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Abstract.  Three-dimensional Lagrangian fluid finite element is applied to seismic response analysis 
of an oil storage tank with a floating roof. The fluid element utilized in the present analysis is 
formulated based on the displacement finite element method considering only volumetric elasticity and 
its element stiffness matrix is derived by using one-point integration method in order to avoid 
volumetric locking. The method usually adds a rotational penalty stiffness to satisfy the irrotational 
condition for fluid motion and modifies element mass matrices through the projected mass method to 
suppress spurious hourglass-mode appeared in compensation for one-point integration. In the fluid 
element utilized in the present paper, a small hourglass stiffness is employed. The fluid and structure 
domains for the objective oil storage tank are modeled by eight-node solid elements and four-node shell 
elements, respectively, and the transient response of the floating roof structure or the free surface are 
evaluated by implicit direct time integration method. The results of seismic response analyses are 
compared with those by other method and the validation of the present analysis using 
three-dimensional Lagrangian fluid finite elements is shown. 
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1. Introduction 
 

The 2003 Tokachioki earthquake seriously damaged oil storage tanks with floating roofs that 
were located far from the seismic center. The long-period ground motion due to the earthquake 
induced surface oscillations of the fluid in the tanks referred to as “sloshing” and destroyed the 
floating roof structures of several tanks (Koketsu et al. 2005). In one of the tanks, the floating roof 
was damaged, and a fire broke out. The tank structure was completely destroyed by the fire, and 
the surrounding environment was also damaged. In Japan, before the earthquake, the strength of 
floating roof structures subjected to sloshing motion induced by the seismic motion of liquid 
contained in an oil storage tank had not been sufficiently investigated. Consequently, this accident 
led to a revision of the fire prevention laws in Japan regarding the design of oil storage tanks 
(Nishi et al. 2008a, b and 2010). Therefore, it is important to perform seismic response analyses 
for expected earthquake motion and to evaluate surface elevations and stress distributions of 
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floating roof structures with a view to preventing earthquake damage (Ormeno et al. 2012). 
The potential flow theory (Ibrahim 2005), which assumes the fluid motion to be incompressible, 

inviscid and irrotational, is applicable in certain engineering design problems. Linear potential 
analysis, in which the motion of the free surface is assumed to be small, is often valid and has 
satisfactory accuracy. Recently, Matsui (2007, 2009) performed sloshing analysis for a cylindrical 
liquid storage tank with a floating roof under seismic excitation through an analytical approach 
based on the potential flow theory. Moreover, Yoshida et al. (2008) performed fluid-structure 
coupling analysis for the observed wave of the 2003 Tokachioki earthquake using axisymmetric 
finite elements for a potential flow and an elastic floating roof structure. The authors have 
developed a fluid-structure strong coupling analysis system, in which the structure and fluid 
domains are modeled by finite elements based on Lagrange-type and Euler-type formulations, 
respectively, in order to perform seismic response analyses of oil storage tanks (Nagashima 2006, 
Nagashima et al. 2011). 

On the other hand, dynamic response analysis of fluid in a container using a Lagrange-type 
fluid finite element has been proposed (Wilson and Khalvati 1983, Chen and Taylor 1990, Calayir 
and Dumanoglu 1993, Dogangun et al. 1996, Kim and Yun 1997, Hamdan 1999, Parrinello and 
Borino 2007). This method models the fluid as an incompressible perfect fluid and uses continuum 
elements for linear elastic materials based on the displacement method, which consider only 
volumetric elasticity and neglects shear elasticity. In addition, the penalty stiffness for rotational 
motion is introduced in order to consider irrotational conditions of the fluid. Since linear elements 
are normally used for space discretization in the framework of the finite element method, 
one-point integration at the center of the element is adopted in order to derive the element stiffness 
matrix. Moreover, Chen and Taylor (1990) proposed the projected mass method in order to control 
hourglass modes that appeared in order to compensate for the one-point integration. Kim and Yun 
(1997) applied the Lagrange-type fluid element to two-dimensional eigenvalue and dynamic 
response analyses for fluid in rigid and elastic containers. 

The authors have tried to extend Kim’s formulation (Kim and Yun 1997) for a fluid element, 
which applies one-point integration, stiffness with rotational penalty, and the projected mass 
method to three-dimensional problems in order to perform seismic response analyses of an oil 
storage tank with a floating roof. However, inappropriate deformation modes referred to as 
hourglass modes were still obtained for some problems. Therefore, the present paper proposes a 
stabilization method by adding resistance stiffness against spurious modes, which is referred to as 
hourglass stiffness. The magnitudes of the hourglass and rotational penalty stiffnesses are 
determined by a series of eigenvalue analyses for the sloshing frequency of liquid in a rigid 
cylindrical container, the theoretical solution of which is known, in order to search for optimized 
parameters. Using such parameters for the hourglass and rotational penalty stiffnesses, transient 
response analyses for an oil storage tank are performed. In the present analyses, the effects on the 
numerical results of the determination as to whether a free surface or a floating roof structure is 
modeled and whether the elasticity of the tank wall is considered are investigated. The response 
results obtained using the proposed fluid elements are compared with those obtained by potential 
analyses and fluid-structure strong coupling analyses using Lagrange-type solid and Euler-type 
fluid elements (Nagashima 2006, Nagashima et al. 2011). 

