In timber, six crack propagation systems, Fig. 2, are possible. In the case of bending  
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Failure analysis of ribbed cross-laminated timber plates 

  
Fig. 4 Cross section of considered ribbed CLT plates (in mm). Ribs are glued to the third layer of CLT (left). 

Ribs and one layer of boards are glued to the second layer of CLT (right) 
 

 

of the timber beam, the crack almost always extends in the direction of the fibers (TL and/or RL), 

where RL is often the critical one (Qiu et al. 2014); such a crack occurs without warning and 

spreads instantly. There are three basic fracture modes, Fig. 3: an RL crack, for example, can 

extend in modes I, II, III or in a mixed mode. A crack propagation system and a mode relate to 

specific fracture energy, which is the energy required for formation of a unit area of the crack. The 

specific fracture energy is a material constant that can be measured by specific tests, e.g., 

(Fruhmann et al. 2002). 

 

 

3. Considered plates 
 

Cross sections of considered ribbed CLT plates with length of 4 m are shown in Fig. 4. Such 

plates are stacked in a building one next to other and are connected to form a floor, e.g., (Brandner 

et al. 2016), which carries the load mainly in the direction of the ribs. 

The upper part of considered plates is spruce CLT, classified as C24 according to (Ö NORM B 

1995, 2015). The lower part consists of solid spruce ribs classified as C24; each rib may have 

finger joint. Two variants were used for gluing the ribs. (a) The ribs were glued to the bottom of 

the 3-layered CLT (Fig. 4, left); these samples were labeled 6.1.a, 6.1.b and 6.1.c. (b) The ribs 

were glued to the bottom of the 2-layered CLT together with one layer of boards (Fig. 4, right); 

these samples were labeled 3.1.a, 3.1.b and 3.1.c. The adhesive used in the CLT was polyurethane. 

Glue used to fix the ribs and one layer of boards in variant (b) was Purbond polyurethane, HB 110. 

The timber wave velocity and density were measured for the ribs and boards in order to determine 

the so-called dynamic elastic modulus in the direction of the fibers 𝐸𝑑, which is assumed to be 5% 

higher than the so-called static elastic modulus 𝐸𝑠 (Machek et al. 2001). The average 𝐸𝑠−𝑎𝑣 for all 

ribs and boards used in the six aforementioned samples was 14.2 MPa (the total number of 

measurements was 28). Ö NORM EN 338 (2009) gives characteristic value of modulus of elasticity 

(at 5% fractile) and its average value for C24 spruce as 𝐸0,05 = 7.4  MPa and 𝐸𝑚𝑒𝑎𝑛 = 11 MPa, 

respectively. Thus, the coefficient of variation equals 𝐶𝑉(𝐸) = 0,20, and 𝐸𝑠−𝑎𝑣 corresponds to the 

93% fractile for C24. Timber of the ribs and the boards was therefore of extremely high quality for 

C24 (according to 𝐸𝑠−𝑎𝑣 it could be C40). The average static elastic modulus for the ribs of 6.1.a 

and 6.1.b samples were 16.8 MPa (this could be even C50) and 11.8 MPa (this could be C27), 

respectively. 
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Fig. 5 Plate during the test (left); location of supports and loads (right); in cm 
 

 
Fig. 6 Force-displacement curve for sample 6.1.a 

 

 

4. Conclusion on experimental results 
 

A bending test according to EN 408 (2012) was carried out on all six samples. The test 

configuration is shown in Fig. 5; velocity of the imposed piston displacement was 6 mm/min. The 

results below are for the sample 6.1.a (Zisi et al. 2016).  