The remainder of the present paper is organized as follows. Section 2 presents the formulation 
of the Lagrange-type fluid finite elements and the analysis methods. In Section 3, the eigenvalue 
analyses for the sloshing motion in a rigid cylindrical tank filled with liquid are described, and the 
optimized range of numerical parameters for rotational penalty and hourglass control are 
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determined. In Section 4, the transient response analyses of a free surface or a floating roof for a 
single-deck type oil storage tank with a floating roof are performed by the proposed method, and 
the transient responses of the surface or the floating roof elevation are evaluated through 
comparison with various other methods. Finally, Section 5 presents a summary of the present 
study. 
 
 
2. Analysis methods 

 
2.1 Governing equations 
 
The Euler equations of motion of the inviscid perfect fluid neglecting body force is defined in 

three-dimensional Cartesian coordinates (i = 1, 2, 3) as follows (Ibrahim 2005) 
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where t, vi, p, and F are the time, velocity, pressure, and mass density of the fluid, respectively. 
The relation between the fluid pressure p and the volumetric strain V is assumed to be as 

follows 

VfKp  (2)

where Kf is the bulk modulus of elasticity. 
The volumetric strain V of the liquid can be expressed using the displacement ui as follows 
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Assuming a small deformation, the following equations can be approximately established. 
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Substituting Eq. (4) into Eq. (1) and neglecting the nonlinear terms with respect to the 
displacement ui, the following equation can be obtained 
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Eq. (5) is the equilibrium equation described by the displacement for a linear elastic body 
without a body force, neglecting the shear elasticity and considering the bulk modulus, and is 
referred to as Navier’s equation (Fung 1965). Therefore, the inviscid perfect fluid can be described 
approximately as an incompressible linear elastic solid, considering only the bulk elasticity in the 
Lagrangian coordinate system. 

In the present paper, a liquid storage container with a free surface or a floating roof, as shown 
in Fig. 1, where V, SW, SB, and SF are the domain of the liquid, the liquid-solid interface, the bottom 
surface, and the free surface, respectively, is analyzed. For simplicity, the free surface is assumed 
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(a) Volumetric domain (b) Boundary surface 

Fig. 1 Geometry of the analyzed liquid storage tank model 
 
 
to be planar, and the outward normal is assumed to point toward the x3 direction. 

The boundary condition on the free surface SF is then described as follows 

FF Songupp 30   (6)

where p0 is the pressure at the free surface in the resting state, and g is the acceleration of gravity. 
The principle of virtual work, which is equivalent to the governing equation (Eq. (5)) and the 

boundary condition (Eq. (6)), is described as follows 
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where the LHS, the first and the second terms of the RHS are the virtual work done by the internal 
force, the inertial force, and the pressure on the free surface, respectively. 

If dynamic response analyses are performed under the small deformation theory without 
considering the initial stresses, then p0 can, in general, be assumed to be zero. Therefore, such a 
condition is used in the analyses of the present paper. The LHS and the first term of the RHS of Eq. 
(7) relate the derivation of the stiffness matrix and the mass matrix of the fluid element. In addition, 
the second term of the RHS of Eq. (7) provides the derivation of the stiffness due to surface 
elevation. 

 
2.2 Three-dimensional eight-node hexahedral Lagrangian fluid element 
 
The coordinates xi (i = 1, 2, 3) and the displacement ui for an eight-node hexahedral 

isoparametric linear element in three-dimensions, as shown in Fig. 2, can be described as follows 
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where xI
i and uI

i are the coordinates and the displacement at node I, respectively, r1, r2, and r3 are 
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(a) Definition in global coordinates (b) Definition in natural coordiates 

Fig. 2 Eight-node hexahedral isoparametric linear element 
 
 
the natural coordinates. 

The interpolation function NI is given as follows 

    332211321 111
8

1
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where r1
I, r2

I, and r3
I are the natural coordinates of r1, r2, and r3, respectively, at node I. 

The expressions of the approximation function and the stiffness for an eight-node hexahedral 
isoparametric linear element have been investigated in the field of computational solid mechanics. 
In particular, an explicit direct method using one-point integration has been investigated 
(Belytschko et al. 2000). Belytschko and Bindeman (1993) showed that Eq. (9) can be rewritten as 
follows 
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2.2.1 Volumetric strain stiffness 
The volumetric strain defined in Eq. (3) can be described using Eq. (11), as follows 
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Eq. (17) can be expressed as follows 
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The LHS of Eq. (7) can be discretized by a finite element considering Eq. (18), and, 
consequently, the element stiffness matrix can be defined as follows 
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e
V  BBBBk  (20)

where Ve is the volume of an element. 
In the derivation of Eq. (20), the following equation is used for the eight-node hexahedral 

isoparametric linear element 
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Eq. (20) defines the element stiffness matrix using full integration. However, this element 
stiffness tends to provide extremely high stiffness and never produces appropriate results. This 
phenomenon is referred to as volumetric locking (Belytschko et al. 2000). Therefore, the one-point 
integration method is usually used to evaluate the stiffness (Wilson and Khalvati 1983, Chen and 
Taylor 1990, Calayir and Dumanoglu 1993, Dogangun et al. 1996, Kim and Yun 1997, Hamdan 
1999, Parrinello and Borino 2007). However, for three-dimensional problems, the one-point 
integration method cannot completely eliminate spurious deformation modes. Therefore, the 
second term of RHS of Eq. (20) is left as a stiffness to resist spurious hourglass modes. 
Consequently, Eq. (20) is rewritten as follows 

dVKVK
eV

T
NCNCfHC

eT
CCf

e
V  BBBBk   (22)

where HC is a non-dimensional parameter for controlling the hourglass mode. 
In Eq. (22), for the case in which HC is zero, the element stiffness can be obtained through 

one-point integration. On the other hand, if HC is unity, the element stiffness can be obtained 
through full integration. Therefore, the magnitude of hourglass stiffness can be controlled by 
changing the size of HC . 

 
2.2.2 Rotational penalty stiffness 
Wilson and Khalvati (1983) introduced the penalty stiffness for constraining the rotational 

motion of fluid in order to eliminate inappropriate rigid rotational modes. The rotation i of the 
deformation can be defined using the displacement ui, as follows 

jkijki ue ,2
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where eijk is the permutation symbol (Fung 1965). 
Using Eq. (11), the components of rotation at the center of an element can be expressed as 

follows 

UBubub TTT
 123321 )(

2

1
  (24.1)

UBubub TTT
 231132 )(

2

1
  (24.2)

UBubub TTT
 312213 )(

2

1
 (24.3)

where 
 2/2/0 231

TTT bbB   (25.1)

 2/02/ 132
TTT bbB   (25.2)

 02/2/ 123
TTT bbB   (25.3)

Consequently, the penalty stiffness matrix for rotational motion is defined as follows 
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where RP  is non-dimensional parameter for controlling the effect of the penalty stiffness. 

 
2.2.3 Element stiffness matrix 
As described above, the element stiffness matrix used in the present analyses is defined as 

follows 

  dVKVVK
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e  bbbbbbbbbbk   332211
 (27)

The first term of the RHS of Eq. (27) is the stiffness term obtained by one-point integration at 
the center of an element. The second term is the rotational penalty term, and the third term is the 
additional term for controlling hourglass modes. Gauss numerical integration using 2 × 2 × 2 
points is used for the volumetric integration of the third term. In addition, the optimum values of 
RP and HC are determined through preliminary analyses. 

 
2.2.4 Element mass matrix 
The mass matrix for the fluid element can be obtained by discretizing the first term of the RHS 

of Eq. (7). Specifically, the mass matrix is defined by the Gauss numerical integration using 2 × 2 
× 2 points, as in conventional displacement-based FEM, as follows 
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On the other hand, as is obvious from Eq. (11), the element has 12 dependent hourglass modes, 
which are constructed of four modes in each axial direction xi. The modes can be expressed by the 
nodal displacement at an element as follows 
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Chen and Taylor (1990) proposed the projected mass method to eliminate emerged hourglass 
modes in compensation for one-point integration and modified the mass matrix for a 
two-dimensional fluid element. In the present study, this method is extended to three-dimensional 
problems. Specifically, instead of using Eq. (28), the mass matrix for the fluid element is redefined 
as follows 
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and I24 is the unit matrix with 24 rows and 24 columns. 
In fact, as shown in following equations, it can be shown that the product of matrix Q and the 

hourglass modes 1g , 2g , and 3g
 are zero vectors 
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Therefore, if the mass matrix defined by Eq. (31) is used, the product of the mass matrix and 
the hourglass modes is a zero vector, and so the mass matrix does not affect the hourglass modes. 
Consequently, the appearance of hourglass modes is expected to be suppressed. 

 
2.3. Treatment for free surface 
If an eight-node hexahedral linear fluid element is used, the face of the element corresponding 

to the free surface becomes a quadrilateral. Therefore, the stiffness matrix on the movement of the 
free surface against gravity in the x3 direction can be obtained by discretizing the second term of 
the RHS of Eq. (7) using four-node quadrilateral elements as follows 

dSg
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e
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where 
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3. Sloshing natural frequency analysis of a liquid in the rigid cylindrical tank 
 
The sloshing natural frequency analyses of the cylindrical rigid tank with a free surface, a 

diameter of 80 m, and a liquid level of 20 m are performed using the Lagrangian fluid finite 
elements proposed in the present study. The dimensions of the tank correspond to an oil storage 
tank with a floating roof, the analysis of which will be described later herein. In the analysis, the 
fluid domain is divided into eight-node hexahedral solid elements and the free surface is modeled 
by four-node quadrilateral shell elements. The finite element model used in the present analysis is 
shown in Fig. 3. In the model, the displacement components normal to the bottom and wall 
surfaces of the tank are constrained in order to consider the slip conditions between the contained 
fluid and the rigid tank. Undamped eigenvalue analyses were performed by varying the rotational 
penalty parameters RP between 10−4 and 102 and the hourglass control parameters HC between 
10−9 and 10−3 in order to investigate the optimal values of the parameters and the effect of the 
projected mass method, and the obtained results were compared with the exact values given by the 
potential theory. In the present analysis, the contained liquid is assumed to be water, the bulk 
modulus and the density of which are 2.19 GPa and 1,000 kg/m3, respectively, and the acceleration 
of gravity is assumed to be 9.80665 m/s2. 
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Table 1 Natural frequencies for various RP and HC obtained without using the projected mass method 
(unit: Hz) 