The relationship between the force 𝐹 and the vertical displacement at the mid-span 𝑤 (Fig. 5) is 

shown in Fig. 6. At F=101.6 kN a RL-TL crack of mode II (Fig. 8) appeared in the most rigid edge 

rib (labelled 45/9), Fig. 7 (left), leading to a small jump in the force-displacement curve. It 

appeared instantly and split the rib by its height. Two more similar jumps occurred in the force-

displacement curve before the maximum force. They might be due to extension of the existing 

crack or due to formation of new cracks - this could not be verified visually. When the maximum 

force 124.8 kN was reached, a very prominent and long crack (RL-TL, modes II and III) appeared 

in the middle rib. The crack practically cut the rib in half longitudinally, thereby making it non-

bearing, Fig. 7 (middle), which resulted in a significant drop in the force-displacement curve. After 

that, the plate was still able to take on a force up to 123.2 kN at w=54.1 mm, when the finger joint 

in the edge, previously damaged rib failed (LT-LR, mode I), Fig. 7 (right). This resulted in a plate 

collapse. 
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Failure analysis of ribbed cross-laminated timber plates 

   
Fig. 7 Cracks in sample 6.1.a (Zisi, Aicher and Dill-Langer 2016): edge rib (left), middle rib (middle), edge 

rib at plate failure (right) 
 

 
Fig. 8 Cracking systems RL-TL, modes I and II, sample 3.1.c 

 

 

In failure of a ribbed CLT plate, the key role is obviously played by the RL-TL cracks in the 

ribs. The location of such cracks is random, as it depends on pre-existing cracks due to drying, 

knots, orientation of the annual rings, and position of the finger joint. The CLT part of the ribbed 

plate remains virtually intact and the same is true for the glue. 

It can be concluded from this experiment (and also from the other samples) that ribbed CLT 

plate has an ability to collapse gradually, which is a very desirable property. 

 

 
5. Hashin criteria applied for timber 
 

Hashin (1980, 1981) derived two criteria for the crack initiation in transversely isotropic 

composite materials, such is, for example, polyester resin, reinforced with unidirectional glass 

fibers, e.g., (Brank and Makarovič 1998). Let us denote the direction of the fibers with 𝑥1 and two 

orthogonal directions transverse to the fibres with 𝑥2  and 𝑥3  (Fig. 9). For 3d stress state, the 

Hashin criteria are 

(
𝜎̂11

𝜎𝐴
+ )

2

+
𝜎̂12

2 + 𝜎̂13
2

𝜏𝐴
2 ≥ 1,        for 𝜎̂11 ≥ 0 (1) 

(
𝜎̂22 + 𝜎̂33

𝜎𝑇
+ )

2

+
𝜎̂23

2 − 𝜎̂22𝜎̂33

𝜏𝑇
2 +

𝜎̂12
2 + 𝜎̂13

2

𝜏𝐴
2 ≥ 1,        for 𝜎̂𝑛𝑛 ≥ 0 (2) 
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Fig. 9 Crack related to criterion (1) (left); crack related to criterion (2) (right) 

 

 

where 𝜎̂11, 𝜎̂22 and 𝜎̂𝑛𝑛 are normal stresses in directions 𝑥1, 𝑥2 and 𝑥𝑛 , respectively, see Fig. 9 

(right), 𝜎𝐴
+  and 𝜎𝑇

+  are tensile strengths in directions of fibers and transverse direction, 

respectively, 𝜏𝑇  and 𝜏𝐴  are shear strengths for shear transverse to the fibers and shear in the 

direction of the fibers, respectively. Criterion (1) is related to a crack opening transversely to the 

fibers, e.g., to the systems 𝑥1𝑥2 and 𝑥1𝑥3, Fig. 9 (left). The criterion (2) is related to a crack 

opening in the direction of the fibers, e.g., to the system 𝑥𝑛𝑥1, Fig. 9 (right). We use criteria (1) 

and (2) for timber. 

In addition to the criteria for the crack initiation, Hashin (1980, 1981) proposed criteria for the 

damage initiation in compression, but these criteria are not very important for timber, since cracks 

have much bigger impact on the behavior of timber structure than compression damage. For 3d 

stress state they can be written as 

𝜎̂11 ≥ −𝜎𝐴
−,        for 𝜎̂11 < 0 (3) 

(
𝜎̂22

2𝜏𝑇
)

2

+ [(
𝜎𝑇

−

2𝜏𝑇
)

2

− 1]
𝜎̂22

𝜎𝑇
− + (

𝜎̂12

𝜏𝐴
)

2

 ≥ 1,        for 𝜎̂𝑛𝑛 < 0 (4) 

where 𝜎𝐴
−  and 𝜎𝑇

−  represent compressive strengths in direction of the fibers and direction 

transverse to the fibers, respectively. 