αRP αHC (1,1) mode (2,1) mode (0,1) mode (3,1) mode (4,1) mode (1,2) mode

1.0 × 10-4 0 0.0* 0.0* 0.0* 0.0* 0.0* 0.0* 

1.0 × 10-3 0 0.0* 0.0* 0.0* 0.0* 0.0* 0.0* 

1.0 × 10-2 0 0.0* 0.0* 0.0* 0.0* 0.0* 0.0* 

1.0 × 10-1 0 0.0* 0.0* 0.0* 0.0* 0.0* 0.0* 

1 0 0.0* 0.0* 0.0* 0.0* 0.0* 0.0* 

10 0 0.0* 0.0* 0.0* 0.0* 0.0* 0.0* 

100 0 0.0* 0.0* 0.0* 0.0* 0.0* 0.0* 

1.0 × 10-4 1.0 × 10-9 0.00117* 0.00354* 0.00560* 0.00600* 0.00728* 0.00774*

1.0 × 10-3 1.0 × 10-9 0.00117* 0.00354* 0.00600* 0.00635* 0.00728* 0.00774*

1.0 × 10-2 1.0 × 10-9 0.00117* 0.00354* 0.00600* 0.00650* 0.00728* 0.00774*

1.0 × 10-1 1.0 × 10-9 0.00117* 0.00354* 0.00600* 0.00652* 0.00728* 0.00774*

1 1.0 × 10-9 0.00117* 0.00354* 0.00600* 0.00653* 0.00728* 0.00774*

10 1.0 × 10-9 0.00117* 0.00354* 0.00600* 0.00655* 0.00728* 0.00774*

100 1.0 × 10-9 0.00117* 0.00354* 0.00600* 0.00658* 0.00728* 0.00774*

1.0 × 10-4 1.0 × 10-8 0.00370* 0.01120* 0.01504* 0.01897* 0.02129* 0.02362*

1.0 × 10-3 1.0 × 10-8 0.00370* 0.01120* 0.01540* 0.01897* 0.02302* 0.02449*

1.0 × 10-2 1.0 × 10-8 0.00370* 0.01120* 0.01594* 0.01897* 0.02302* 0.02449*

1.0 × 10-1 1.0 × 10-8 0.00370* 0.01120* 0.01608* 0.01897* 0.02302* 0.02449*

1 1.0 × 10-8 0.00370* 0.01120* 0.01613* 0.01897* 0.02302* 0.02449*

10 1.0 × 10-8 0.00370* 0.01120* 0.01619* 0.01897* 0.02302* 0.02449*

100 1.0 × 10-8 0.00370* 0.01120* 0.01630* 0.01897* 0.02302* 0.02449*

1.0 × 10-4 1.0 × 10-6 0.03663* 0.07347* 0.09114 × 0.11076* 0.11294# 0.13139 ×

1.0 × 10-3 1.0 × 10-6 0.03663* 0.09114 × 0.11076* 0.11505* 0.13141 × 0.15107 ×

1.0 × 10-2 1.0 × 10-6 0.03663* 0.09114 × 0.11076* 0.11584* 0.13141 × 0.15107 ×

1.0 × 10-1 1.0 × 10-6 0.03663* 0.09114 × 0.11076* 0.11666* 0.13142 × 0.15107 ×

1 1.0 × 10-6 0.03663* 0.09114 × 0.11076* 0.11704* 0.13170 × 0.15108 ×

10 1.0 × 10-6 0.03663* 0.09114 × 0.11076* 0.11704* 0.13170 × 0.15108 ×

100 1.0 × 10-6 0.03663* 0.09118 × 0.11076* 0.11721* 0.13413 × 0.15117 ×

1.0 × 10-4 1.0 × 10-3 0.07103# 0.09151 × 0.11338# 0.13297 × 0.15278 × 0.15320#

1.0 × 10-3 1.0 × 10-3 0.09129 0.13300 0.15284 0.16380 0.18579 × 0.19266 ×

1.0 × 10-2 1.0 × 10-3 0.09129 0.13300 0.15285 0.16383 0.18583 × 0.19279 ×

1.0 × 10-1 1.0 × 10-3 0.09129 0.13301 0.15285 0.16385 0.18585 × 0.19289 ×

1 1.0 × 10-3 0.09129 0.13304 0.15285 0.16406 0.18602 × 0.19366 ×

10 1.0 × 10-3 0.09129 0.13324 0.15287 0.16594 0.18739 × 0.20025 ×

100 1.0 × 10-3 0.09134 0.13423 0.15296 0.17951 × 0.19709 × 0.22893 ×

Theory 0.09112 0.13137 0.15095 0.15912 0.18083 0.18108 
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Table 2 Natural frequencies for various RP and HC obtained using the projected mass method (unit: Hz) 

αRP αHC (1,1) mode (2,1) mode (0,1) mode (3,1) mode (4,1) mode (1,2) mode

1.0 × 10-4 0 0.0* 0.0* - 0.0* 0.0* - 

1.0 × 10-3 0 0.0* - - 0.0* - 0.0* 

1.0 × 10-2 0 - - - 0.0* - 0.0* 

1.0 × 10-1 0 0.0* 0.0* 0.0* 0.0* 0.0* - 

1 0 - 0.0* 0.0* 0.0* - - 

10 0 - - - 0.0* 0.0* - 

100 0 0.0* - - 0.0* - 0.0* 

1.0 × 10-4 1.0 × 10-9 0.07085# 0.07705* 0.08451* 0.09091* 0.09114 0.10897*

1.0 × 10-3 1.0 × 10-9 0.07610* 0.09114 × 0.10589* 0.13139 × 0.13508* 0.15888*

1.0 × 10-2 1.0 × 10-9 0.07610* 0.09114 × 0.13141 × 0.13807* 0.15892* 0.15922 ×
1.0 × 10-1 1.0 × 10-9 0.07610* 0.09114 × 0.13141 × 0.15107 × 0.15892* 0.15924 ×

1 1.0 × 10-9 0.07610* 0.09114 × 0.13142 × 0.15107 × 0.15892* 0.15943 ×
10 1.0 × 10-9 0.07610* 0.09114 × 0.13169 × 0.15108 × 0.15892* 0.16125 ×