When at least one of the conditions (1) or (2) is met in a material point, these signals start of 

cracking. During the crack propagation, fracture energy 𝐺𝑓 is released. If Hashin criteria (1) and 

(2) are used for timber, a crack transverse to the fibers (Fig. 9 left) can be related to the fracture 

energy of systems LT or LR and a crack along the fibers (Fig. 9 right) to the fracture energy of 

systems TL or RL.  

 

 

6. Numerical model 
 

Due to the symmetry, only one half of the plate was modeled by using symmetry boundary 

conditions, Fig. 10. We used solid-shell finite elements, which externally resemble 3d finite 

elements, but they are based on the shell theory. Their Abaqus label is SC8R (8 nodes, 1 

integration point on the middle layer and 5 integration points through the thickness). Small steel  
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Failure analysis of ribbed cross-laminated timber plates 

Table 1 Used elastic and shear moduli for the CLT in MPa 

𝐸1 𝐸2 𝐺12 𝐺13 G23 

11000 450 690 690 65 

 
Table 2 Used ratios for softwood C24 

𝐸2/𝐸1 𝐺12/𝐸1 𝐺13/𝐸1 

37/1100 69/1100 69/1100 

 
Table 3 Used strengths in MPa. Notation from Eqs. (1)-(4) is in parentheses 

𝑓𝑚 

(𝜎𝐴
+) 

𝑓𝑡,90 

(𝜎𝑇
+) 

𝑓𝑐,0 

(𝜎𝐴
−) 

𝑓𝑐,90 

(𝜎𝑇
−) 

𝑓𝑣 

(𝜏𝐴) 

𝑓𝑟 

(𝜏𝑇) 

𝑓𝑡,0
𝐶𝐿𝑇 

(𝜎𝐴
+) 

𝑓𝑡,90
𝐶𝐿𝑇 

(𝜎𝑇
+) 

𝑓𝑐,0
𝐶𝐿𝑇 

(𝜎𝐴
−) 

𝑓𝑐,90
𝐶𝐿𝑇 

(𝜎𝑇
−) 

𝑓𝑣
𝐶𝐿𝑇 

(𝜏𝐴) 

𝑓𝑟
𝐶𝐿𝑇 

(𝜏𝑇) 

67,94 0,68 44,16 4,93 6,79 6,79 23,78 0,68 35,67 5,10 3,91 1,19 

 

 

plates at support and load application were modeled with elastic modulus 210 GPa and Poisson 

ratio 0,3. We performed non-linear analysis by using the arc-length method (Stanić et al. 2016, 

Stanić and Brank 2017). 
 

6.1 Orthotropic material constants 
 

To describe elastic behavior, an orthotropic material model (Reddy 2004) was used with the 

following material axes: 𝑥1 (fiber direction), 𝑥3 (thickness direction of CLT and ribs); 𝑥1, 𝑥2 and 

𝑥3 form a right-handed coordinate system. Note that 𝑥1 coincides with L, while 𝑥2 and 𝑥3 coincide 

only approximately with T and R, respectively, Fig. 11. 

Abaqus (2016) uses for SC8R condensed 3d constitutive equations due to zero normal stresses 

in the thickness direction, e.g., (Brank et al. 1997), with 6 constants: 𝐸1, 𝐸2, 𝐺12, 𝜈12, 𝐺13 and 𝐺23. 

For the CLT, we used mean values of elastic and shear moduli for C24 spruce given in Ö NORM B 

1995 (2015), see Table 1, and Poisson ratio 𝜈21 = 0,02. For the ribs, we made use of the ratios 

between the moduli for softwood C24 according to Ö NORM EN 338 (2009), see Table 2. The 

moduli of each rib were obtained by multiplying these ratios to 𝐸𝑠 = 𝐸1; which were for 6.1.a 

sample 19725 and 16119 MPa (edge ribs), and 14523 MPa (middle rib), and for 6.1.b sample 

13391 and 10018 MPa (edge ribs), and 11951 MPa (middle rib). Poisson ratio used for the ribs 

was the same as for the CLT. For 𝐺23, we applied  𝐺23 = 𝐺12/10 (Ö NORM B 1995, 2015). 
 

6.2 Hashin criteria and used strength 
 

Plane stress Hashin failure criteria were applied. They can be obtained by setting 𝜎̂33 = 𝜎̂13 =
𝜎̂23 = 0 in (1)-(4). Abaqus uses plane stress Hashin criteria and does not take into account the 

transverse shear stresses, although these are available for shell finite elements. The probable 

reason might be difficulties to accurately determine transverse shear stresses, e.g., (Brank and 

Carrera 2000). 

Rib strengths were chosen according to Ö NORM EN 338 (2009). As 𝐸𝑠−𝑎𝑣 could be related to 

C40, we used the C40 mean strengths and the coefficient of variation 𝐶𝑉 = 0,25 (Brandner et al. 

2016). Strengths of the CLT layers were according to Ö NORM B 1995 (2015); we used C24 mean 

strengths and 𝐶𝑉 = 0,25. The used strengths are summarized in Table 3, where 𝑓𝑚  is bending 
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strength parallel to the fibers, 𝑓𝑡,90 is tensile strength perpendicular to the fibers, 𝑓𝑐,0 and 𝑓𝑐,90 are 

compressive strengths parallel and perpendicular to the fibers, respectively, and 𝑓𝑣 and 𝑓𝑟 are shear 

strengths parallel and perpendicular to the fibers, respectively. 

 
6.3 Material softening 

 

Abaqus (2016) models crack by material softening, which starts in the integration point if at 

least one of the criteria (1) and (2) is fulfilled. The fulfilment of at least one of the criteria (3) or 

(4) is a sign for softening due to compressive damage. Softening is governed by three parameters 

𝑑𝑓, 𝑑𝑚 and 𝑑𝑠, each running from 0 to 1. These parameters reduce the initial value of elastic and 

shear moduli and Poisson ratios as: 𝐸1 → (1 − 𝑑𝑓)𝐸1 , 𝜈21 → (1 − 𝑑𝑓)𝜈21 , 𝐸2 → (1 − 𝑑𝑚)𝐸2 , 

𝜈12 → (1 − 𝑑𝑚)𝜈12, 𝐺12 → (1 − 𝑑𝑠)𝐺12. It is evident that 𝑑𝑓 is associated with fiber damage and 

𝑑𝑚 with damage transverse to the fibres. If the above expressions are applied in the plane stress 

constitutive matrix, (Reddy 2004), one gets 

𝑪𝐷 =
1

𝐷
[

(1 − 𝑑𝑓)𝐸1 (1 − 𝑑𝑓)(1 − 𝑑𝑚)𝜈21𝐸1 0

(1 − 𝑑𝑓)(1 − 𝑑𝑚)𝜈12𝐸2 (1 − 𝑑𝑚)𝐸2 0

0 0 (1 − 𝑑𝑠)𝐺12𝐷

] 

𝐷 = 1 − (1 − 𝑑𝑓)(1 − 𝑑𝑚)𝜈12𝜈21 

(6) 

Matrix 𝑪𝐷  connects stresses 𝝈 = [𝜎11, 𝜎22, 𝜎12]𝑇  with strains 𝜺 = [𝜀11, 𝜀22, 2𝜀12]𝑇 ; 𝝈 = 𝑪𝐷𝜺. 