100 1.0 × 10-9 0.07610* 0.09118 × 0.13412 × 0.15116 × 0.15892* 0.17398 ×
1.0 × 10-4 1.0 × 10-8 0.07085# 0.09114 0.11294 # 0.13139 0.15107 0.15147#

1.0 × 10-3 1.0 × 10-8 0.09114 0.13139 0.15107 0.15922 0.18109 0.18124 

1.0 × 10-2 1.0 × 10-8 0.09114 0.13139 0.15107 0.15922 0.18110 0.18124 

1.0 × 10-1 1.0 × 10-8 0.09114 0.13139 0.15107 0.15924 0.18118 0.18126 

1 1.0 × 10-8 0.09114 0.13142 0.15107 0.15943 0.18140 0.18192 

10 1.0 × 10-8 0.09114 0.13153 0.15108 0.16125 0.18268 0.18813 

100 1.0 × 10-8 0.09118 0.13248 0.15116 0.17398 0.19203 0.21482 

1.0 × 10-4 1.0 × 10-6 0.07085# 0.09114 × 0.11294# 0.13139 × 0.15107 × 0.15147#

1.0 × 10-3 1.0 × 10-6 0.09114 0.13139 0.15107 0.15922 0.18110 0.18124 

1.0 × 10-2 1.0 × 10-6 0.09114 0.13139 0.15107 0.15922 0.18111 0.18124 

1.0 × 10-1 1.0 × 10-6 0.09114 0.13139 0.15107 0.15924 0.18119 0.18126 

1 1.0 × 10-6 0.09114 0.13142 0.15107 0.15944 0.18141 × 0.18193 ×
10 1.0 × 10-6 0.09114 0.13153 0.15108 0.16125 0.18269 × 0.18814 ×

100 1.0 × 10-6 0.09118 0.13249 0.15117 0.17399 × 0.19204 × 0.21485 ×
1.0 × 10-4 1.0 × 10-3 0.07103# 0.09151 × 0.11338# 0.13297 × 0.15278 × 0.15320#

1.0 × 10-3 1.0 × 10-3 0.09129 0.13300 0.15284 0.16380 0.18579 × 0.19266 ×
1.0 × 10-2 1.0 × 10-3 0.09129 0.13300 0.15285 0.16383 0.18583 × 0.19279 ×
1.0 × 10-1 1.0 × 10-3 0.09129 0.13301 0.15285 0.16385 0.18585 × 0.19289 ×

1 1.0 × 10-3 0.09129 0.13304 0.15285 0.16406 0.18602 × 0.19366 ×
10 1.0 × 10-3 0.09129 0.13324 0.15287 0.16594 0.18740 × 0.20025 ×

100 1.0 × 10-3 0.09134 0.13423 0.15296 0.17951 × 0.19710 × 0.22894 ×

Theory 0.09112 0.13137 0.15095 0.15912 0.18083 0.18108 
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Number of nodes : 36,141 

Number of hexahedron elements : 33,600 
Number of quadrilateral elements : 1,680 

Fig. 3 Finite element model of the liquid in the cylindrical tank 
 

 
 

First, the eigenvalue analyses of the sloshing natural frequency were performed without the 
projected mass method by changing the rotational penalty parameter RP and the hourglass control 
parameters HC, and the obtained results are summarized in Table 1, where the obtained natural 
frequencies are given in terms of the circumferential wave number n and the radial wave number 
m. For example, (1,1) and (1,2) indicate the first and second sloshing modes, respectively. Second, 
analyses using the projected mass method were performed, and the results are summarized in 
Table 2. In Tables 1 and 2, the “*” and “#” symbols indicate the occurrence of hourglass and rigid 
rotational modes, respectively. In addition the “-” symbol indicates the impossibility of analysis, 
and the “x” symbol indicates that improper eigenmodes were obtained. On the other hand, the 
numerical values highlighted in boldface type indicate natural frequencies for which the 
eigenvalues and eigenmodes are acceptable when compared with theoretical values. Typical 
spurious hourglass and rigid rotational modes are shown in Fig. 4. The (1,1) modes in cases of RP 

= 10−3 and HC = 10−12, and RP = 10−4 and HC = 10−6 are shown in Figs. 4(a) and (b), respectively,  
 
 
Table 3 Appropriate natural frequencies obtained using the projected mass method (unit: Hz) 

RP  HC  (1,1) mode (2,1) mode (0,1) mode (3,1) mode (4,1) mode (1,2) mode

3100.1   8100.1 
0.091135 0.13139 0.15107 0.15922 0.18109 0.18124 

(0.014%) (0.014%) (0.080%) (0.061%) (0.142%) (0.088%)

2100.1   8100.1 
0.091135 0.13139 0.15107 0.15922 0.18110 0.18124 

(0.014%) (0.014%) (0.080%) (0.061%) (0.148%) (0.088%)

1100.1   8100.1 
0.091135 0.13139 0.15107 0.15924 0.18118 0.18126 

(0.014%) (0.014%) (0.080%) (0.074%) (0.192%) (0.099%)

3100.1   6100.1 
0.091135 0.13139 0.15107 0.15922 0.18110 0.18124 

(0.014%) (0.014%) (0.080%) (0.061%) (0.148%) (0.088%)

2100.1   6100.1 
0.091135 0.13139 0.15107 0.15922 0.18111 0.18124 

(0.014%) (0.014%) (0.080%) (0.061%) (0.153%) (0.088%)