Since the damage parameters tend towards 0, the matrix 𝑪𝐷 reduces the material stiffness at the 

addressed integration point. Stresses used in the criteria (1)-(4), are additionally increased at the 

expense of decrease of intact material surface as 

𝝈̂ = 𝑴𝝈, 𝝈̂ = [𝜎̂11, 𝜎̂22, 𝜎̂12]𝑇 , 𝑴 = 𝐷𝑖𝑎𝑔 [(1 − 𝑑𝑓)
−1

, (1 − 𝑑𝑚)−1, (1 − 𝑑𝑠)−1] (7) 

Damage parameters from (6) are different for the tensile and compressive damage according to 

𝑑𝑓 = {
𝑑𝑓

𝑡  𝑖𝑓 𝜎̂11 ≥ 0

𝑑𝑓
𝑐  if 𝜎̂11 < 0

 ,         𝑑𝑚 = {
𝑑𝑚

𝑡  𝑖𝑓 𝜎̂22 ≥ 0

𝑑𝑚
𝑐  if 𝜎̂22 < 0

 , 

𝑑𝑠 = 1 − (1 − 𝑑𝑓
𝑡)(1 − 𝑑𝑓

𝑐)(1 − 𝑑𝑚
𝑡 )(1 − 𝑑𝑚

𝑐 ) 

(8) 

with 𝑑𝑓
𝑡 = 𝑑1 , 𝑑𝑚

𝑡 = 𝑑2 , 𝑑𝑓
𝑐 = 𝑑3  and 𝑑𝑚

𝑐 = 𝑑4  related with criteria (1), (2), (3) and (4), 

respectively. The current value of 𝑑𝑖, 𝑖 = 1, ⋯ ,4, is computed from the cohesion law for criterion 

(i). Such a cohesive law defines relationship between stress in the crack (for 𝑖 = 1,2) or crushing 

(for i = 3,4) and the opening related to the crack or crushing, see Fig. 12. From the similarity of 

triangles, it can be concluded from Fig. 13 

𝑑𝑖 = 𝛿𝑒𝑞,𝑖
𝑓

(𝛿𝑒𝑞,𝑖 − 𝛿𝑒𝑞,𝑖
0 )/ (𝛿𝑒𝑞,𝑖(𝛿𝑒𝑞,𝑖

𝑓
− 𝛿𝑒𝑞,𝑖

0 )) (9) 

where 𝛿𝑒𝑞,𝑖 represents the current opening. The meaning of the other notation in (9) is evident 

from Fig. 12. The area of the right triangle in Fig. 12 is equal to the fracture energy 𝐺𝑓
(𝑖)

, which is 

related with criteria (i). However, Abaqus (2016) requires the sum of the areas of the left and right 

triangle from Fig. 12 GF
(𝑖)

= 𝐴𝑙𝑒𝑓𝑡
(𝑖)

+ 𝐺𝑓
(𝑖)

. 
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Failure analysis of ribbed cross-laminated timber plates 

 
Fig. 10 Finite element mesh 

 

 
Fig. 11 T, R and 𝑥1, 𝑥2, 𝑥3 coordinates in a CLT layer and in a rib 

 
 

Due to the smeared crack approach, the strains are transformed into the separations 𝛿𝑒𝑞,𝑖 and 

the stresses are transformed into the tractions 𝑓𝑒𝑞,𝑖 as 

for 𝑖 = 1:  𝛿𝑒𝑞,1 = 𝐿𝐶√〈𝜀11〉2 + 𝛼𝜀12
2 ,      𝑓𝑒𝑞,1 = (〈𝜎11〉〈𝜀11〉 + 𝜎12𝜀12)/(𝛿𝑒𝑞,1/𝐿𝐶) 

for 𝑖 = 2:  𝛿𝑒𝑞,2 = 𝐿𝐶√〈𝜀22〉2 + 𝜀12
2 ,       𝑓𝑒𝑞,2 = (〈𝜎22〉〈𝜀22〉 + 𝜎12𝜀12)/(𝛿𝑒𝑞,2/𝐿𝐶) 

 (10) 

for 𝑖 = 3:  𝛿𝑒𝑞,3 = 𝐿𝐶〈−𝜀11〉,             𝑓𝑒𝑞,3 = (〈−𝜎11〉〈−𝜀11〉)/(𝛿𝑒𝑞,3/𝐿𝐶) 

for 𝑖 = 4:  𝛿𝑒𝑞,4 = 𝐿𝐶√〈−𝜀22〉2 + 𝜀12
2 ,      𝑓𝑒𝑞,4 = (〈−𝜎22〉〈−𝜀22〉 + 𝜎12𝜀12)/(𝛿𝑒𝑞,4/𝐿𝐶) 

where 𝐿𝐶 is characteristic length of the finite element. Computation of 𝑓𝑒𝑞,𝑖 is necessary only to the 

point (𝛿𝑒𝑞,𝑖
0 , 𝑓𝑒𝑞,𝑖

0 ), which coincides with fullfillment of Hashin criterion (i); up to this point 𝑑𝑖 = 0. 

All of the above is necessary in order to get mesh independent results when material softening is 

activated, e.g., (Ibrahimbegović 2009, Jukić et al. 2013). 

For the computed problem, 𝐺𝑓
(1)

 corresponds to the specific fracture energy for LT or LR, 

modes I or II. For Norwegian spruce 𝐺𝑓,𝐿𝑇,𝐼 = 145 J/m2 (Dourado et al. 2008). Value of 𝐺𝑓
(2)

 

corresponds to the specific fracture energy for TL, modes I or II (and possibly also for RL, modes I 

or II). Some of the measured values are (in J/m2): 𝐺𝑓,𝑇𝐿,𝐼 = 230, 𝐺𝑓,𝑅𝐿,𝐼 = 180 , 𝐺𝑓,𝑅𝐿,𝐼𝐼 = 680  
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Fig. 12 Cohesive relations 

 

 

for spruce (Frühmann et al. 2002), 𝐺𝑓,𝑇𝐿,𝐼 = 248 − 309 for Norwegian spruce (Coureau et al. 

2013), and 𝐺𝑓,𝑅𝐿,𝐼 = 260 (Reiterer et al. 2000). 

The values used for the numerical simulations of samples 6.1.a and 6.1.b were respectively (in 

J/m2): GF
(1)

= 1100 and GF
(1)

= 1000, where the area of the left triangle was estimated as 𝐴𝑙𝑒𝑓𝑡
(1)

≅

850 thus implying 𝐺𝑓
(1)

≅ 250 and 𝐺𝑓
(1)

≅ 150. Furthermore, we used for samples 6.1.a and 6.1.b 

respectively (in  J/m2 ): GF
(2)

= 700  and GF
(2)

= 500 , where the area of the left triangle was 

estimated as 𝐴𝑙𝑒𝑓𝑡
(1)

≅ 2, thus implying 𝐺𝑓
(2)

≅ 698 and 𝐺𝑓
(2)

≅ 498. For the compression criteria 

(3) and (4) we assumed GF
(3)

= GF
(4)

= 10000 J/m2. 

 

 

7. Results of numerical simulations 
 

For sample 6.1.a, a complete failure response was computed for the strengths from Table 3 and 

specific fracture energies from Section 6.3. A force-displacement curve was obtained, which was 

very similar to the one observed in the experiment, as shown in Fig. 13. The computed failure 

mechanism was also similar to the one observed in the experiment (the latter is presented in 

Section 4). The numerically computed failure mechanism can be observed from Figs 13 and 15: 

after the failure of the edge rib (A in Figs. 13 and 15), the load was carried by the middle rib and 

the second edge rib (B in Figs. 13 and 15), which both failed almost at the same load level (C in 

Figs. 13 and 15). The computed damaged locations are shown in Fig. 15. They are in good 

agreement with the locations of the cracks observed in the experiment. The distribution of the 

following damage parameters is shown in Fig. 15: 𝑑𝑠 at A and D, 𝑑𝑚
𝑡  at B, and 𝑑𝑓

𝑡  at C. Note that 

Fig. 15 C shows that the tensile damage in the edge rib extends from the mid-span towards the 

support, which is again in agreement with the experimental crack. We can conclude that the used 

numerical model was able to predict nicely the limit load and the limit ductility of the specimen 