1100.1   6100.1 
0.091136 0.13139 0.15107 0.15924 0.18119 0.18126 

(0.015%) (0.014%) (0.080%) (0.074%) (0.197%) (0.099%)

Theory 0.091122 0.13137 0.15095 0.15912 0.18083 0.18108 

400



 
 
 
 
 
 

Seismic response analysis of an oil storage tank using Lagrangian fluid elements 

 

(a) Hourglass mode obtained for 310RP  
and 1210HC  using the projected mass 
method 

(b) Rotational mode obtained for 410RP  
and 610HC using the project mass 
method 

Fig. 4 Typical spurious eigenmodes 


  
(a) ( 1, 1 ) mode 

0.0911 Hz
(b) ( 2, 1 ) mode 

0.1314 Hz
(c) ( 0, 1 ) mode 

0.1509 Hz

  
(d) ( 3, 1 ) mode 

0.1591 Hz
(e) ( 4, 1 ) mode 

0.1808 Hz
(f) ( 1, 2 ) mode 

0.1811 Hz
Fig. 5 Eigenmodes of the liquid in the cylindrical tank obtained for RP =10-3 and HC =10-6 

using the projected mass method
 
 
and both cases were computed using the projected mass method. Table 3 shows that appropriate 
results were obtained by using the projected mass method and setting RP to a value between 10−3 
and 10−1 and HC to a value between 10−8 and 10−6. Table 3 summarizes the appropriately obtained 
results, which agree with the theoretical results. Typical appropriate first and second sloshing 
eigenmodes obtained using the projected mass method and setting RP and HC to 10−3 and 10−6, 
respectively, are shown in Fig. 5. Therefore, in the subsequent analyses, the projected mass 
method is used, and RP and HC are taken as 10−3 and 10−6, respectively. 
 
 
4. Seismic response analysis of an oil storage tank with a floating roof 
 

4.1 Tank geometry 
 
Sloshing eigenvalue and transient seismic response analyses were performed for a 100,000 

kiloliter class government-stockpiled oil storage tank with a single-deck floating roof. This storage 
tank has a diameter of 80 m, a height of 25 m, a liquid level of 20 m, a bottom thickness of 9 mm, 
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Fig. 6 Dimensions of the oil storage tank with a floating roof analyzed in the present study 

 
 
and a wall thickness of 14 mm, as shown in Fig. 6. Although the thickness of the lowest part of the 
tank wall is usually around 32 mm in the actual 80 m-diameter class oil storage tank, the wall of 
the model in the present analysis has a constant thickness of 14 mm, which is the averaged 
thickness in height direction. However, the actual distribution of the wall thickness is supposed to 
provide almost the same results because the maximum surface elevations are insensitive to the 
wall stiffness in the analysis as shown later. The structure of a roof having floats called pontoon 
was also considered. The Young's modulus, Poisson's ratio, and mass density of both the tank and 
roof structures were assumed to be 200 GPa, 0.3, and 8,000 kg/m3, respectively, and the properties 
of the liquid contained in the tank were as described in Section 3. 

 
4.2 Analysis cases 

 
First, undamped sloshing eigenvalue analyses of the liquid in the tank were performed. In these 

analyses, the effects of the methods used to model the tank wall and the floating roof on the 
numerical results were investigated. In addition, for comparison, analyses using an Euler-type 
fluid element based on the potential flow theory (Nagashima 2006, Nagashima et al. 2011) were 
also performed. The analysis cases are summarized in Table 4. Case E3 in Table 4, for example, 
corresponds to the undamped sloshing eigenvalue analysis of liquid in the tank with a free surface 
while considering the elasticity of the tank wall modeled by Lagrangian fluid finite elements. 
   Second, transient response analyses using the published acceleration data HKD129EW, which 
is provided by K-NET (http://www.k-net.bosai.go.jp/) of the National Research Institute for Earth 
Science and Disaster Prevention (NIED) of Japan, were performed. In addition to the eigenvalue 
analyses, the effects of the modeling methods on the numerical results were examined. The 
analysis cases for the transient response analyses are summarized in Table 5. Case T7 in Table 5, 
for example, corresponds to the transient response analysis of liquid in the tank with a floating 
roof while considering the elasticity of the tank wall modeled by the Lagrangian fluid finite 
elements. 

 
4.3 Finite element model 
 

The liquid domain in the tank was divided into eight-node hexahedral solid elements, and when 
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Table 4 Cases for natural sloshing frequency analyses 

Case Fluid element type Tank wall Floating roof or free surface 

E1 Euler Rigid Free surface 

E2 Langrange Rigid Free surface 

E3 Langrange Elastic Free surface 

E4 Langrange Rigid Floating roof 

E5 Langrange Elastic Floating roof 

 
 
Table 5 Cases for transient response analyses 

Case Fluid element type Tank wall Floating roof or free surface Remarks 

T1 Euler Rigid Free surface Using linear potential flow theory

T2 Euler Elastic Free surface Strong-coupling (Euler/Langrange)

T3 Euler Elastic Floating roof Strong-coupling (Euler/Langrange)

T4 Euler Rigid Floating roof Strong-coupling (Euler/Langrange)

T5 Langrange Rigid Free surface Using the proposed fluid elemtents

T6 Langrange Elastic Free surface Using the proposed fluid elemtents

T7 Langrange Elastic Floating roof Using the proposed fluid elemtents

T8 Langrange Rigid Floating roof Using the proposed fluid elemtents

 
 

 
(a) Fluid 

Number of nodes : 36,141 
Number of elements : 33,600 

 

 
(b) Fluid surface 

Number of nodes :1,721 
Number of elements : 1,680 

 

 
(c) Wall 

Number of nodes : 2,080 
Number of elements : 2,000 

 

 
(d) Pontoon roof 

Number of nodes : 2,281 
Number of elements : 2,320 

Fig. 7 Finite element models of the tank structures and the liquid 
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the Lagrangian fluid elements were used, four-node quadrilateral fluid shell elements were placed 
at the liquid level. In addition, the tank structures, such as the tank wall and the floating roof, were 
modeled by four-node quadrilateral structure shell elements. The finite element models for the 
contained liquid, the liquid surface, the tank wall, and the floating roof are shown in Figs. 7(a) 
through 7(d), respectively. For example, Case E1 uses the finite element model shown in Fig. 7(a), 
and Cases E2, E3, E4, and E5 use this finite element model in conjunction with the finite element 
models shown in Figs. 7(b) through 7(d) based on the analysis conditions. 

 
4.4 Constraint conditions 
 
The displacement component in the x3 direction u3 of the node for the fluid element is 

constrained on the tank bottom SB, whereas the displacement of the nodes for solid elements 
isperfectly constrained. When the tank wall is assumed to be rigid, the displacement component un 
normal to the interface between the tank wall and the liquid is constrained for the nodes of the 
fluid elements. When the elasticity of the tank wall is considered, the constraint conditions with 
respect to the displacement components of the outward normal un

F and un
W for the fluid and solid 

elements, as shown in Fig. 8(a), are given as follows 

W
n

F
n uu   (36)

Regarding the nodes located on the outer edge of the floating roof model, when the tank wall is 
assumed to be rigid, the displacement components in the horizontal plane u1

R and u2
R are 

constrained as follows 
021  RR uu  (37)

On the other hand, when the elasticity of the tank wall is considered, as shown in Figs. 8(b) and 
(c), the constraint conditions between the nodes on the tank structure and the nodes on the floating 
roof and those between the nodes on the liquid and the nodes on the floating roof are given as 
follows 

WRWRWR uuuuuu 332211 ,,   (38)
 

 
 

 

  

(a) Between the fluid and the wall (b) Between the roof and the wall (c) Between the fluid and the roof

Fig. 8 Constraint conditions between the fluid and various structures 
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4.5 Results and discussion 
 

First, undamped sloshing eigenvalue analyses were performed, and the results were compared 
with the theoretical solutions, as shown in Table 6. The results for Cases E1 through E4 were 
similar, and the differences between the numerical results and the exact solutions for the first and 
second sloshing modes were less than 0.5%. The results for these cases are almost identical. The 
first and the second sloshing modes obtained for Case E2 are shown in Fig. 9. 

Second, the transient response analyses were performed by enforcing the horizontal 
acceleration wave, which is shown in Fig. 10, to the tank model. A Rayleigh damping of 0.5%, 
corresponding to the first sloshing mode, was assumed. In addition, the time increment is set to 
0.01 seconds, and computation was performed for 290 seconds using 29,000 steps. As shown in 
Fig. 11, the evaluation point is located along the circular edge, farthest from the tank axis. The  

 
 

Table 6 Obtained natural frequencies for the first and second sloshing modes 

Case 
1st sloshing mode 2nd sloshing mode 

Frequency [Hz] Error Frequency [Hz] Error 

E1 0.09111 0.012% 0.18067 0.226% 

E2 0.09114 0.014% 0.18124 0.088% 

E3 0.09086 0.283% 0.18112 0.022% 

E4 0.09106 0.072% 0.18064 0.243% 

E5 0.09079 0.364% 0.18054 0.298% 

Theory 0.09112 0.18108 
 
 

       
(a) 1st sloshing mode 

0.09112 Hz 
(b) 2nd sloshing mode 

0.18108 Hz 

Fig. 9 First and second sloshing modes obtained by eigenvalue analyses for Case E2 
 
 

 
Fig. 10 Observed seismic acceleration provided by K-NET (HKD129EW) 
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Fig. 11 Evaluation point for the transient analyses 
 

(a) Case T1,T2,T3,T4 (b) Case T5,T6,T7,T8 

Fig. 12 Transient responses of surface elevation obtained using Euler-type fluid elements 
 
 
displacement components u3 in the perpendicular direction for Cases T1 through T4 and Cases T5 
through T8 are shown in Fig. 12. In addition, in order to compare the results obtained using the 
proposed Lagrangian element and the results obtained by the Eulerian element, the displacement 
components u3 in the perpendicular direction during the period from 50 to 100 seconds for Cases 
T1, T2, T5, and T6 and Cases T3, T4, T7, and T8 are shown in Fig. 13. Moreover, the maximum 
elevation is summarized in Table 7. As shown in Fig. 12, and Table 7, the transient response of 
surface elevation was almost identical for all cases. In addition, the analysis results obtained using 
the Lagrangian fluid element agreed well with the results obtained using the linear potential flow 
theory and the strong coupling method between the Eulerian fluid element and the Lagrangian 
structural element (Nagashima 2006, Nagashima et al. 2011). Consequently, the dynamic response 
analyses of the tank are almost independent of the tank wall elasticity, and so the elastic effect of 
the tank on the response is small. Furthermore, the maximum elevation of the floating roof is 
almost the same as that obtained using the free surface. However, Cases T4 and T8, which model 
the floating roof directly, are preferable because stress evaluation of the roof is required. In the 
present analyses, although the second order sloshing mode would appear dominantly in the case of 
the transient seismic analysis of 80 m-diameter class tank using HKD129EW, a Rayleigh damping 
of 0.5%, corresponding to only the first sloshing mode, is employed. Therefore, a Rayleigh 
damping regarding the second sloshing mode should be considered. In addition, the results for the  
transient analyses summarized in Table 7 show that the maximum displacement of the floating 
roof is greater than that of the free surface. These results may not be qualitatively-correct. The 
cause could be due to the fact that both the floating roof and free surface models use the same 
Rayleigh damping of 0.5%. In order to improve the accuracy of transient analyses, thoughtful 
consideration for the damping factor should be given. This is an issue in the future. 
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(a) Case T1,T2,T5,T6 (b) Case T3,T4,T7,T8 