6.1.a. Moreover, it was able to predict the regain of the force after the kink in the force-

displacement curve in Fig. 13. 

x3 
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Fig. 13 Force-displacement curves for sample 6.1.a 

 

 
Fig. 14 Force-displacement curves for sample 6.1.b 

 

 

Complete failure response was also computed for the sample 6.1.b for the strengths from Table 

3 and specific fracture energies from Section 6.3. The computed limit load is in good agreement 

with the experimental one as shown in Fig. 14. However, for this specimen, the damage 

distribution predicted by the numerical model is not in a particular good agreement with the 

experimentally observed damage. Namely, in the experiment, the first drop in force-displacement 

curve (see Fig. 14) occurred due to damage in the most flexible edge rib, whereas in the numerical 

model, the damage first occurred in the stiffest edge rib. The reason for this may be due to a week 

spot in the rib or the difference between the actual orientation of the fibers and the orientation used 

in the model. Nevertheless, the limit load and the limit ductility were predicted nicely also for the 

specimen 6.1.b. 

In the conclusion of this section, Fig. 16 shows results of the analyses obtained for samples 

6.1.a and 6.1.b with the strengths and/or fracture energies slightly changed with respect to the data 

presented in Section 6. A considerable scattering of the results is evident from Fig 16. This scatter 

resembles the scatter of the experimental results in Fig. 17, where the load-displacement curves are 

presented for all six samples mentioned in Section 3. It can be seen that the scatter of experimental 

results is very high, in spite of classification of all used timber as C24. 
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Fig. 15 Damage in the ribs for 6.1.a 

 
 
8. Conclusions 
 

Glued ribbed CLT plates will be mass-produced in the near future. It is therefore very useful to 

know how such plates behave in bending. As shown by the experiments (Zisi et al. 2016), the 

failure of such plates in bending is related to the appearance and propagation of large cracks in 

ribs. Such cracks appear in a certain sequence so that the failure of ribbed CLT plate is gradual 

(i.e., ductile). For that reason, the ribbed CLT plate has a substantial reserve in capacity after the 

occurrence of the first large longitudinal crack in one of the ribs, which is a very desirable 

property. For example, in the case of sample 6.1.a, the experimental limit load was 23% higher 

than the load at which the first major crack occurred in the edge rib. Experimental bending failure 

mechanism of the considered samples of ribbed CLT plates was practically the same: the ribs were 

cracking at certain load levels, and when the two ribs out of three failed completely due to large 

and wide cracks, the plate failed as well. 

Many variations of the ribbed CLT plate are of course possible, depending on the CLT layer 

thickness, the number of CLT layers, the thickness of the ribs, the height of the ribs, the distance 

between the ribs, the quality of the CLT, and the quality of the timber of the ribs. In this work we 

considered 3 layered C24 spruce CLT and C24 spruce ribs. The thickness of the layer was 4 cm, 

and the ratio between the thickness, the width and the axial length of the ribs was 40/130/140. In 

the case of major deviations from this data a change in the failure mechanism might (or might not) 

be expected. We note that the detailed report on experimental results will be provided in a separate 

publication. 
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Fig. 16 Scatter of numerical results for samples 6.1.a (left) and 6.1.b (right) 

 

 
Fig. 17 Scatter of experimental results 

 

 

As for numerical simulations, it has been shown that the material model based on the Hashin 

criteria for damage initiation and the smeared crack concept for handling the material softening 

can be successfully used to simulate failure analysis of timber structural elements in bending. The 

limit load and the limit ductility were predicted quite nice. Nevertheless, we do not really 

recommend too much such a model for wide use due to its sensitivity to the (relatively) small 

changes in strengths, fracture energies and the way the load is applied. It seems that methods 

which simulate the formation and propagation of cracks in the material, e.g., X-FEM and 

embedded discontinuity FEM, see e.g., (Dujc et al. 2010, 2010, 2013), (Piculin et al. 2016) are 

more appropriate, but they are still poorly developed for the use with timber structural 

components. 
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