Fig. 13 Transient responses of surface elevation during 50-100 seconds 
 
 
Table 7 Maximum surface elevations obtained by Case T1 through Case T8 

Case 
Max displacement 

mm s 

T1 1321.059 71.31 

T2 1338.739 71.32 

T3 1379.725 71.28 

T4 1362.874 71.25 

T5 1313.600 71.29 

T6 1352.000 71.29 

T7 1380.400 71.29 

T8 1345.200 71.29 
 
 

 
Displacement scaling factor : × 5 

Fig. 14 Bending stress distribution of the floating roof 
 
 
The bending stress distributions of the floating roof obtained for Cases T4 and T8 are shown in 

Fig. 14, where the normal stress in the x1 direction is evaluated as the bending stress. The results 
are similar for both cases and provide the maximum bending stresses at the junctional region 
between the pontoon and the deck. 

In addition, the computation time and the memory required to solve the system equations for 
the eight analysis cases, as well as the computational environments, are listed in Table 8. Although 
the number of degrees of freedom of a node for an Eulerian element is one, that for a 
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Table 8 Computation time and required memory for Case T1 through Case T8 

Case Number of DOFs CPU time* 
Required memory fornon-zero terms 

(PARDISO/IMKL) 

T1 36,141 95.2 min 13,036,817 <99 MB> 

T2 48,621 146.8 min 38,779,713 <296 MB> 

T3 72,153 223.3 min 60,901,633 <465 MB> 

T4 49,927 153.0 min 40,822,767 <311 MB> 

T5 108,423 668.7 min 109,635,205 <836 MB> 

T6 120,903 805.6 min 125,277,839 <956 MB> 

T7 144,435 901.7 min 143,018,173 <1091 MB> 

T8 122,109 784.8 min 125,277,647 <956 MB> 

*Quad-Core Xeon 2.66 GHz (X5550), two-CPUs : Ram: 72GB 
OS: Redhat EL 5.3 Base Server 
COMPILER: Intel C compiler Version 11.0 
 
 
Lagrangian element is three. As such, the Lagrangian element requires the analysis model to have 
a greater number of degrees of freedom. Therefore, comparing Cases T4 and Case T8 reveals that 
the computational time required for the Lagrangian element is 5 times that for the Eulerian element, 
although the symmetric sparse matrix for the system equations is used for the analysis using the 
Lagrangian element. 
 
 
5. Conclusions 
 

In the present paper, a three-dimensional Lagrangian fluid finite element was applied to the 
seismic response analysis of an oil storage tank with a floating roof, and the obtained results were 
examined. It was confirmed that, using appropriate parameters for the rotational penalty and the 
hourglass control as well as the projected mass method, the proposed method can provide sloshing 
natural frequencies that are consistent with the theoretical solution. Moreover, the transient 
analysis using the proposed method was shown to provide almost the same results as the strong 
coupling method for the Eulerian element based on the potential flow theory and the Lagrangian 
structural element. In the analysis of the oil storage tank with a single-deck floating roof of 80 m 
in diameter and a liquid level of 20 m, it was shown that the elastic effect of the tank wall on the 
response was small, and the analysis model considering the free surface was shown to provide 
almost the same results as the analysis model considering the floating roof. This suggests that the 
seismic response analysis of the present paper for an oil storage tank with a floating roof does not 
necessarily require modeling of the floating roof. Although stress analysis of the floating roof is 
required in order to perform the safety assessment analysis, modeling of the floating roof structure 
is preferable. 

The rotational penalty and the hourglass control parameters used in the proposed method are 
empirical and may depend on the finite element mesh. However, since the theoretical sloshing 
natural frequency is known for the cylindrical tank analyzed in the present paper, these parameters 
can be optimized before transient analysis by comparing the obtained results with the theoretical 
solution. If the proposed method is applied to more general problems, the theoretical solutions of 
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which are unknown, the mesh dependence of the numerical solution should be investigated for the 
eigenvalue analyses before performing transient analyses. 

Although the number of degrees of freedom for an Eulerian fluid element based on the 
potential theory is one, the number of degrees of freedom for the proposed Lagrangian fluid 
element is three. Therefore, the total number of degrees of freedom of the analyzed model and the 
computational cost increase. However, the compatibility condition for the displacement between 
the fluid and the solid can easily be satisfied by using Lagrangian elements, and these elements 
can be used in the existing finite element code for structural analyses. The coupling analysis using 
the Lagrangian element provides the system equations with a symmetric sparse matrix, and so the 
undamped eigenvalue analyses can be easily performed and the modal analyses can be performed 
in succession. Since the nodal displacements can be approximately expressed using the modal 
coordinates, the computation time will be reduced. 
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